@inproceedings{malik-etal-2023-udapter,
title = "{UDAPTER} - Efficient Domain Adaptation Using Adapters",
author = "Malik, Bhavitvya and
Ramesh Kashyap, Abhinav and
Kan, Min-Yen and
Poria, Soujanya",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.165",
doi = "10.18653/v1/2023.eacl-main.165",
pages = "2249--2263",
abstract = "We propose two methods to make unsupervised domain adaptation (UDA) more parameter efficient using adapters {--} small bottleneck layers interspersed with every layer of the large-scale pre-trained language model (PLM). The first method deconstructs UDA into a two-step process: first by adding a domain adapter to learn domain-invariant information and then by adding a task adapter that uses domain-invariant information to learn task representations in the source domain. The second method jointly learns a supervised classifier while reducing the divergence measure. Compared to strong baselines, our simple methods perform well in natural language inference (MNLI) and the cross-domain sentiment classification task. We even outperform unsupervised domain adaptation methods such as DANN and DSN in sentiment classification, and we are within 0.85{\%} F1 for natural language inference task, by fine-tuning only a fraction of the full model parameters. We release our code at this URL.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="malik-etal-2023-udapter">
<titleInfo>
<title>UDAPTER - Efficient Domain Adaptation Using Adapters</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bhavitvya</namePart>
<namePart type="family">Malik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abhinav</namePart>
<namePart type="family">Ramesh Kashyap</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Min-Yen</namePart>
<namePart type="family">Kan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Soujanya</namePart>
<namePart type="family">Poria</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose two methods to make unsupervised domain adaptation (UDA) more parameter efficient using adapters – small bottleneck layers interspersed with every layer of the large-scale pre-trained language model (PLM). The first method deconstructs UDA into a two-step process: first by adding a domain adapter to learn domain-invariant information and then by adding a task adapter that uses domain-invariant information to learn task representations in the source domain. The second method jointly learns a supervised classifier while reducing the divergence measure. Compared to strong baselines, our simple methods perform well in natural language inference (MNLI) and the cross-domain sentiment classification task. We even outperform unsupervised domain adaptation methods such as DANN and DSN in sentiment classification, and we are within 0.85% F1 for natural language inference task, by fine-tuning only a fraction of the full model parameters. We release our code at this URL.</abstract>
<identifier type="citekey">malik-etal-2023-udapter</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-main.165</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-main.165</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>2249</start>
<end>2263</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UDAPTER - Efficient Domain Adaptation Using Adapters
%A Malik, Bhavitvya
%A Ramesh Kashyap, Abhinav
%A Kan, Min-Yen
%A Poria, Soujanya
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F malik-etal-2023-udapter
%X We propose two methods to make unsupervised domain adaptation (UDA) more parameter efficient using adapters – small bottleneck layers interspersed with every layer of the large-scale pre-trained language model (PLM). The first method deconstructs UDA into a two-step process: first by adding a domain adapter to learn domain-invariant information and then by adding a task adapter that uses domain-invariant information to learn task representations in the source domain. The second method jointly learns a supervised classifier while reducing the divergence measure. Compared to strong baselines, our simple methods perform well in natural language inference (MNLI) and the cross-domain sentiment classification task. We even outperform unsupervised domain adaptation methods such as DANN and DSN in sentiment classification, and we are within 0.85% F1 for natural language inference task, by fine-tuning only a fraction of the full model parameters. We release our code at this URL.
%R 10.18653/v1/2023.eacl-main.165
%U https://aclanthology.org/2023.eacl-main.165
%U https://doi.org/10.18653/v1/2023.eacl-main.165
%P 2249-2263
Markdown (Informal)
[UDAPTER - Efficient Domain Adaptation Using Adapters](https://aclanthology.org/2023.eacl-main.165) (Malik et al., EACL 2023)
ACL
- Bhavitvya Malik, Abhinav Ramesh Kashyap, Min-Yen Kan, and Soujanya Poria. 2023. UDAPTER - Efficient Domain Adaptation Using Adapters. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2249–2263, Dubrovnik, Croatia. Association for Computational Linguistics.