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Abstract
Despite cross-lingual generalization demon-
strated by pre-trained multilingual models, the
translate-train paradigm of transferring En-
glish datasets across multiple languages re-
mains to be a key mechanism for training task-
specific multilingual models. However, for
many low-resource languages, the availability
of a reliable translation service entails signifi-
cant amounts of costly human-annotated trans-
lation pairs. Further, translation services may
continue to be brittle due to domain mismatch
between task-specific input text and general-
purpose text used for training translation mod-
els. For multilingual semantic parsing, we
demonstrate the effectiveness and flexibility
offered by large language models (LLMs) for
translating English datasets into several lan-
guages via few-shot prompting. Through ex-
tensive comparisons on two public datasets,
MTOP and MASSIVE, spanning 50 languages
and several domains, we show that our method
of translating data using LLMs outperforms a
strong translate-train baseline on 41 out of 50
languages. We study the key design choices
that enable more effective multilingual data
translation via prompted LLMs.

1 Introduction

Enabling language technologies across several lan-
guages is an important goal for serving a diverse
range of users in an inclusive manner. Recent ad-
vances in large-scale self-supervised multilingual
language models hold immense promise in bridg-
ing the quality gap that currently exists between En-
glish and many other low resource languages (Con-
neau et al., 2020; Brown et al., 2020; Xue et al.,
2021). Even though multilingual models exhibit
cross-lingual generalization, getting meaningful
performance across several languages still requires
significant amounts of task-specific labeled data.

We consider the problem of automatically syn-
thesizing semantic parsing datasets across several
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languages. Semantic parsing (Zelle and Mooney,
1996; Zettlemoyer and Collins, 2005; Berant et al.,
2013) is the task of mapping natural language
text into an executable logical-form. For exam-
ple, given a user instruction (x) : “Wake me
up by 5 am”, mapping it to the logical-form
(y): [IN:CREATE_ALARM [SL:DATE_TIME 5 am ]].
Manual annotation of queries with their logical
forms requires human expertise which makes data
collection across multiple languages challenging.

A common approach to automatic multilingual
dataset creation is translating existing English
datasets into target languages. Prior methods uti-
lize an off-the-shelf machine translation model for
translating the English utterance into the target lan-
guage xeng → xtgt, followed by projecting lan-
guage specific components in the English logical-
form yeng to obtain the logical-form ytgt in the tar-
get language (Moradshahi et al., 2020, 2021; Xia
and Monti, 2021; Nicosia et al., 2021; Gritta et al.,
2022; Wang et al., 2022). The projection step is
often learned independent of the translation service,
resulting in poor generalization across languages.

In this work we aim to utilize the few-shot gen-
eralization abilities exhibited by large language
models (LLMs) (Brown et al., 2020; Chowdh-
ery et al., 2022; Scao et al., 2022) for bootstrap-
ping semantic parsing datasets across fifty lan-
guages. We propose a recipe of using LLMs
to translate an English semantic parsing dataset
containing (utterance, logical-form) pairs:
Deng = {(xieng, y

i
eng)} into a corresponding dataset

in a target language: Dtgt = {(xitgt, y
i
tgt)}. The gen-

erated dataset Dtgt is then used to train a semantic
parser in the target language. Our method uses
a small amount of manually translated semantic
parsing examples to teach the LLM how to trans-
late English examples in the target language via
in-context learning (Min et al., 2022).

Figure 1 describes our data-translation pipeline
which we refer to as LLM-T (§ 3). In contrast
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Figure 1: Proposed semantic parsing data translation pipeline using LLMs (§ 3): With the help of human
translators, we first collect translations of a small seed set of English examples in the Target Language (e.g. Hindi;
§ 3.1). Given a new English example, a small subset from this initial seed set of examples with their respective
translations is chosen to prompt the LLM (§ 3.2). The prompted LLM translates the given English example in
the Target Language. We repeat this process for each example in the English training data to generate a training
dataset in the Target Language. To ensure high-quality of the resulting dataset, we generate diverse translations via
top-p (nucleus) sampling (§ 3.3) and apply consistency filtering (§ 3.4).

to prior translation based methods that involved
a two-staged process requiring different modules,
our method uses the LLM to jointly translate
an English (xeng, yeng) pair directly into the tar-
get language (xtgt, ytgt). We identify two impor-
tant choices that make the LLM translated data
more effective for training a downstream parser:
(i) Sampling diverse translations (§ 3.3): De-
coding translations using top-p (Fan et al., 2018)
and top-k (Holtzman et al., 2019) sampling leads
to improved downstream performance compared
to using greedy decoding. Sampling multiple di-
verse translations per example further improves the
downstream performance; (ii) Filtering inconsis-
tent examples (§ 3.4): Decoding via sampling can
result in noisy joint translations of the (utterance,
logical-form) pairs. To filter out the inconsistent
pairs, we propose a slot-value match based filtering
technique that improves the training data quality.

