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Abstract

In this paper, we are interested in developing
semantic parsers which understand natural lan-
guage questions embedded in a conversation
with a user and ground them to formal queries
over definitions in a general purpose knowl-
edge graph (KG) with very large vocabularies
(covering thousands of concept names and re-
lations, and millions of entities). To this end,
we develop a dataset where user questions are
annotated with SPARQL parses and system an-
swers correspond to execution results thereof.
We present two different semantic parsing ap-
proaches and highlight the challenges of the
task: dealing with large vocabularies, mod-
elling conversation context, predicting queries
with multiple entities, and generalising to new
questions at test time. We hope our dataset will
serve as useful testbed for the development of
conversational semantic parsers.1

1 Introduction

Conversational information seeking is the process
of acquiring information through conversations (Za-
mani et al., 2022). Recent years have seen an in-
creasing number of applications aiming to build
conversational interfaces based on information re-
trieval (Radlinski and Craswell, 2017) and user
recommendation (Jannach et al., 2021). The pop-
ularity of intelligent voice assistants such as Ama-
zon’s Alexa or Apple’s Siri has further stimulated
research on question answering over general pur-
pose knowledge graphs (e.g., Wikidata). Key to
question answering in this context is the ability
to ground natural language onto concepts, entities,
and relations in order to produce an executable
query (e.g., SPARQL) which will retrieve an answer
or denotation from the knowledge graph (KG).

This grounding process, known as semantic pars-
ing has been studied in the context of one or few
domain-specific databases (Yu et al., 2019a; Jain

1Our dataset and models are released at SPICE.

and Lapata, 2021; Suhr et al., 2018) or without
taking the conversational nature of the task into ac-
count (Reddy et al., 2014; Yih et al., 2016; Dubey
et al., 2019; Gu et al., 2021). However, due to the
complexities of the semantic parsing task, there
are no large scale datasets consisting of informa-
tion seeking conversations with executable queries
against a KG. Conversational semantic parsing
over KGs requires handling very large vocabular-
ies covering thousands of concept names and rela-
tions, and millions of entities rather than special-
ized terms consisting of hundreds of tables and
column names. Moreover, information seeking
conversations are by nature incremental involving
interrelated rather than isolated questions.

In this work, we create SPICE, a Semantic
ParsIng dataset for Conversational quEstion an-
swering over Wikidata. SPICE consists of user-
assistant interactions where natural language ques-
tions are paired with SPARQL parses and answers
provided by the system correspond to SPARQL exe-
cution results. We derive this dataset from CSQA
(Saha et al., 2018), an existing benchmark origi-
nally proposed for retrieval-based conversational
question answering (Lan et al., 2021). Although
CSQA does not have executable queries, it contains
a large number of natural language questions and
their corresponding answers, highlighting a range
of conversational phenomena such as coreference,
ellipsis, and topic change as well as different types
of questions exemplifying varying intents.

Table 1 shows a conversation from SPICE il-
lustrating how questions (utterances on the left)
are annotated with SPARQL queries (SP on the
right blue box). To create a large-scale dataset
(197k conversations), we develop SPARQL tem-
plates for different question intents; entity, relation,
and class symbols are initially under-specified and
subsequently filled automatically to generate full
SPARQL queries. CSQA questions have been previ-
ously associated with logical forms generated with
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Utterances Annotations Actions and Semantic Parses

T1 U: Which tournament did Detroit Tigers INTENT=Simple Question|Single Entity

participate in? ENT=[ Q650855 (Detroit Tigers)] ,

REL=[ P1923 (participating team)],

S: 1909 World Series TYP=[ Q500834 (tournament)],

TRIPLE=[ (Q500834,P1923,Q650855)],

GOLD =[ Q846847 (1909 World Series)]

T2 U: Which sports team was the champion INTENT=Simple Question|Single Entity|Indirect

of that tournament? ENT=[ Q846847 (1909 World Series)] ,

REL=[ P1346 (winner )],

S: Pittsburgh Pirates TYP=[ Q12973014 (sports team)],

TRIPLE=[ (Q846847,P1346,Q12973014)],

GOLD=[ Q7199360 (Pittsburgh Pirates)]

T3 U: Does that sports team belong to INTENT=Verification|2 entities, subject is indirect

Sacile? ENT=[ Q653772 (Pittsburgh Pirates), Q53190 (Sacile)],

REL=[ P17 (country )],

S: No TYP=[ Q15617994 (designation admin. territorial entity )],

TRIPLE=[ (Q653772,P17,Q53190)],

GOLD=[False]

