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Abstract

We propose two methods to make unsuper-
vised domain adaptation (UDA) more param-
eter efficient using adapters, small bottleneck
layers interspersed with every layer of the large-
scale pre-trained language model (PLM). The
first method deconstructs UDA into a two-step
process: first by adding a domain adapter to
learn domain-invariant information and then
by adding a task adapter that uses domain-
invariant information to learn task represen-
tations in the source domain. The second
method jointly learns a supervised classifier
while reducing the divergence measure. Com-
pared to strong baselines, our simple meth-
ods perform well in natural language inference
(MNLI) and the cross-domain sentiment classifi-
cation task. We even outperform unsupervised
domain adaptation methods such as DANN
(Ganin et al., 2016) and DSN (Bousmalis et al.,
2016) in sentiment classification, and we are
within 0.85% F1 for natural language infer-
ence task, by fine-tuning only a fraction of the
full model parameters. We release our code at
https://github.com/declare-lab/domadapter.

1 Introduction

Fine-tuning pretrained language models (PLM) is
the predominant method for improving NLP tasks
such as sentiment analysis, natural language in-
ference, and other language understanding tasks
(Wang et al., 2018). However, fine-tuning forces
us to modify all the parameters of the model and
store one copy of the model for one task. Given the
large size of current PLMs, this can be expensive.
Furthermore, fine-tuning needs large-scale data to
be effective and is unstable when using different
seeds (Han et al., 2021).

A new approach to alleviate this is parameter-
efficient fine-tuning – freezing the PLM parameters

∗The first two authors contributed equally.

and fine-tuning only a small fraction of the param-
eters. Fine-tuning with adapters (Houlsby et al.,
2019) is one of these methods in which small ad-
ditional layers are tuned within each PLM layer.
Fine-tuning with adapters has many advantages:
performance comparable to full fine-tuning (He
et al., 2021a), and robustness to different seeds and
adversarial examples (Han et al., 2021).

Unsupervised domain adaptation (UDA) aims to
adapt models to new domains and considers situa-
tions where labeled data are available only in the
source domain and unlabeled data are available in
the target domain. UDA methods in general have
two components: The first reduces the divergence
between the source and target domains, and the
second reduces the loss corresponding to a particu-
lar task (Ramesh Kashyap et al., 2021a). However,
they fine-tune a large number of parameters and
are susceptible to catastrophic forgetting. Adapters
(Houlsby et al., 2019) can help solve these prob-
lems. However, the benefits of using adapters fine-
tuning for domain adaptation have been mostly
overlooked. How well can adapter fine-tuning per-
form across different domains and can we make
domain adaptation more efficient? In this work,
we answer these questions and propose models to
perform domain adaptation using adapters.

Adapters are known to perform well in low-
resource scenarios where a small amount of super-
vised data is available in a new domain or language
(He et al., 2021b; Pfeiffer et al., 2020b). In this
work, using the principles of UDA, we propose to
make domain adaptation more effective using unsu-
pervised data from the target domain. We introduce
two methods that we collectively call the U nsuper-
vised D omain A daptation method using adapters
(UDAPTER). The first method is a two-step pro-
cess: First, we learn domain adapters – where we
use a divergence measure to bring two probabilis-
tic distributions closer together. This helps us to
learn representations that are independent of the
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Figure 1: UDAPTER for a transformer layer l uses principles from unsupervised domain adaptation to make domain
adaptation more parameter efficient. (a) The first method TS-DT- trains a Domain Adapter that reduces the
marginal distribution between the domains (b) The task adapter is stacked on top of the domain adapter. and trained
on an end task like sentiment analysis or natural language inference. The domain adapter is frozen during training.
(c) The second method JOINT-DT- reduces the domain divergence and the task loss jointly.

domain from which they come. Second, we use
the domain-invariant information learned as input
to another task adapter that learns to perform an
NLP task using labeled data from the source do-
main. We combine the two adapters by stacking
them. The second method adds a single adapter
without stacking, where we simultaneously reduce
the divergence between domains and learn the task
in the source domain.

Domain Adversarial Neural Networks (DANN)
and Domain Separation Networks (DSN) are the
most common methods for unsupervised domain
adaptation in NLP (Ramesh Kashyap et al., 2021a).
We compare our proposed methods with these
strong baselines that fine-tune all model param-
eters, on Amazon (Blitzer et al., 2007) and the
MNLI dataset (Williams et al., 2018) consisting
of five domains each. UDAPTER performs better
than all baselines. It achieves competitive perfor-
mance compared to UDA methods by fine-tuning
only a fraction of the parameters. In an era where

large resources are spent to further pretrain lan-
guage models on large amounts of unsupervised
data to achieve domain adaptation (Gururangan
et al., 2020), it is necessary to provide cheaper,
faster solutions.

2 Method

Setup. We consider an NLP task (sentiment anal-
ysis) consisting of data X and labels Y (positive,
negative). There exist two different distributions,
called the source domain DS and the target domain
DT over X × Y . Unsupervised domain adaptation
(UDA) consists of a model C that receives labeled
input samples XS : (xs, ys)

ns
s=1 ∼ DS and unla-

beled input XT : (xt)
nt
t=1 ∼ DT . The goal of UDA

is to learn a model C such that we perform well in
the NLP task for the target domain DT .