We perform experiments on two multilingual se-
mantic parsing datasets: MTOP (Li et al., 2021)
and MASSIVE (FitzGerald et al., 2022). On 4
out of 5 languages in MTOP and 41 out of 50 lan-
guages in MASSIVE, our method LLM-T outper-
forms TAF (Nicosia et al., 2021), a strong baseline
that utilizes a supervised translation service (§ 5.1).
Further, we see that LLM-T achieves 93% of the
performance obtained by “fully-supervised” mod-
els that use 30× more manually translated exam-
ples (§ 5.2). We justify the importance of generat-

ing multiple translations using sampling, filtering
out inconsistent examples, and using larger-sized
LLMs in improving translated data quality (§ 5.3).
Finally, we perform an error analysis of our parser
and show the key sources of disagreements between
the model predictions and the ground truth (§ 5.4).

2 Background

In this section, we provide an overview of semantic
parsing and prior translation-based methods for
creating multilingual semantic parsing datasets.

2.1 Semantic Parsing

Semantic parsing is the task of mapping text
queries to their meaning representations or logical
forms (Zelle and Mooney, 1996; Zettlemoyer
and Collins, 2005; Berant et al., 2013). We focus
on task-oriented semantic parsing (Gupta et al.,
2018) where the user utterance needs to be parsed
into a high-level intent specifying the overall goal,
and fine-grained slots containing details about
the utterance. The intents and slots come from a
task-specific vocabulary. For example, given an
utterance x: “How is the rainfall today?”,
the parser should generate the logical-form
y: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

Here, IN:GET_WEATHER is the high-level intent,
SL:ATTRIBUTE and SL:DATE are the slots that spec-
ify details about the intent. We refer to the logical-
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form with its slot values removed as its "signature".
For example, the signature of y is
[IN:GET_WEATHER [SL:ATTRIBUTE][SL:DATE]]

2.2 Translating Semantic Parsing Datasets
Given an English semantic parsing dataset con-
taining (utterance, logical-form) pairs Deng =
{(xieng, y

i
eng)}, many methods aim to translateDeng

to a dataset Dtgt = {(xitgt, y
i
tgt)} in the target lan-

guage (tgt). Here xitgt is the translation of xieng,
and yitgt is the logical form grounded in the trans-
lated utterance xitgt. Target logical form yitgt has the
same signature as yieng and only differs in terms
of the translated slot values. Most translation
based approaches (Moradshahi et al., 2020, 2021;
Xia and Monti, 2021; Nicosia et al., 2021) trans-
late an English example (xieng, y

i
eng) to the corre-

sponding target language example (xitgt, y
i
tgt) via a

two step process: (i) Translate: Use a supervised
translation service to convert the English utterance
xieng into the target language utterance xitgt; and
(ii) Project: Replace the English slot values in yieng
with spans copied from the translated utterance
xitgt via a learned alignment model. The translated
examples are then used to train a downstream mul-
tilingual semantic parser. For example, Nicosia
et al. (2021) implement the project step by training
a filler module on English data to fill slot-values
in a logical-form signature by copying spans from
the utterance. During inference, the trained filler
module is then used in a zero-shot manner to fill
logical-form signatures with spans copied from the
translated utterances.

3 Our Method: Prompting LLMs for
Dataset Translation

Our goal is to learn a multilingual semantic parser
capable of parsing user queries in many languages.
Towards this goal, we propose a method for gen-
erating multilingual training datasets via few-shot
prompting of an LLM to translate existing English
datasets into several languages.

In contrast to prior approaches, we jointly
perform example translation by prompting an
LLM with a few exemplars of translating English
(xeng, yeng) pairs to target language (xtgt, ytgt) pairs.
Figure 1 describes our data-translation method
which we refer to as LLM-T. With the help of
human translators we first collect a small seed set
of exemplar translations used for prompting the
LLM (§ 3.1). Given an input English example, we

dynamically construct the LLM prompt by identify-
ing a relevant subset of seed exemplars (§ 3.2). The
LLM translates the English example into the target
language by in-context learning from the exem-
plars provided in the prompt. Instead of decoding
the most likely translation, we generate multiple
diverse translations (§ 3.3) using top-p (nucleus)
sampling (Holtzman et al., 2019). While sampling
improves the text diversity, it can lead to more noisy
generations. We filter out the noisy generations us-
ing a simple string-match based technique before
training a parser on the translated data (§ 3.4).

3.1 Selecting Seed Exemplars for Translation
Given an English semantic parsing dataset Deng =
{(xieng, y

i
eng)}, we first want to identify a small seed

set Seng ⊂ Deng that will be translated into the tar-
get language (Stgt) with the help of human transla-
tors. The examples in Seng and their corresponding
translations in Stgt will be used for prompting the
LLM. Therefore, the choice of the seed examples
in Seng that are manually translated into Stgt be-
comes important—we would like that the multiple
domains (e.g. Alarms, Music, News, Weather,
etc.) and the intents and slot types in each do-
main are covered. This ensures that for a given
English example to be translated, we will be able
to prompt the LLM in a manner such that at least
one of the few-shot exemplars will share the intent
and slots with the test English example. In practice,
we select seed examples in a manner to cover all
the intents and slots in a domain at least once. If
the selected examples are less than 20 for a domain,
we select the remaining examples randomly.