AS: [filter_type, find_rev, Q650855,P1923,Q500834]

SP:

SELECT ?x WHERE {
?x wdt : P1923 wd : Q650855 .
?x wdt : P31 wd : Q500834 . }

AS: [filter_type, find, Q846847, P1346, Q12973014]

SP:

SELECT ?x WHERE {
wd : Q846847 wdt : P1346 ?x .
?x wdt : P31 wd : Q12973014 . }

AS: [is_in, Q53190, find, Q653772, P17]

SP:
ASK {wd : Q653772

wdt : P17 wd : Q53190 . }

Table 1: Example conversations from SPICE. The left column shows dialogue turns (T1–T3) with user (U)
and system (S) utterances. The middle column shows the annotations provided in CSQA. Blue boxes on
the right show the sequence of actions (AS) and corresponding SPARQL semantic parses (SP).

custom-made grammars (Guo et al., 2018; Kacu-
paj et al., 2021; Marion et al., 2021). As a result,
semantic parsers based on them operate with dif-
ferent sets of grammar rules and are not strictly
comparable, since the grammars may have differ-
ent coverage and semantics (e.g., terminal sym-
bols may encapsulate different degrees of execution
complexity). In SPICE, questions are represented
with SPARQL, a standard query language for re-
trieving and manipulating RDF data.2 This allows
us to compare parsers developed on the dataset on
an equal footing and facilitates further extensions
(e.g., new question intents), without the need to re-
define the grammar and its execution engine. In an
attempt to build semantic parsers which generalise
to new user questions, we further create different
data splits where new intents appear only at test
time (Finegan-Dollak et al., 2018).

For our semantic parsing task, we establish two
strong baseline models which tackle the large vo-
cabulary problem and the prediction of logical
forms in different ways. The first approach (Gu
et al., 2021) uses dynamic vocabularies derived
from KG subgraphs for each question and a sim-
ple sequence-to-sequence architecture to predict
complete SPARQL queries. The other approach
(Kacupaj et al., 2021) predicts SPARQL query tem-
plates and then fills in entity, relation, and type
slots by means of an entity and ontology classi-
fier. Our experiments reveal several shortcomings

2https://www.w3.org/TR/sparql11-query/

in both approaches, such as not being able to en-
code large sets of KG elements and generate the
same entity several times. Both approaches strug-
gle with ellipsis, they cannot resolve coreference
when the referent appears in the conversation con-
text beyond the previous turn, have reduced per-
formance on questions with multiple entities, and
struggle with unseen question intents. We discuss
these challenges and outline research directions for
conversational semantic parsing.

2 The SPICE Dataset

The CSQA dataset (Saha et al., 2018) aims to facil-
itate the development of QA systems that handle
complex and inter-related questions over a knowl-
edge graph. In contrast to simple factual ques-
tions that can be answered with a single KG triple
(i.e., {subject, relation, object}), complex questions
require manipulating sets of triples and reasoning
over these. In Table 1, a question like How many
sports teams participated in that tournament? re-
quires numerical reasoning and answering the ques-
tion in turn T2 relies on correctly interpreting T1.

Questions and answers in this dataset were
elicited from human experts playing user and sys-
tem roles as well as from crowd-workers. In a
second stage, templates derived from the human-
authored QA pairs were used to automatically aug-
ment the dataset. Human experts also suggested
complex reasoning questions and derived templates
thereof. Conversations were built as sequences of
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Nb. instances 197K
Nb. entities 12.8M
Nb. relations 2738
Nb. types 3064
Avg. turn length 9.5
Avg. entities per conversation 7.6
Avg. types per conversations 6.5
Avg. neighbourhood per turn 181.4 triples

Logical Reasoning, Quantitative Reasoning,
Comparative Reasoning, Quantitative Reason-
ing Count, Comparative Reasoning Count, Ver-
ification, Simple Question
Clarification, Coreference, Ellipsis

Table 2: SPICE statistics (top); general question
types (middle); linguistic phenomena (bottom).

QA pairs exploring paths in the KG. By construc-
tion, the QA pairs in a conversation are connected
through one or several entities in the KG. Questions
fall into two coarse categories, simple and reason-
ing-based, and the way QA pairs are organised in
a sequence introduces various conversational phe-
nomena which we summarize below.

Simple Questions are factoid questions, seeking
information related to an entity (e.g., Which tourna-
ment did Detroit Tigers participate in? in Table 1)
or set of entities (e.g., What are the countries of
those sports teams? ).