The popular method in UDA is to learn repre-
sentations that are invariant in the input domain
and still have sufficient power to perform well in
the source domain (Ganin et al., 2016; Bousmalis
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et al., 2016). Then according to the theory of do-
main divergence (Ben-David et al., 2010) shows
that the error in the target domain is bounded by
the error in the source domain and the divergence.
The unsupervised domain adaptation method thus
consists of two components: the reduction of the
divergence measure and a classifier for the source
domain. A new classifier must be learned for ev-
ery pair of source-target domains, and the method
fine-tunes a large number of parameters.

UDAPTER makes unsupervised domain adapta-
tion more parameter efficient (cf. § 2.1, § 2.2) using
adapters. We follow the framework proposed by
Houlsby et al. (2019) where small bottleneck lay-
ers are added to the transformer layers, fine-tuning
only the adapter parameters while keeping the other
parameters frozen, and propose the following.

2.1 Two-Step Domain and Task Adapters

Domain Adapters. To learn domain-invariant
representations, we first train a domain adapter.
The adapter architecture follows the work of Pfeif-
fer et al. (2021), which consists of a simple down-
projection followed by an up-projection. In a trans-
former layer l, let hl be the hidden representation
of the layer Add & Norm and let rl be the represen-
tation of the layer Feed-Forward (Figure 1a), then
the adapter makes the following transformation and
calculates a new hidden representation.

doml = Wup · f(Wdown · hl) + rl (1)

where f is a nonlinear function such as RELU,
Wdown ∈ Rh×d projects the hidden representations
down to a lower dimension, Wup ∈ Rd×h projects
them back to a higher dimension, and d ≪ h. We
pass a sample from the source domain (xsrcs ) ∼ DS
and a sample from the target domain (xtrgt ) ∼ DT
through the adapters in layer l and obtain their rep-
resentations hsrcl and htrgl , respectively. We then
reduce the divergence between these representa-
tions.

∆l = div(domsrc
l , domtrg

l ) (2)

Here div(·) is the divergence function such as
the correlation alignment (CORAL) (Sun et al.,
2016), the central moment discrepancy (CMD)
(Zellinger et al., 2017) or the multi-kernel max-
imum mean discrepancy (MK-MMD) (Gretton
et al., 2012; Bousmalis et al., 2016). In this work,
we use MK-MMD for all of our experiments, since

it performed the best1. Similar ideas are used to
adapt representations in computer vision models
(Long et al., 2019; Sun and Saenko, 2016). The
final divergence loss considers all L layers.

Ldiv =
L∑

l=1

∆l (3)

Task Adapters. Task adapters are stacked with
frozen domain adapters. We pass the representa-
tions doml from the previous step and the super-
vised data from the source domain (xsrcs , ysrcs ) ∼
DS . Task adapters have the same architecture as
domain adapters and perform the following.

taskl = Wup · f(Wdown · domsrc
l ) + rl (4)

The goal of these task adapters is to learn repre-
sentations that are task-specific. Only task adapters
are updated when training on the end task (senti-
ment classification, natural language inference) and
all other parameters, including domain adapters,
are frozen. Regular cross-entropy loss is reduced
during training of task adapters.

Ltask = softmax_ce(Wtask · hL) (5)

hL is the hidden representations of the last layer
of the transformer, Wtask ∈ Rh∗|Y| where |Y| is the
number of classes, and softmax_ce is the softmax
followed by cross-entropy. This two-step process
deconstructs UDA methods with a domain adapter
and a task adapter. This affords composability,
where task adapters can be reused for different
pairs of domains (§ 3.4). However, domain and task
representations can be learned jointly, as explored
in the next section.

Training Process. Given a source-target domain
adaptation scenario, we first train the domain
adapter and save their weights. We then stack
the task adapter with the domain adapter, which is
trained using the supervised data from the source
domain. When training the task adapter, the do-
main adapter is frozen. During inference, we stack
the domain and task adapter.

2.2 Joint Domain Task Adapters
This method adds a single adapter that performs
the reduction of the divergence measure and learns

1We also tried using CMD and CORAL and our systems
performed similarly to MK-MMD
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Dataset Train Dev Test
MNLI 69,600 7,730 1,940

AMAZON 1,440 160 400

Table 1: Dataset statistics, showing number of train, dev,
and test instances per domain.

task representations jointly. For a given supervised
sample from the source domain (xsrcs , ysrcs ) ∼ DS
and an unsupervised sample (xtrgt ) ∼ DT , let
hsrcl , htrgl be the hidden representations of the
adapters for xsrcs and xtrgt for layer l. We reduce
the following joint loss:

L = λ · Ltask + (1− λ) · Ldiv (6)

Here Ltask is the task loss on the source domain
supervised samples, λ is the adaptation factor.

Reducing divergence along with cross-entropy
loss beyond a certain point makes training unstable
and does not contribute to increased performance.
Following (Ganin et al., 2016) we suppress the
noisy signal from the divergence function as train-
ing progresses and gradually change λ from 0 to
1 to reduce the contribution of divergence loss us-
ing the following schedule (γ = 10 for all of our
experiments):

λ =
2

1 + exp (−γ · p) − 1 (7)

Similar methods have been proposed to adapt
models to other domains by Long et al. (2019) and
Wu et al. (2022). Compared to the two-step pro-
cess introduced earlier (§ 2.2), we need to properly
control the losses to obtain optimal results and also
this method does not offer composability (§ 3.4).