3.2 Constructing the Prompt using
Translation Pairs in the Seed Sets

LLM inference is constrained by the maximum
number of tokens in the input. Hence, we can
only fit a limited number of examples to construct
the LLM prompt. The choice of prompt examples
and their ordering is known to significantly impact
the quality of the generations (Kumar and Taluk-
dar, 2021; Rubin et al., 2021; Lu et al., 2022). To
improve the likelihood of correctly translating an
English example (xeng, yeng), we retrieve seed ex-
amples {(xseng, y

s
eng, x

s
tgt, y

s
tgt)} that share the same

domain with yeng. To bias the LLM further, we
order the more relevant prompt examples closer
to the input English example. Here, relevance be-
tween two examples is considered higher if they
share the same intent. The remaining examples are

2457



Figure 2: Constructing the LLM Prompt (§ 3.2): The
input to the LLM contains a brief task description in
the beginning followed by a series of English examples
(xs

eng, y
s
eng) and their translations in the target language

(xs
tgt, y

s
tgt) chosen from the seed sets Seng and Stgt respec-

tively. Following the prompt examples, we append the
new English example (xeng, yeng) to the input prompt
which is fed to LLM. In the output, the LLM generates
the translation for the new English example (xtgt, ytgt).

arbitrarily arranged to appear earlier in the prompt.
Figure 2 shows an example translation—the LLM
input contains two exemplars and then the English
example that needs to be translated. The LLM out-
put shows the translated output from the LLM.

3.3 Decoding Diverse Outputs from LLM

The text decoded from language models using the
standard greedy decoding or beam search is often
repetitive (Vijayakumar et al., 2016; Shao et al.,
2017). To mimic how users express the same inten-
tions in diverse ways, we experiment with the top-k
and top-p sampling techniques (Fan et al., 2018;
Holtzman et al., 2019) to decode multiple diverse
translations per example. We expect sampling mul-
tiple translations to yield a better quality training
dataset which in turn should result in better down-
stream semantic parsing performance compared to
training on greedily decoded examples.

3.4 Data Filtering using Slot-Consistency

While the sampling techniques produce more di-
verse text, the sampled translations can be rela-
tively noisy if they have lower likelihoods as per
the model (Zhang et al., 2021). Thus, the trans-
lated pairs (xtgt, ytgt) in the LLM output can be

Figure 3: Slot Consistency Based Filtering (§ 3.4):
We present the input English example (xeng, yeng) and
its four translated samples {(xi

tgt, y
i
tgt)}) the target lan-

guage. The first two samples are slot-consistent as the
slot-values (in green) in the logical forms appear ex-
actly in the text utterances, while the last two samples
are slot-inconsistent as the slot-values (in red) do not
appear as an exact sub-string of the text utterance.

inconsistent w.r.t. each other. For example, con-
sider the LLM translated pair (x3tgt, y

3
tgt) shown in

Figure 3. Here, y3tgt contains a slot value (in red)
that does not appear in the corresponding utterance
x3tgt making the pair (x3tgt, y

3
tgt) inconsistent. As per

the task definition, for a given example (x, y), the
slot-values in the logical form y should come from
the spans of the utterance x. Thus, we filter out
the translated examples (xtgt, ytgt) like these where
the slot-values in ytgt do not appear exactly as an
exact sub-span in xtgt. Figure 3 shows examples of
slot-consistent and slot-inconsistent generations by
an LLM through top-k sampling.

4 Experimental Set-up

We describe our experimental setup in this section.

Datasets We experiment on two public datasets
— MTOP (Li et al., 2021) and MASSIVE (FitzGer-
ald et al., 2022). MTOP contains examples from
six languages: English, French, German, Hindi,
Spanish, and Thai, spanning 11 domains covering
117 intents and 78 slot types. On average, MTOP
contains 12.3K examples in the train split, 1.5K in
the dev split, and 2.7K in the test split per language.
MASSIVE contains examples from 51 typologi-
cally diverse languages including English spanning
18 domains covering 60 intents and 50 slot types.
For each language, MASSIVE contains roughly
11.5K examples in the train split, 2K examples in
the dev split and 3K examples in the test split.
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Evaluation Metric Prior work (Li et al., 2021;
Nicosia et al., 2021) uses Exact Match (EM) accu-
racy as a primary metric which compares predicted
and gold logical-forms strings. However, the exact
string-match penalizes correct predictions where
the order of slots within an intent is different. For
example, consider the following logical-forms:
LF-1: [IN:GET_WEATHER [SL:ATTRIBUTE rainfall]

[SL:DATE today ] ]

LF-2: [IN:GET_WEATHER [SL:DATE today][SL:ATTRIBUTE

rainfall ] ]

LF-1 and LF-2 are equivalent but the difference in
the ordering of slots results in a negative match.
Thus, we correct the EM metric by making the
match function agnostic to the ordering of slots
within an intent in the logical-form. We compare
different models as per this corrected EM metric.