Reasoning Questions are complex questions
which require the application of numerical and log-
ical operators over sets of entities. For instance,
to answer the question How many sports teams
participated in that tournament? requires finding
the set of sports teams that participated in a given
tournament (e.g., 1909 World Series) and taking its
count. Questions in this category also involve Gen-
eral Entities (GE) such as tournament, in addition
to Named Entities (NE), and multiple entities (both
NE and GE) in a single question (e.g., Which tour-
naments have less number of participating sports
teams than 1909 World Series? ). Some question
types also combine multiple reasoning operators.

Conversations contain sequences of mixed-
initiative interactions where the system requests
clarification on ambiguous questions. Conversa-
tions also include discourse phenomena such as
coreference (e.g., Which sports team was the cham-
pion of that tournament? in Table 1) and ellipsis
(e.g., And what about 1910 World Series? as a

follow up question to How many sports teams par-
ticipated in that tournament? ).

There are 10 question types and 47 question sub-
types. In Table 2, we only list question types but
provide all subtypes in Table 9 in Appendix A.

2.1 Question Semantics Described by Actions
Saha et al. (2018) envisaged CSQA as a benchmark
for retrieval-based conversational question answer-
ing (Bordes et al., 2015; Dong et al., 2015; Jain,
2016; Lan et al., 2021). These methods embed nat-
ural language questions and KG triples into high
dimensional spaces and rely on neural reasoning
modules to match questions to candidate answers.
Hence, questions do not have associated logical
forms, only gold answers are available.

Our success in creating semantic parse annota-
tions is partly due to the fact that CSQA provides
useful KG information. Each interaction (i.e., user
and system turn) comes with annotations about
KG entities, types, and relation symbols as well as
some information about the triple patterns involved
in the question (illustrated in Table 1 with ENT, REL,
TYP, and TRIPLE fields). It also provides informa-
tion pertaining to question types and subtypes (see
INTENT in Table 1).

Taking advantage of these annotations, follow-
on work (Guo et al., 2018) defined a semantic
parsing task over CSQA, modeling the meaning
of questions as a sequence of actions. The set of
actions encompasses find (or find_rev when the entity
is in object position) to retrieve sets of entities in a
subject (object) position, as well as actions operat-
ing on sets of entities (e.g., filter_type). For instance,
the question in turn T1 in Table 1 would be parsed
to [filter_type, find_rev, Q650855, P1923, Q500834], mean-
ing “find the set of entities that are in relationship
participating team with Detroit Tigers and then
filter those that are of type tournament”. A breadth-
first search algorithm generates action-grammar
annotations for each question and a sequence of
grammar-actions is considered correct if upon exe-
cution it returns the gold answer. Subsequent work
(Shen et al., 2019; Kacupaj et al., 2021; Marion
et al., 2021) expanded this action-grammar greatly
improving its coverage (i.e., the number of success-
fully annotated questions).

2.2 From Actions to SPARQL Queries
In this work, we take a step further and map CSQA
natural language questions into vanilla SPARQL

queries. We first analysed how intent is expressed
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ATIS SParC CoSQL SPICE
Nb. Instances 1,658 4,298 3,007 197K
Avg. turn length 7.0 3.0 5.2 9.5
Domain Single Multi Multi Wikidata
Logical form SQL SQL SQL SPARQL

Database type Rel Rel Rel KG

Table 3: Conversational semantic parsing datasets
(Rel: relational database; KG: knowledge graph).

in question types and subtypes and then manually
defined SPARQL templates for each question sub-
type. A SPARQL template is a query with unspec-
ified triple patterns in the WHERE clause. For in-
stance, the template for the question in turn T1
is {SELECT ?x WHERE triple(?x, ENTITY, RELATION). ?x

wdt:P31 TYPE.}. We finally modified the tool pro-
vided in Kacupaj et al. (2021) to automatically in-
stantiate the SPARQL templates, providing annota-
tions for the entire dataset (e.g., by filling missing
slots and determining subject/object positions for
triple(·) elements as SELECT ?x WHERE {?x wdt:P1923

wd:Q650855. ?x wdt:P31 wd:Q500834.}).
We imported the Wikidata snapshot provided by

Saha et al. (2018) into a KG in a SPARQL server
(see Appendix B for more details) and assessed the
correctness of SPARQL queries by executing them
and comparing results to gold answers. For some
questions the annotation procedure did not produce
a SPARQL parse that recovered the gold answer. In
these rare cases, we redefined the answer if it did
not affect the conversation flow or truncated the
conversation up to that point.