3 Experiments

3.1 Datasets
We evaluate our approach on two representative
datasets with different tasks, both in English. Ta-
ble 1 shows the details of the datasets. Every
dataset has 5 domains, and we consider each do-
main with every other domain which results in 20
domain adaptation scenarios for every dataset, 120
experiments per method, and 1900+ experiments.

AMAZON: Multi Domain Sentiment Analysis
Dataset (Blitzer et al., 2007) that contains Amazon
product reviews for five different types of prod-
ucts (domains): Apparel (A), Baby (BA), Books
(BO), Camera_Photo (C), and Movie Reviews (MR).

Each review is labeled as positive or negative. We
follow the setup in (Ramesh Kashyap et al., 2021a)

MNLI: The Multigenre Natural Language Infer-
ence (MNLI) corpus (Williams et al., 2018) con-
tains hypothesis–premise pairs covering a variety
of genres: Travel (TR), fiction (F), telephone (TE),
government (G), and slate (S). Each pair of sen-
tences is labeled Entailment, Neutral, or Contra-
diction. The train and validation data set are taken
from the train set by sampling 90% and 10% sam-
ples, respectively. We use the MNLI-matched vali-
dation set as our test set.

3.2 Baseline Methods

Fully supervised. Fine-tune ( ): Fine-tunes a
language model using labeled data from the target
domain. Serves as an upper bound of performance.

Unsupervised Domain Adaptation (UDA). Do-
main Adversarial Neural Networks (DANN): An
unsupervised domain adaptation method (Ganin
et al., 2016) that learns domain-invariant informa-
tion by minimizing task loss and maximizing do-
main confusion loss with the help of gradient re-
versal layers. Domain Separation Networks: (DSN)
(Bousmalis et al., 2016) improves DANN, with ad-
ditional losses to preserve domain-specific informa-
tion along with the extraction of domain-invariant
information. bert-base-uncased serves as a fea-
ture extractor for both methods.

Adapter Based. DANN Adapter (DANN- ):
Similar to DANN, but we insert trainable adapter
modules into every layer of a PLM. DANN Adapter
with Multiple Classifiers (DANN- -MC): Unlike
DANN- which involves a single task and do-
main classifier, here a task and domain classifier
are added to each of the last 3 layers of a PLM.
The representation of the last layers of a PLM is
domain variant (Ramesh Kashyap et al., 2021b),
and this model obtains domain-invariant informa-
tion2 (vi) Task adapter (TASK- ): Adapter fine-
tuning (Pfeiffer et al., 2020a) where adapters are
fine-tuned in the labeled source domain and tested
in the target domain. (vii) Two-step Domain and
Task Adapter (TS-DT- ): This work, where we
first train a domain adapter that reduces the proba-
bilistic divergence between two domains and then
fine-tunes a task adapter by stacking. (viii) Joint

2We tried adding classifiers incrementally to the last few
layers. Adding it to the last 3 layers performed the best.
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Fully Supervised Unsupervised Domain Adaptation Adapter Based

Src →Trg DANN DSN DANN- DANN- -MC TASK- TS-DT- JOINT-DT-

A → BA 87.52 (1.96) 85.57 (3.72) 89.90 (0.26) 86.46 (0.26) 88.74 (0.64) 87.03 (0.26) 88.24 (0.76) 88.74 (0.13)

A → BO 86.67 (1.06) 36.48 (0.45) 84.47 (0.99) 78.41 (1.14) 83.36 (0.43) 84.15 (1.10) 84.22 (0.76) 84.96 (0.28)

A → C 91.62 (0.37) 57.51 (13.32) 88.56 (0.81) 87.31 (0.39) 88.75 (0.69) 89.67 (0.32) 88.76 (1.32) 89.39 (0.23)

A → MR 82.08 (0.78) 35.23 (1.99) 78.08 (0.46) 75.54 (0.63) 76.60 (1.06) 76.63 (0.92) 77.39 (0.13) 77.63 (0.71 )
BA → A 89.12 (0.38) 77.52 (11.25) 87.46 (1.83) 87.72 (1.85) 88.47 (0.72) 88.33 (1.10) 89.55 (0.10) 89.70 (0.23)

BA → BO 86.67 (1.06) 43.45 (8.96) 82.19 (3.70) 82.89 (3.08) 83.86 (0.41) 84.61 (0.39) 84.38 (0.61) 85.01 (0.60

BA → C 91.62 (0.37) 47.58 (7.65) 89.68 (0.71) 86.63 (0.53) 88.73 (0.42) 90.63 (0.33) 87.46 (0.88) 88.64 (0.30)

BA → MR 82.08 (0.78) 50.63 (7.43) 77.88 (0.38) 74.48 (1.79) 78.07 (0.34) 78.74 (0.35) 79.42 (0.44) 78.44 (0.70)

BO → A 89.12 (0.38) 37.40 (1.90) 88.20 (0.51) 85.90 (0.12) 85.91 (0.25) 85.03 (0.36) 84.79 (0.75) 87.46 (0.27)

BO → BA 87.52 (1.96) 54.33 (12.49) 88.56 (0.44) 82.06 (1.15) 84.27 (0.11) 86.50 (0.39) 86.84 (0.48) 86.41 (0.79)

BO → C 91.62 (0.37) 39.43 (0.49) 88.58 (1.01) 86.94 (0.83) 87.40 (0.44) 88.44 (0.53) 87.86 (0.61) 88.53 (0.43)

BO → MR 82.08 (0.78) 54.23 (13.94) 79.07 (1.01) 76.19 (0.89) 79.44 (0.86) 79.44 (0.95) 80.52 (0.61) 78.91 (0.38)