Semantic Parsing Model We use a pre-trained
mT5-Large checkpoint (1.2B parameters) to initial-
ize the downstream semantic parsing models that
map utterances in the input to logical-forms in the
output. We finetune the mT5 model on the original
English dataset mixed with the translated datasets
in target languages. We train using the Adafactor
optimizer (Shazeer and Stern, 2018) with a fixed
learning rate of 1e−3 and a batch size of 256, for
30K steps using the T5X library (Roberts et al.,
2022) on 64 TPU-v3 chips. Examples from each
language are sampled uniformly for batch creation.
For model selection, we choose the best perform-
ing checkpoint as per the dev splits and report our
results on the test splits.

LLM-T (Our Method) We experiment with 8B,
62B, and 540B sized variants of PaLM (Chowdh-
ery et al., 2022) as our LLM, and primarily utilize
LLM-540B for translating English examples in dif-
ferent languages. For the seed set Stgt used for
prompting the LLM, we borrow roughly 250 ex-
amples covering 11 domains from MTOP’s train
set and 350 examples covering 18 domains from
MASSIVE’s train set (§ 3.1). During decoding,
we sample 8 translations per example using top-p
sampling (§ 3.3), with p = 0.95 and temperature
scaling T = 0.7, followed by filtering out slot-
inconsistent examples (§ 3.4). We present an anal-
ysis of our design choices in § 5.3.

Baselines (i) Zero-Shot: Train the model only
on the English data and evaluate on other languages
in a zero-shot manner. (ii) Few-Shot: In addi-
tion to the English training data, use the seed set

of examples Stgt for each language during train-
ing. For MTOP, |Stgt| ≈ 250 and for MASSIVE,
|Stgt| ≈ 350. (iii) TAF: We implement the method
from Nicosia et al. (2021) that uses an off-the-shelf
translation service (§ 2.2) to construct Dtgt in all
the target languages. We borrow Dtgt from Nicosia
et al. (2021) for MTOP and from Nicosia and Pic-
cinno (2022) for MASSIVE.

5 Results and Analysis

We first present downstream performance of seman-
tic parsing models trained on data generated by our
method (§ 5.1) and compare with zero-shot setting,
few-shot setting, and the TAF method (Nicosia
et al., 2021). We then compare our method against
the “full-shot” skyline where we utilize the origi-
nal training datasets that were manually translated
with the help of human annotators in the target
languages (§ 5.2). We then present an analysis
of different design choices that result in effective
data translation using LLM-T (§ 5.3). Finally, we
present an error analysis to show the key sources of
disagreements between the parser predictions and
the ground truth (§ 5.4). All the experiments use
our corrected EM metric (§ 4; Evaluation Metric).

5.1 Evaluation on MTOP and MASSIVE

In Table 1, we compare performance of different
methods for the 5 non-English languages in the
MTOP dataset. The Zero-Shot baseline trains an
mT5 model only on the English part of the train-
split. The Few-Shot baseline additionally includes
the human translated seed sets Stgt for each lan-
guage. Both TAF and LLM-T train on the original
English train set mixed with their respective trans-
lated datasets in each language. As all the baselines
utilize the original English train set, we see com-
parable performance on English (around 85.0 EM).
We observe LLM-T outperforms TAF in 4 out of 5
languages by 3.6 EM. Since LLM-T uses Stgt for
prompting, we also mix Stgt with TAF data and still
observe that LLM-T improves over TAF+Few-Shot
by 2.9 EM. On relatively low-resource languages,
Hindi (hi) and Thai (th), LLM-T leads to much
larger improvements over TAF.

Figure 4 shows the performance difference
between our LLM-T method and TAF for the
MASSIVE dataset (FitzGerald et al., 2022). On
41 out of 50 languages, we find LLM-T to be bet-
ter than TAF. For nine languages LLM-T outper-
forms TAF by more than 5.0 EM—Simple Man-
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Figure 4: EM accuracy difference between LLM-T and TAF across the 50 languages in MASSIVE dataset
(§ 5.1). LLM-T outperforms TAF on 41 out of 50 languages, with gains of more than 5 EM for nine of these
languages. Only for Hebrew (he), LLM-T performs worse than TAF by more than 3 EM.

Method de es fr hi th Avg

Zero-Shot 54.4 57.8 62.8 42.3 42.1 51.9
Few-Shot 62.8 69.5 65.9 55.3 53.9 61.5
TAF 75.0 74.9 78.0 63.0 60.8 70.3
TAF + Few-Shot 75.1 74.5 78.5 63.9 62.9 71.0

LLM-T (ours) 74.0 75.4 79.6 72.3 68.0 73.9

Table 1: EM accuracy comparison on MTOP (§ 5.1):
Data generated using LLM-T yields better performance
on 4 out of 5 languages in MTOP. We observe large
improvements for low-resource languages hi and th.

darin (zhc, +11.9), Traditional Mandarin (zht,
+10.1), Japanese (ja, +9.3), Telugu (te, +6.9),
Malayalam (ml, +6.6), Kannada (ka, +6.1), Lat-
vian (lv, +5.7), Tamil (ta, +5.5), and Khmer (km,
+5.2). Only for Hebrew (he, −4.0), LLM-T is
worse by more than 3.0 EM. Averaged across all
languages, LLM-T outperforms TAF by 2.2 EM. In
Appendix A.1, we provide detailed baseline com-
parisons for all the 50 languages.