Table 2 shows various statistics for SPICE
while Table 3 compares it to related conversational
datasets such as ATIS (Suhr et al., 2018), SParC
(Yu et al., 2019b), and CoSQL (Yu et al., 2019a).
As can be seen, SPICE contains a sizeable number
of training instances, its conversations are longer,
and the semantic parsing task is real-scale.

3 The Semantic Parsing Task

We consider the semantic parsing task over a
sequence of dialogue turns d = (d1,d2, · · · ,d|d|),
where turn dt corresponds to a user-system in-
teraction with user question xt and system an-
swer at . Each turn has a conversation context ct

made of interactions di such that i < t. Given
interaction dt with context ct and user question
xt = (xt1,xt2, · · · ,xt|xt |), our goal is to predict a
SPARQL query yt = (yt1,yt2, · · · ,yt|yt |) that repre-

sents the intent of xt and, upon execution over
knowledge-graph K , yields denotation at . yt is
a sequence over a target vocabulary V = V f ∪VK
where V f is fixed and contains SPARQL keywords
(e.g., SELECT) and special tokens (e.g., beginning
of sequence token, BOS), and VK contains all
knowledge-graph symbols (e.g., entity IDs such
as Q76 for Barack Obama).

We propose two approaches for this semantic
parsing task which establish strong baseline per-
formance and highlight various challenges. These
differ in the way they handle large KG vocabularies
and how they generate logical forms. Figure 1 pro-
vides a sketch of the two models discussed below.

3.1 Parsing with a Single Decoder and
Knowledge Subgraphs

Our first model is parameterised by an encoder-
decoder Transformer neural network (Vaswani
et al., 2017), and an adaptation of the semantic
parsing architecture proposed in Gu et al. (2021).

Dynamic Vocabulary Since the KG vocabu-
lary VK can be extremely large, we parse ques-
tion xt with a smaller vocabulary Vt ⊆ VK which
only contains KG symbols related to xt . Following
previous work (Gu et al., 2021; Marion et al., 2021),
we assume the symbols related to xt are those ap-
pearing in subgraph Gt of knowledge-graph K ,
Gt ⊆ K . Given question xt and its context ct ,
we identify KG entities Et = {et1,et2, · · · ,et|Et |}
which correspond to mentions in xt and ct . We then
obtain Gt by taking the one-hop neighbourhood for
each entity eti ∈ Et . In other words, we include all
KG triples (s, r, o) where the entity appears in sub-
ject (s = eti) or object position (o = eti). When eti

is a subject, we include triple (eti, r, τo) where τo is
the type of entity o; analogously, when eti appears
in an object position, we add (τs, r, eti). For en-
tities eti we include their types τeti . When eti is a
general entity (e.g., a type such as tournament) we
add relations from K that have instances of type eti

as their subject (object). The final vocabulary Vt

contains all entities in Et , all relations r and types
(τo, τs, and τeti) found in the set of triples in Gt .

Note that context ct is defined as a window over
the conversation so far. Following previous work
(Marion et al., 2021; Kacupaj et al., 2021), we
set the conversation context to the previous user-
system interaction ct = {dt−1}.
Encoder-Decoder Model Our encoder is a
BERT (Devlin et al., 2019) model fine-tuned on
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(a) Encoder-decoder model with dynamic vocabularies. (b) Semantic parser based on Lasagne multi-task model.

Figure 1: Two modeling approaches to conversational semantic parsing.

our semantic parsing task. The decoder is a ran-
domly initialised Transformer network (Vaswani
et al., 2017). To account for the difference in initial-
isation between the encoder and decoder networks,
we follow the training scheme proposed in Liu and
Lapata (2019). We provide details in Appendix C.

The input to our semantic parser is a tuple
(xt ,ct ,Gt) consisting of natural language ques-
tion xt , its context ct , and subgraph Gt which we
adapt to BERT’s input format as follows (Gu et al.,
2021). We concatenate the sequence of natural
language questions and answers appearing in ct

and xt , using the special token [CTX] as a delimiter
and prepend the [CLS] token in the beginning of the
sequence. Special token [SEP] denotes the end of se-
quence followed by the linearised KG subgraph Gt .
The linearisation procedure goes over entities in Gt ,
enumerating their types and relations. Importantly,
we denote entities by their label rather than their
KG identifiers. The order of entities in Gt is ran-
dom. Figure 1(a) shows an example of the input to
our BERT-based encoder.