C → A 89.12 (0.38) 60.93 (3.78) 89.76 (0.76) 87.02 (1.86) 86.63 (0.29) 87.74 (1.18) 88.53 (0.42) 88.92 (0.44)

C → BA 87.52 (1.96) 77.29 (3.61) 89.42 (0.70) 88.10 (1.13) 89.14 (0.30) 81.71 (2.72) 89.72 (0.43) 89.32 (0.42)

C → BO 86.67 (1.06) 38.21 (1.40) 85.56 (0.62) 81.18 (2.07) 83.61 (0.67) 80.55 (0.81) 84.14 (0.52) 85.42 (0.70)

C → MR 82.08 (0.78) 35.08 (1.94) 76.13 (0.54) 64.99 (5.91) 74.22 (0.31) 69.53 (1.24) 73.22 (0.48) 73.50 (0.84)

MR → A 89.12 (0.38) 37.07 (4.16) 82.64 (2.17) 81.05 (1.15) 79.56 (0.53) 82.45 (1.43) 81.93 (0.47) 84.41 (0.43)

MR → BA 87.52 (1.96) 38.76 (4.17) 80.59 (2.18) 77.95 (1.46) 79.33 (0.43) 81.70 (1.22) 84.28 (0.41) 84.91 (0.36)

MR → BO 86.67 (1.06) 42.07 (4.86) 85.13 (0.83) 82.83 (0.62) 84.90 (1.29) 84.90 (0.23) 84.47 (0.80) 84.45 (0.31)

MR → C 91.62 (0.37) 36.92 (1.86) 86.56 (0.63) 84.58 (0.46) 82.53 (0.92) 86.68 (0.65) 86.25 (0.38) 88.37 (0.11)

Avg 87.40 (0.91) 49.28 (5.47) 84.92 (1.03) 81.91 (1.37) 83.68 (0.50) 83.72 (0.88) 84.60 (0.57) 85.16 (0.43)

Table 2: F1 scores for AMAZON dataset. We report mean and standard deviation of 3 runs. The five domains
are Apparel (A), Baby (BA), Books (BO), Camera_Photo (C) and Movie Reviews (MR). On average, our method
outperforms all baselines. Our methods are competitive with fully unsupervised domain adaptation methods.

Domain Task Adapter (JOINT-DT- ) - We train a
single adapter that reduces the domain and task loss
jointly. For all adapter-based experiments, the PLM
is frozen, and only adapter modules are trained.

Since we use adapters, we only consider other
adapter based baselines and omit other methods
such as Prefix-tuning (Lester et al., 2021). Also,
(Zhang et al., 2021) target multidomain adaptation
and use data from all the domains during training
unlike our method and is not a fair comparison.

Implementation Details and Evaluation. For
our experiments, we use bert-base-uncased (De-
vlin et al., 2019) available in the HuggingFace
Transformers library (Wolf et al., 2020) as our back-
bone. Adapter implementations are from Adapter-
Hub (Pfeiffer et al., 2020a). We follow (Pfeiffer
et al., 2021) and add only one bottleneck layer after
the feedforward layer.

We use the AdamW optimizer and a learning
rate of 1e− 4 for all our adapter-based training and
2e − 5 otherwise. Only for the smaller AMAZON

dataset, we used an adapter bottleneck size (reduc-
tion factor) of 32. For all other adapter-based ex-
periments and datasets, we use the default adapter
bottleneck size of 16. We performed experiments
on three different seeds. We report the mean and
standard deviation of the F1 scores . For DANN

we use 0.04 as our λ and for DSN we use 0.1, 0.1,
and 0.3 as our weights for three losses: reconstruc-

tion, similarity, and difference respectively. We
avoid extensive hyperparameter tuning per domain
adaptation scenario for efficiency.

3.3 Results

From Table 2 and Table 3 our methods TS-DT-
and JOINT-DT- perform well in both AMAZON

and MNLI. We find that fine-tuning the task adapter
(TASK- ) is a strong baseline and, compared to it,
we perform well in 17/20 domain adaptation sce-
narios in AMAZON (largest increase of 8 points for
C → BA ) and 19/20 domain adaptation scenarios in
MNLI (largest increase of 2.2 for F → TE). One pos-
sible explanation of scenarios where our method
finds the largest increase is the proximity of the two
domains. The overlap in vocabularies (Figure 9 in
Appendix) between C →BA in AMAZON and F →
TE in MNLI is high, and our method takes advan-
tage of learning domain-invariant information that
can be used for efficient domain transfer. Our meth-
ods for learning domain-invariant information are
necessary to achieve good domain adaptation.