5.2 Comparison with gold translations

An ideal translate-train method should be com-
petitive w.r.t. training on fully human translated
datasets. Table 2 provides a comparison between
training on TAF, LLM-T, and the datasets fully
translated with the help of human annotators in the
target languages (Gold). Between TAF and Gold,
we observe a significant gap of 9.2 EM in MTOP
and 6.7 EM in MASSIVE. Our method LLM-T, re-
duces this gap by 3.6 EM in MTOP and 2.2 EM in
MASSIVE. Overall, LLM-T achieves roughly 93%
of the performance obtained by the Gold skyline
that use more than 30× human translated examples.
Appendix A.1, provides per-language comparisons

Dataset Few-Shot TAF LLM-T Gold

MTOP 61.5 70.3 73.9 79.5
MASSIVE 55.9 61.0 63.2 67.7

Table 2: Comparison with Gold skyline (§ 5.2):
While training on the human translated datasets (Gold)
yields the best performance, LLM-T results in a smaller
performance gap compared to TAF. All numbers are av-
eraged over the 5 non-English languages in MTOP.

with the Gold skyline for both the datasets.

Decoding de es fr hi th AvgStrategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9
+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-p Sampling (p = 0.95)
(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0
2 71.4 72.1 74.5 68.8 67.2 70.8
4 71.1 72.8 76.4 69.0 66.0 71.1
8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)
(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2
2 73.7 75.2 79.5 72.0 67.6 73.6
4 73.4 75.3 79.0 72.1 67.7 73.5
8 74.0 75.4 79.6 72.3 68.0 73.9

Table 3: Impact of decoding strategy and filtering:
Generating multiple translations per English example
using top-p sampling followed by filtering inconsis-
tent examples offers superior downstream performance
compared to using greedy decoding or sampling just
one translation per example. In Appendix A.2 we
present results for top-k sampling as well.
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Max Len de es fr hi th Avg

768 73.4 75.4 76.9 73.1 69.7 73.7
1024 74.0 75.4 79.6 72.3 68.0 73.9
1792 74.3 75.7 80.5 74.0 71.1 75.1

Table 4: Impact of prompt length: Longer prompts
containing more exemplars result in more effective
translated datasets yielding higher EM accuracy.

5.3 Analysis of Design Choices

We now present an analysis of the design choices
that enabled more effective data translation via
LLM-T. All the experiments in this section are
carried out on the MTOP dataset.

Role of decoding strategy and filtering In Ta-
ble 3, we present the EM accuracy of parsers
trained on datasets translated using various com-
binations of decoding (§ 3.3) and filtering (§ 3.4)
methods. For generating the translated outputs we
experiment with greedy decoding, top-k (Fan et al.,
2018) and top-p (Holtzman et al., 2019) sampling.
Like prior translate-train methods, we begin with
only one translation per example and observe sam-
pling to be comparable with greedy decoding in
downstream EM accuracy. In contrast, decoding
two translations per example via sampling boosts
the EM accuracy across all the languages. However,
further increasing the translated samples to 4 and
8 results in only marginal performance differences.
Manual inspection of the translated data revealed
inconsistent utterance and logical-form pairs which
motivated our design of slot-consistency based fil-
tering (§ 3.4). Training the parser on filtered data
provides further gains over training on unfiltered
data. In Appendix A.2, we also present the results
for top-k sampling. Overall, utilizing upto 8 top-p
translated samples per English example followed
by slot-consistency filtering provides the best per-
formance averaged over all the languages.

Impact of Prompt Length We expect prompts
containing more exemplars to yield higher qual-
ity translated examples owing to more information
for in-context learning. In Table 4, we compare
EM performance when using maximum prompt-
lengths of 768, 1024, and 1792 tokens. Training on
datasets translated using prompt-length of 1792
tokens provides the best downstream EM perfor-
mance across all the languages. However, longer
prompts lead to considerably longer inference
times. Hence, we conduct our main experiments

de es fr hi th Avg

LLM-T-8B 65.3 69.4 70.7 56.6 55.1 62.0
LLM-T-62B 72.0 73.3 76.7 68.2 65.6 71.2
LLM-T-540B 74.0 75.4 79.6 72.3 68.0 73.9

Table 5: Impact of LLM size: EM performance of
semantic parsers trained on translated datasets improve
with increasing the size of LLMs used for translation.

with prompt the length of 1024 tokens.