UDAPTER is comparable to UDA methods.
Compared to UDA methods where all parameters
of the backbone model are fine-tuned, we perform
close to them on average. JOINT-DT- performs
better than DSN by 0.2% in AMAZON. We are
within 0.85% in MNLI compared to DSN. Training
DANN is highly unstable and produces varied re-
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Fully Supervised Unsupervised Domain Adaptation Adapter Based

Src →Trg DANN DSN DANN- DANN- -MC TASK- TS-DT- JOINT-DT-

F →S 74.09 (0.40) 73.68 (0.21) 72.36 (0.17) 70.96 (0.03) 62.40 (4.79) 72.36 (0.36) 73.46 (0.34) 72.30 (0.26)

F →G 82.19 (0.12) 79.17 (0.25) 79.79 (0.21) 78.73 (0.43) 77.23 (0.33) 79.00 (0.46) 78.65 (0.25) 79.79 (0.22)

F →TE 78.41 (0.66) 73.72 (0.81) 75.07 (0.32) 70.89 (0.74) 71.68 (0.59) 70.83 (0.54) 73.05 (0.70) 71.59 (0.78)

F→TR 81.81 (0.20) 76.99 (0.19) 76.82 (0.50) 74.42 (0.18) 75.09 (0.05) 75.85 (0.19) 76.75 (0.80) 77.07 (0.26)

S →F 78.59 (0.34) 75.91 (0.23) 76.62 (0.38) 73.89 (0.61) 73.47 (0.28) 75.25 (0.19) 75.52 (0.89) 75.35 (0.56)

S →G 82.19 (0.12) 80.91 (0.46) 81.27 (0.23) 79.99 (0.36) 79.16 (0.10) 80.76 (0.40) 81.65 (0.11) 80.94 (0.30)

S →TE 78.41 (0.66) 74.32 (0.57) 74.27 (0.48) 72.29 (0.57) 71.89 (0.07) 72.66 (0.79) 74.09 (0.30) 73.38 (0.63)

S →TR 81.81 (0.20) 76.81 (0.35) 78.17 (0.20) 75.58 (0.54) 75.77 (0.39) 76.16 (0.22) 77.31 (0.60) 77.16 (0.18)

G →F 78.59 (0.34) 73.41 (0.73) 72.62 (0.37) 71.57 (0.68) 70.34 (0.73) 72.66 (0.31) 72.66 (0.56) 73.56 (0.23)

G →S 74.09 (0.40) 72.51 (0.10) 71.93 (0.25) 70.17 (0.64) 69.49 (0.40) 71.11 (0.38) 71.14 (0.21) 71.36 (0.04)

G →TE 78.41 (0.66) 71.52 (0.13) 72.90 (0.39) 69.45 (0.96) 68.67 (0.17) 71.40 (0.30) 71.53 (1.04) 71.99 (0.67)

G →TR 81.81 (0.20) 77.42 (0.54) 77.80 (0.42) 74.35 (0.22) 74.04 (0.51) 76.29 (0.10) 76.16 (0.34) 76.79 (0.59)

TE →F 78.59 (0.34) 75.07 (0.08) 75.17 (0.35) 72.24 (0.59) 71.49 (0.45) 74.48 (0.33) 73.34 (0.41) 73.89 (0.12)

TE →S 74.09 (0.40) 71.65 (0.50) 72.16 (0.23) 69.09 (1.79) 69.25 (0.31) 70.94 (0.16) 70.94 (0.55) 71.41 (0.19)

TE →G 82.19 (0.12) 78.57 (0.60) 79.24 (0.31) 77.80 (0.27) 76.65 (0.20) 79.24 (0.35) 79.65 (0.60) 79.78 (0.64)

TE →TR 81.81 (0.20) 75.72 (0.37) 77.29 (0.61) 74.67 (0.50) 74.08 (0.25) 75.27 (0.83) 76.11 (0.91) 75.95 (0.50)

TR →F 78.59 (0.34) 73.22 (0.92) 72.44 (0.50) 70.27 (0.45) 69.08 (0.64) 72.20 (0.49) 73.12 (0.08) 73.13 (0.22)

TR →S 74.09 (0.40) 70.76 (0.72) 70.97 (0.26) 68.35 (0.62) 67.23 (0.39) 70.28 (0.37) 70.67 (0.50) 71.28 (0.38)

TR →G 82.19 (0.12) 80.91 (0.28) 81.67 (0.37) 79.25 (0.34) 78.77 (0.32) 81.26 (0.37) 81.11 (0.42) 81.55 (0.16)

TR →TE 78.41 (0.66) 70.41 (1.63) 71.98 (0.50) 69.33 (0.41) 69.45 (0.39) 70.98 (0.11) 70.95 (0.19) 71.42 (0.12)

Avg 79.02 (0.34) 75.13 (0.48) 75.53 (0.35) 73.16 (0.55) 72.26 (0.57) 74.45 (0.40) 74.89 (0.49) 74.98 (0.35)

Table 3: F1 scores for MNLI dataset. We report mean and standard deviation of 3 runs. The five domains are Fiction
(F), Slate (S), Government (G), Telephone (TE), and Travel (TR). On average, our method performs better than all
baselines.

sults, especially for AMAZON with a small number
of examples in each domain. Our adapter method
achieves better results compared to DANN with a
minimal modification of the hyperparameters.

Replacing UDA Feature Extractors with Adapter
Versions is insufficient. Given that fully fine-
tuned UDA methods perform well, can we freeze
the feature extractors UDA methods and fine-tune
only adapters and perform effective domain adapta-
tion? We compare our methods with DANN- and
DANN- -MC and outperform them both in AMA-
ZON and MNLI. This is in line with Karouzos et al.
(2021) that although domain adversarial training
brings domain representations closer, it introduces
distortion in the semantic space, reducing model
performance. This shows that simply replacing
feature extractors with their adapter versions in
existing UDA methods is not an effective strategy.

Gap to Full Fine-Tuning. Fine-tuning a PLM
with supervised data in the target domain is the
upper bound performance for domain adaptation.
The gap from full fine-tuning is greater when more
data are available (3.15 in AMAZON and 4.13 in
MNLI). This is not surprising, as the supervised
fine-tuning works better with more data. However,
while adapters perform closely to complete fine-
tuning in supervised scenarios (He et al., 2021a),
there is still a large gap between domain adapta-
tion and complete fine-tuning and would require

significant future work.

3.4 Further Analysis

Adapter Reduction Factor. The bottleneck size
(d) of the adapters plays an important role in the
final performance of the model. We show the per-
formance of the models at various reduction factors
in Figure 2. For JOINT-DT- , smaller reduction
factors generally perform well in both AMAZON

and MNLI, with performance reducing for larger
reduction factors. This shows that the JOINT-DT-

method requires a greater number of parameters
to reduce divergence and learn task representations
together. Since TS-DT- adds two adapters, this
increases the number of parameters added for the
same reduction factor compared to JOINT-DT-
. As a result, we find that as the data scale up,
relatively low reduction factors work well.

The removal of adapters from continuous layer
spans. All adapters are not equal. Removing
adapters from the first few layers still preserves
performance (Figure 3). For JOINT-DT- and TS-
DT- , the F1 slowly decreases as we continually
remove the adapters. However, we obtained a com-
parable performance after removing the adapters
from layers 1-6. This suggests that adapters are
effective when added to higher layers, where the
divergence between domains is greater at higher
layers compared to lower layers (Ramesh Kashyap
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Figure 2: (a) Performance for AMAZON on the C → BA domain adaptation scenario for different reduction factors.
(b) Performance for MNLI on the S → TR scenario for different reduction factors.

Figure 3: Shows the difference in performance when
adapters are removed from certain layers (mentioned
inside the cells) for the AMAZON dataset (top) and for
MNLI dataset (bottom). The performance reduces if
adapters are removed from certain layers

et al., 2021b). Thus we can further reduce the num-
ber of parameters for domain adaptation.

t-SNE plots. The t-SNE (van der Maaten and
Hinton, 2008) plots from domain adapters are
shown in Figure 4 for the data set MNLI. The lower
layers have low divergence and the data from the

two domains are interspersed, whereas the higher
layers have high divergence. Our method effec-
tively reduces the divergence in higher layers.

Composability. We test the composability of our
two-step method TS-DT- . We reuse the task
adapter trained for C → BA and replace the domain
adapter with the domain adapter of C → MR and
perform inference on C → MR dataset. The initial
F1 of the C → MR dataset was 73.22 and after
composing it with a different task adapter, the F1
score is 72.66 – a minimal performance loss. This
shows the composability of TS-DT- .

4 Literature Review

Parameter Efficient Fine-tuning Methods.
Adapters (Houlsby et al., 2019) are task-specific
modules added to frozen transformer layers,
with only the adapter parameters updated. Their
plug-and-play characteristics and the avoidance of
catastrophic forgetting have resulted in their use
for NLP tasks: machine translation (Bapna and
Firat, 2019), named entity recognition (Pfeiffer
et al., 2020b), etc. Recently, (He et al., 2021b)
have shown that they are efficient in scenarios
where there is minimal supervised data. However,
they neither test their performance under domain
shift nor propose methods to improve adapter
fine-tuning. Closely related to our method is the
work of Ngo Trung et al. (2021), who learns a
shared-private representation per layer, similar to
DSN (Bousmalis et al., 2016). Their method re-
quires balancing multiple loss functions, compared
to our simpler two-step domain adaptation method.
The stacking of adapters has been followed before
by (Pfeiffer et al., 2020b) for cross-lingual tasks:
learning a language adapter first and stacking
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Figure 4: (top)t-SNE plots for the representations from bert-base-uncased. The lower layers are domain invariant
while the higher layers are domain variant (bottom) tSNE plots from the domain adapter trained on the S → TR
domain. We reduce the divergence using domain adapters where even higher layers are domain invariant.

a task adapter. However, one language adapter
is learned per language, assumes large amounts
of unsupervised data to be available in all the
languages, and requires supervised data to be
available to learn a task, which is not applicable for
domain adaptation. Compared to other methods,
we make domain adaptation more efficient using
principles of unsupervised domain adaptation.

Unsupervised Domain Adaptation (UDA). Ex-
isting UDA approaches can be categorized into
model-centric, data-centric, and hybrid. Model-
centric approaches involve augmenting feature
space or altering the loss function, architecture,
or model parameters (Blitzer et al., 2006; Pan et al.,
2010; Ganin et al., 2016) have been popular. A pop-
ular model-centric approach is to use adversarial
training between the domain and the task classifier
(Ganin et al., 2016) to extract domain-invariant in-
formation. (Bousmalis et al., 2016) in addition pre-
serves domain-specific information. These works
involve training a large number of parameters and
require careful balancing of multiple loss functions.
Our methods build on top of these works and make
it more parameter-efficient.

Large-scale transformers pretrained on domain-
specific corpora have been a norm: biomedical
(Lee et al., 2019), scientific publications (Beltagy
et al., 2019), among others. Another alternative is
to continue pretraining generic models on domain-
specific data: domain adaptive pretraining (Guru-
rangan et al., 2020). Both solutions are expensive
since a huge model has to be stored for every do-
main while using adapters affords storing a small
number of parameters for every domain pair and
can be quickly adapted to new domains.