Role of LLM size In Table 5, we compare parser
performance when trained on data generated by
LLMs of different sizes. Training on larger LLM
generated data leads to better performance—LLM-
T-540B yields the best performance on all the lan-
guages, followed by LLM-T-62B which outper-
forms LLM-T-8B on all the languages.

5.4 Error Analysis

Figure 5: Distribution of error categories: estimated
across all five languages on MTOP’s dev set.

We analyze the examples where the predic-
tions from our semantic parser do not match with
the ground truth. In Table 6, we categorize all
the erroneous examples into five broad categories
(with English examples): (i) Slot Value Mismatch
(ii) Wrong Intent (iii) Missing Slot (iv) Extra Slot
and (v) Slot Confusion. Figure 5 presents the distri-
bution of the error categories aggregated across all
the languages on the MTOP dev-split. The "Slot
Value Mismatch" is the most frequent error cate-
gory (41.1%)—here the predicted parse structure
is correct but the slot-values do not match perfectly
with the gold parse. After manually inspecting 300
such errors we found that in roughly 50% of the
cases the predicted and gold slot-values often have
minor mismatches which may not be recognized as
error by another human annotator and should not
lead to incorrect output upon logical form execu-
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Slot Value Mismatch (41.1%)
Utterance: Set an alarm for 5 pm tomorrow
Prediction: [IN:CREATE_ALARM [SL:DATE_TIME for 5 pm ] [SL:DATE_TIME tomorrow ]
Target: [IN:CREATE_ALARM [SL:DATE_TIME 5 pm ] [SL:DATE_TIME tomorrow ]

Wrong Intent (19.5%)
Utterance: What can I do today
Prediction:[IN:QUESTION_NEWS [SL:DATE_TIME today ]]
Target: [IN:GET_EVENT [SL:DATE_TIME today ] ]

Missing Slot (15.1%)
Utterance: Play Justin Timberlake ’s newest single
Prediction:[IN:PLAY_MUSIC [SL:MUSIC_TYPE single ] ]
Target: [IN:PLAY_MUSIC [SL:MUSIC_ARTIST_NAME Justin Timberlake ] [SL:MUSIC_TYPE single ] ]

Extra Slot (14.4%)
Utterance: play music on the speaker
Prediction: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] [SL:MUSIC_TYPE speaker ] ]
Target: [IN:PLAY_MUSIC [SL:MUSIC_TYPE music ] ]

Slot Confusion (9.9%)
Utterance: audio call wedding planner please
Prediction:[IN:CREATE_CALL [SL:CONTACT wedding planner ] ]
Target: [IN:CREATE_CALL [SL:GROUP wedding planner ] ]

Table 6: Examples of Error Categories (§ 5.4) The errors in the predicted parse can be broadly classified into
five categories: (i) Slot Value Mismatch: Predicted parse has the correct signature but the slot-values are incorrect,
(ii) Wrong Intent: High-level intent of the predicted parse is incorrect, (iii) Missing Slot: One or more slots in the
gold parse do not appear in the output, (iv) Extra Slot: Output contains extra slot(s) compared to the gold, (v) Slot
Confusion: Prediced parse contains the correct correct intent and number of slots but the wrong slot-types.

tion. For example, in the first row of Table 6, the
predicted value for the DATE_TIME slot is ‘for 5
pm’, while the target value is just ‘5 pm’.

6 Related Work

Multilingual Semantic Parsing Multilingual se-
mantic parsers are typically initialized with a foun-
dation model (Bommasani et al., 2021) pre-trained
on vast amounts of multilingual data (Conneau
et al., 2020; Xue et al., 2021; Li et al., 2021;
FitzGerald et al., 2022) followed by supervised
training on synthetic or real multilingual datasets.
A standard approach for constructing multilin-
gual datasets is to translate and localize English
datasets with the help of multilingual speakers
or machine translation. For example, MTOP (Li
et al., 2021), MASSIVE (FitzGerald et al., 2022),
and MultiAtis++ (Xu et al., 2020) were con-
structed by translating TOP (Gupta et al., 2018),
SLURP (Roberts et al., 2022), and ATIS (Price,
1990) respectively through human translators.

Machine Translation based methods Machine
translation based approaches continue to be
important for multilingual task-specific mod-
els (Hartrumpf et al., 2008; Liang et al., 2020; Hu
et al., 2020; Fang et al., 2021; Ladhak et al., 2020)
including semantic parsing. Machine translation
can either be used during the inference time to
translate a user query into English for feeding it
to an English-only model. This approach is re-
ferred to as translate-test (Artetxe et al., 2020;
Uhrig et al., 2021). A more common way of using
machine translation is in the form of data augmen-

tation, referred as translate-train where English
text in training data is translated into several lan-
guages (Sherborne et al., 2020; Moradshahi et al.,
2020, 2021; Xia and Monti, 2021; Nicosia et al.,
2021; Gritta et al., 2022; Wang et al., 2022). In
practice, translate-train methods tend to outper-
form translate-test methods while also reducing
the latency associated with translating text during
the inference time (Yang et al., 2022).