5 Discussion

This work shows that domain adaptation in NLP
can be made more efficient using adapters. We
use adapters fine-tuning (Houlsby et al., 2019) pro-
posed before and stacking of adapters that have
been proposed before for a cross-lingual setting
(Pfeiffer et al., 2020b) for the unsupervised do-
main adaptation. The approach we have discussed
will make domain adaptation more practical for
real-world use cases, making adaptation faster and
cheaper. However, in this work, we have used
bert-base-uncased for all of our methods. Using
other backbone transformer models is part of our
future work. We deal only with a classification and
natural language inference task. Adapters have pre-
viously been used for machine translation (Bapna
and Firat, 2019) and other generation tasks (Zhang
et al., 2022). We need to explore our domain adap-
tation methods for other generation tasks.

In this work, we reduce the marginal distribution
of the two distributions. Previous works such as
Kumar et al. (2018) show that reducing only the
marginal distribution is not sufficient and aligning
the label distributions is necessary. However, NLP
works do not consider this and would require fur-
ther investigation by the community.

6 Conclusion

In this work, we propose UDAPTER, to make
unsupervised domain adaptation more parameter-
efficient. Our methods outperform other strong
baselines, and we show that we can perform bet-
ter than just training a task adapter on supervised
data. We perform competitively to other UDA meth-
ods at a fraction of the parameters and outperform
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them when there is limited data – a more practi-
cal scenario. Future work should explore other
parameter-efficient methods such as prefix-tuning
(Li and Liang, 2021) for domain adaptation. NLP
should also consider other avenues, such as contin-
uous adaptation to new domains and adaptation to
new domains when there are no data available.
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8 Limitations

We have several limitations to our work. We have
experimented with only one type of parameter-
efficient method, which is the adapter fine-tuning
method. Several other alternative parameter-
efficient methods, such as LoRA (Hu et al., 2021),
Bitfit (Ben Zaken et al., 2022), and other unifying
paradigms (He et al., 2021a), have been proposed
in recent times. These methods are modular and
can be easily substituted for adapters.

Another major limitation of our work is that we
cannot explore whether we can learn different tasks
over a given pair of domains. For example, for a
given pair of domains such as NEWS and TWITTER,
it would be ideal if we learned a domain adapter
and reused it for different applications such as sen-
timent analysis, named entity recognition, among
others. We are limited by the availability of data
for such scenarios and this would be a potential
future work.
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Fully Supervised Adapter Based

Src →Trg DANN- DSN- TASK- TS-DT- JOINT-DT-

A → BA 87.68 (1.92) 86.46 (0.26) 87.13 (0.23) 87.03 (0.26) 88.24 (0.76) 88.74 (0.13)

A → BO 83.73 (1.61) 78.41 (1.14) 80.23 (0.81) 84.15 (1.10) 84.22 (0.76) 84.96 (0.28)

A → C 90.00 (1.17) 87.31 (0.39) 87.58 (0.48) 89.67 (0.32) 88.76 (1.32) 89.39 (0.23)

A → MR 76.57 (0.36) 75.54 (0.63) 75.96 (0.27) 76.63 (0.92) 77.39 (0.13) 77.63 (0.71)
BA → A 88.56 (1.04) 87.72 (1.85) 87.62 (0.86) 88.33 (1.10) 89.55 (0.10) 89.70 (0.23)

BA → BO 85.52 (0.59) 82.89 (3.08) 84.26 (0.85) 84.61 (0.39) 84.38 (0.61) 85.01 (0.60

BA → C 89.58 (0.32) 86.63 (0.53) 88.44 (0.90) 90.63 (0.33) 87.46 (0.88) 88.64 (0.30)

BA → MR 77.26 (0.71) 74.48 (1.79) 48.67 (15.98) 78.74 (0.35) 79.42 (0.44) 78.44 (0.70)

BO → A 87.38 (1.08) 85.90 (0.12) 86.62 (0.41) 85.03 (0.36) 84.79 (0.75) 87.46 (0.27)

BO → BA 84.72 (1.15) 82.06 (1.15) 82.75 (1.51) 86.50 (0.39) 86.84 (0.48) 86.41 (0.79)

BO → C 87.58 (0.67) 86.94 (0.83) 86.61 (1.03) 88.44 (0.53) 87.86 (0.61) 88.53 (0.43)

BO → MR 80.14 (0.52) 76.19 (0.89) 72.08 (7.29) 79.44 (0.95) 80.52 (0.61) 78.91 (0.38)

C → A 89.46 (0.49) 87.02 (1.86) 85.50 (1.30) 87.74 (1.18) 88.53 (0.42) 88.92 (0.44)

C → BA 90.15 (0.46) 88.10 (1.13) 88.56 (0.25) 81.71 (2.72) 89.72 (0.43) 89.32 (0.42)

C → BO 85.08 (0.97) 81.18 (2.07) 83.81 (1.68) 80.55 (0.81) 84.14 (0.52) 85.42 (0.70)

C → MR 76.03 (1.15) 64.99 (5.91) 63.59 (11.98) 69.53 (1.24) 73.22 (0.48) 73.50 (0.84)

MR → A 79.55 (1.38) 81.05 (1.15) 66.28 (19.68) 82.45 (1.43) 81.93 (0.47) 84.41 (0.43)

MR → BA 74.63 (9.8) 77.95 (1.46) 54.64 (17.71) 81.70 (1.22) 84.28 (0.41) 84.91 (0.36)

MR → BO 86.09 (1.0) 82.83 (0.62) 49.92 (24.06) 84.90 (0.23) 84.47 (0.80) 84.45 (0.31)

MR → C 76.54 (1.78) 84.58 (0.46) 69.47 (12.49) 86.68 (0.65) 86.25 (0.38) 88.37 (0.11)

Avg 83.81 (1.41) 81.91 (1.37) 76.49 (5.98) 83.72 (0.88) 84.60 (0.57) 85.16 (0.43)

Table 4: F1 scores for AMAZON dataset. We report the mean and standard deviation of 3 runs. The five domains are
Apparel (A), Baby (BA), Books (BO), Camera_Photo (C) and Movie Reviews (MR). The difference between this
table and Table 2 is we experiment with DSN- . fine-tunes a language model using labeled data from the
source domain and tests it on the target domain. This shows that just using the supervised data from the source
domain is not enough

Figure 5: t-SNE plots for the pretrained representations from bert-base-uncased for MNLI. Lower layers are
domain-invariant whereas higher layers are domain variant.
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Fully Supervised Adapter Based

Src →Trg DANN- DSN- TASK- TS-DT- JOINT-DT-

F →S 71.58 (0.31) 70.96 (0.03) 70.16 (0.25) 72.36 (0.36) 73.46 (0.34) 72.30 (0.26)

F →G 79.05 (0.94) 78.73 (0.43) 77.01 (0.31) 79.00 (0.46) 78.65 (0.25) 79.79 (0.22)

F →TE 74.73 (0.41) 70.89 (0.74) 69.89 (0.04) 70.83 (0.54) 73.05 (0.70) 71.59 (0.78)

F→TR 75.84 (0.48) 74.42 (0.18) 73.98 (0.70) 75.85 (0.19) 76.75 (0.80) 77.07 (0.26)

S →F 76.27 (0.30) 73.89 (0.61) 73.79 (0.06) 75.25 (0.19) 75.52 (0.89) 75.35 (0.56)

S →G 81.00 (0.37) 79.99 (0.36) 79.39 (0.16) 80.76 (0.40) 81.65 (0.11) 80.94 (0.30)

S →TE 74.32 (0.71) 72.29 (0.57) 71.69 (0.16) 72.66 (0.79) 74.09 (0.30) 73.38 (0.63)

S →TR 77.85 (0.40) 75.58 (0.54) 75.24 (0.42) 76.16 (0.22) 77.31 (0.60) 77.16 (0.18)

G →F 73.12 (0.39) 71.57 (0.68) 70.67 (0.29) 72.66 (0.31) 72.66 (0.56) 73.56 (0.23)

G →S 72.10 (1.01) 70.17 (0.64) 70.31 (0.44) 71.11 (0.38) 71.14 (0.21) 71.36 (0.04)

G →TE 72.80 (0.32) 69.45 (0.96) 69.47 (0.25) 71.40 (0.30) 71.53 (1.04) 71.99 (0.67)

G →TR 76.76 (0.08) 74.35 (0.22) 74.00 (0.32) 76.29 (0.10) 76.16 (0.34) 76.79 (0.59)

TE →F 73.25 (0.36) 72.24 (0.59) 73.04 (0.28) 74.48 (0.33) 73.34 (0.41) 73.89 (0.12)

TE →S 69.52 (1.17) 69.09 (1.79) 69.40 (0.42) 70.94 (0.16) 70.94 (0.55) 71.41 (0.19)

TE →G 77.59 (1.38) 77.80 (0.27) 77.56 (0.46) 79.24 (0.35) 79.65 (0.60) 79.78 (0.64)

TE →TR 72.45 (2.44) 74.67 (0.50) 74.14 (0.21) 75.27 (0.83) 76.11 (0.91) 75.95 (0.50)

TR →F 72.78 (0.37) 70.27 (0.45) 71.10 (0.21) 72.20 (0.49) 73.12 (0.08) 73.13 (0.22)

TR →S 70.40 (0.10) 68.35 (0.62) 69.92 (0.50) 70.28 (0.37) 70.67 (0.50) 71.28 (0.38)

TR →G 79.75 (0.42) 79.25 (0.34) 79.75 (0.24) 81.26 (0.37) 81.11 (0.42) 81.55 (0.16)

TR →TE 72.02 (0.49) 69.33 (0.41) 70.10 (0.52) 70.98 (0.11) 70.95 (0.19) 71.42 (0.12)

Avg 74.66 (0.62) 73.16 (0.55) 73.03 (0.32) 74.45 (0.40) 74.89 (0.49) 74.98 (0.35)

Table 5: F1 scores for MNLI. We report mean and standard deviation of 3 runs. The five domains are Fiction (F),
Slate (S), Government (G), Telephone (TE), and Travel (TR). The difference between this table and Table 3 is we
experiment with DSN- . fine-tunes a language model using labeled data from the source domain and tests it
on the target domain. This shows that just using the supervised data from the source domain is not enough.

Figure 6: t-SNE plots for the representations from domain adapter trained on S → TR domain for MNLI. We reduce
divergence between domains for all layers.
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Figure 7: t-SNE plots for the pretrained representations from bert-base-uncased for AMAZON. Lower layers are
domain-invariant whereas higher layers are domain variant.

Figure 8: t-SNE plots for the representations from domain adapter trained on C→ BO domain for AMAZON. We
reduce divergence between domains for all layers.
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(a)

(b)

Figure 9: (a) Vocabulary overlap (%) between domains in AMAZON. (b) Vocabulary overlap (%) between domains
in MNLI.
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