LLMs and Few-Shot learning Trans-
former (Vaswani et al., 2017) based generative
LLMs (Radford et al., 2019; Brown et al., 2020;
Thoppilan et al., 2022; Soltan et al., 2022; Smith
et al., 2022; Zhang et al., 2022; Chowdhery et al.,
2022) trained on massive amounts of web-scale
text corpora using next token prediction objective
exhibit strong few-shot generalization abilities.
When prompted with a task description and a
handful of task-specific examples, LLMs can often
match the performance of finetuned models via
in-context learning (Xie et al., 2021; Min et al.,
2022; Wei et al., 2022; Zhou et al., 2022). We
utilize LLMs for translating English datasets in
several languages using few-shot prompting.

7 Conclusion

We present a method of utilizing large language
models (LLMs) for bootstrapping multilingual se-
mantic parsers across several languages. In compar-
ison to using off-the-shelf translation services that
rely on significant amounts of human supervision,
we demonstrate that prompting self-supervised
LLMs can be a more effective and scalable alter-
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native for dataset translation. We find that gen-
erating multiple diverse translations using sam-
pling techniques followed by consistency-based
filtering make the translated datasets more effec-
tive for training multilingual semantic parsers. On
41 out of 50 typologically diverse languages within
two large datasets spanning several domains, our
method outperforms a strong translate-train method
that utilizes a supervised translation service.

8 Limitations

While translating English queries in different lan-
guages is a useful form of data augmentation, we
think that further performance improvements can
be obtained by careful localization of entities in the
text queries. This will result in examples where
the training dataset contains entities that are often
talked about in the target language and might lead
to less train-test domain shift. LLMs contain lan-
guage specific priors which can be harnessed to per-
form such localization of the translated queries thus
enabling more realistic data augmentations. In this
work we presented a simple string-match based fil-
tering technique to remove noisy translations. Data
filtering can be further improved with the help of
learned models. We observed that larger LLMs are
important to generate more effective translated data.
However running these experiments is constrained
by the availability of large amounts of compute
resources. We hope future work will address these
limitations of our approach.

9 Ethical Considerations

We utilize large language models to translate
datasets initially available in English into several
languages. The real-world deployment of models
trained on LLM-translated data should undergo a
careful review of any harmful biases. However,
the LLM-translated data and the logical-forms gen-
erated by a semantic parser are not user-facing,
thus a smaller risk of any direct harms. The in-
tended users of any semantic parsing model must
be made aware that the answers returned by the
model could be incorrect, more so for user-queries
in low-resource languages. We do not immediately
foresee any serious negative implications of the
specific contributions that we make in this work.
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A Appendix

A.1 Additional results

Lang Zero-Shot Few-Shot TAF TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

af 48.5 59.0 64.5 64.5 66.7 66.3 68.5
am 31.0 47.6 58.3 57.4 56.1 55.5 64.6
ar 35.9 50.5 57.2 58.0 56.6 57.3 65.5
az 39.3 57.1 60.5 60.5 62.6 62.8 68.8
bn 40.8 55.4 62.1 61.7 61.1 62.0 68.3
cy 26.7 44.8 59.1 58.3 61.1 61.8 65.1
da 57.5 62.4 66.2 66.3 69.1 68.5 71.0
de 54.3 62.8 67.5 67.7 68.3 68.4 70.4
el 47.3 57.8 64.2 65.5 65.2 65.1 68.7
en 72.7 71.4 73.5 72.9 73.3 73.4 73.0
es 53.4 58.1 64.6 64.6 64.7 64.7 66.6
fa 48.8 58.0 63.1 62.9 62.8 63.2 68.1
fi 47.5 58.4 65.0 65.3 66.7 67.2 70.9
fr 54.6 58.0 65.3 64.9 63.9 63.7 67.1
he 35.3 56.1 60.6 61.2 55.3 56.6 68.3
hi 40.1 54.4 61.6 62.5 63.1 63.5 66.2
hu 44.1 57.1 63.8 63.6 64.5 65.4 69.7
hy 39.3 53.8 58.7 59.2 62.3 62.5 67.1
id 55.3 60.2 65.5 65.9 66.6 66.0 69.1
is 41.3 54.4 62.2 61.5 63.6 63.5 69.5
it 52.3 58.6 64.0 63.6 65.2 65.8 67.2
ja 45.6 55.1 56.3 56.5 65.6 65.6 67.3
jv 34.3 51.7 58.6 60.2 62.0 61.6 66.7
ka 36.5 53.4 53.5 54.6 59.2 59.6 65.7
km 37.8 51.1 49.1 53.7 55.3 54.3 62.8
kn 37.1 49.3 55.0 55.9 57.7 57.2 62.1
ko 42.1 56.3 62.2 63.6 62.4 63.5 69.3
lv 45.4 56.0 60.4 61.3 66.0 66.1 68.8
ml 38.6 53.9 55.5 56.9 62.5 62.1 67.5
mn 30.9 51.4 57.6 59.4 59.5 59.2 68.0
ms 48.6 58.9 66.2 66.2 65.8 65.7 69.2
my 38.1 54.9 60.5 62.3 61.5 60.6 69.6
nb 55.2 63.0 67.5 67.7 67.7 67.4 71.0
nl 53.1 61.2 67.3 68.5 68.7 68.5 70.5
pl 50.5 57.4 61.1 61.4 62.9 62.5 65.6
pt 54.9 60.3 65.8 65.7 66.4 66.9 68.5
ro 51.2 58.8 65.4 65.0 64.8 65.1 68.8
ru 42.3 59.4 63.0 63.1 66.6 66.2 69.4
sl 46.0 57.8 63.1 64.0 65.3 65.4 68.8
sq 41.0 55.4 60.3 60.4 62.1 61.7 67.3
sv 57.2 63.1 69.8 69.6 69.3 68.9 72.4
sw 35.7 52.3 57.9 57.5 60.9 60.6 65.3
ta 37.2 53.0 55.4 55.7 60.7 60.9 65.8
te 38.7 49.0 51.6 53.6 56.8 58.5 61.6
th 49.4 60.0 63.5 66.5 65.2 65 71.5
tl 48.4 55.7 64.1 64.2 65.2 64.8 67.5
tr 46.7 58.5 63.7 63.4 62.7 62.8 69.4
ur 38.9 51.2 60.4 60.6 62.2 61.9 64.6
vi 46.9 55.1 59.0 59.2 63.0 63.3 67.6
zhc 34.7 56.1 52.0 53.9 64.2 63.9 66.3
zht 35.2 51.8 50.5 52.3 60.7 60.6 63.6

Avg 43.8 55.9 61.0 61.6 63.2 63.2 67.7

Table A1: EM accuracy comparison on MASSIVE
dataset. Avg reports the EM accuracy averaged across
the 50 non-English languages

Lang Zero-Shot Few-Shot TAF TAF +
Few-Shot

LLM-T
(top-k)

LLM-T
(top-p)

Gold
(skyline)

de 54.4 62.8 75.0 75.1 73.7 74.0 78.5
es 57.8 69.5 74.9 74.5 75.2 75.4 82.9
fr 62.8 65.9 78.0 78.5 79.7 79.6 80.8
hi 42.3 55.3 63.0 63.9 72.5 72.3 78.5
th 42.1 53.9 60.8 62.9 66.8 68.0 77.0
en 84.1 84.0 85.2 85.0 85.2 85.1 85.4

Avg 51.9 61.5 70.3 71.0 73.6 73.9 79.5

Table A2: EM accuracy comparison on MTOP dataset.
Avg reports the EM accuracy averaged across the 5 non-
English languages

In Table A1, we present detailed baseline com-
parisons for all the 51 languages in the MASSIVE
dataset. Zero-Shot, Few-Shot, TAF, and TAF+Few-
Shot are the baselines described in Section 4. LLM-
T represents our method with top-k or top-p sam-
pling used while decoding the translated exam-

ples. Gold is the "full-shot" skyline which utilizes
the original human-translated datasets (§ 5.2). Ta-
ble A2 presents the same set of results for the six
languages in the MTOP dataset.

A.2 Role of decoding strategy and filtering
In Table A3 we present results for different de-
coding strategies and role of filtering inconsistent
examples as discussed in Section 5.3.

Decoding de es fr hi th AvgStrategy

Greedy 71.1 71.7 72.6 68.1 66.0 69.9
+ Filtering 72.2 73.5 74.8 71.5 67.4 71.9

Top-k Sampling (k = 40)
(#samples)

1 70.5 71.7 73.1 66.8 66.5 69.6
2 72.3 72.7 75.7 68.7 67.3 71.3
4 71.3 73.1 73.8 68.5 67.8 70.9
8 71.1 72.5 74.2 69.3 67.5 70.9

Top-k Sampling + Filtering (k = 40)
(#samples)

1 72.4 74.4 78 70.9 66.1 72.4
2 73.6 74.4 78.2 72.1 67.9 73.2
4 73.4 75.3 78.8 71.4 67.1 73.2
8 73.7 75.2 79.7 72.5 66.8 73.6

Top-p Sampling (p = 0.95)
(#samples)

1 70.1 71.5 74.3 66.9 67.2 70.0
2 71.4 72.1 74.5 68.8 67.2 70.8
4 71.1 72.8 76.4 69.0 66.0 71.1
8 71.9 72.7 74.2 70.0 68.4 71.4

Top-p Sampling + Filtering (p = 0.95)
(#samples)

1 72.0 75.2 78.9 71.6 68.1 73.2
2 73.7 75.2 79.5 72.0 67.6 73.6
4 73.4 75.3 79.0 72.1 67.7 73.5
8 74.0 75.4 79.6 72.3 68.0 73.9

Table A3: Impact of decoding strategy and filtering:
Generating multiple translations per English example
using top-k or top-p sampling followed by filtering in-
consistent examples offers superior downstream perfor-
mance compared to using greedy decoding or sampling
just one translation per example.
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