More formally, the encoder takes token se-
quences x′t = [CLS]x′ttext

[SEP]x′tgraph
[SEP] as in-

put where x′ttext
is the natural language subse-

quence and x′tgraph
= (gt

1, · · · ,gt
|Gt |) is the sequence

of knowledge-graph symbols from the linearised
graph Gt . Note that these knowledge-graph sym-
bols constitute the target dynamic vocabulary Vt

and |Gt | represents the number of KG symbols
which is equal to the size of the target vocab-
ulary |Vt |. The encoder maps input sequences
x′t into sequences of continuous representations
zt = (zt1, ...,zt|xt |), and the decoder then generates
the target SPARQL parse yt = (yt1, ...,yt|yt |) token-
by-token autoregressively, hence modelling the

conditional probability: p(yt1, ...,yt|yt | |x′t).
The linearised graph Gt can exceed BERT’s max-

imum number of input positions (which is 512).
To avoid throwing away useful information, we
adopt a solution similar to Gu et al. (2021). For
question xt with Gt containing k entities, we create
k input sequences x′1t , · · · ,x′kt . These k sequences
share the natural language subsequence but have
different KG symbol subsequences. Given an in-
put sequence x′1t , · · · ,x′kt , we obtain contextualised
representations as z1

t , · · · ,zk
t = BERT(x′1t , · · · ,x′kt ).

The model further splits the sequence of con-
tinuous representations z j

t into textual represen-
tations z j

ttext and knowledge-graph symbols z j
tgraph

both of which are contextualised. We then average
representations zttext = AVG(z j

ttext) and feed them
as input to the decoder (see Figure1(a)). From
representations z j

tgraph , we derive the embeddings
for the elements in the target dynamic vocabu-
lary Vt . Recall that the decoder parses input
questions xt using target vocabulary V = V f ∪Vt

which consists of a set of fixed (V f ) and dy-
namic (Vt) target tokens. The decoder then pre-
dicts the probability of each SPARQL token yti as
p(yti |yt<i ,x

′1
t , · · · ,x′kt ) = softmax(Wo hL

i ) where hL
i

is the decoder top layer hidden representation at
time step i. Wo ∈R|V f∪Vt | is the output embedding
matrix with Wo = [W f ; Wt ], where [; ] denotes ma-
trix concatenation, W f is the embedding matrix for
the fixed target vocabulary, and Wt is derived from
the encoder representations z j

tgraph .

3.2 Parsing with Multiple Decoders and an
Ontology Classifier

Our second model is an adaptation of the Lasagne
architecture proposed in Kacupaj et al. (2021).
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Lasagne generates logical forms following a multi-
stage approach where a backbone sketch is first
predicted and then fleshed out. Their sketch is a
sequence of actions from a custom grammar which
we modify to be a sketch of SPARQL queries.

SPARQL Template Prediction Lasagne em-
ploys an encoder-decoder model based on Trans-
formers (Vaswani et al., 2017) to convert a user
question xt in a conversation into a logical form
template. The input to the encoder is the conver-
sation context ct = {dt−1} and user question xt .
Utterances are separated via [SEP] tokens, while
the special context token [CTX] denotes the end of
sequence (see Figure 1b). The input sequence is
encoded via multi-head attention (Vaswani et al.,
2017) to output contextualized representations
which are then fed to the decoder to predict a se-
quence of actions (without grounding to KG ele-
ments) token-by-token. Instead, our decoder pre-
dicts SPARQL queries with place-holders for KG
symbols. For instance, for the WHERE clause of
turn T1 in Table 1, it predicts {ENTITY RELATION ?x.

?x wdt:P31 TYPE.} instead of {wd:Q5582479 wdt:P161 ?x.

?x wdt:P31 wd:Q502895.})

Entity Recognition and Linking An entity
recognition module detects entities in the input and
links them to the KG (Shen et al., 2019; Kacupaj
et al., 2021). Initially, entity spans are identified
using an LSTM which performs BIO sequence la-
belling.3 Entity spans are subsequently linked to
KG entities via an inverted index (created using
Elasticsearch4) which maps entity labels to entity
IDs. Once identified, the entities are further fil-
tered and reordered so that they match their order
of appearance in the SPARQL (see Figure 1(b)).

Predicting Types and Relations Finally, an on-
tology graph with types and relations appearing in
SPICE’s KG is constructed.5 The graph is encoded
with a Graph Attention Network (GAT; Velickovic
et al. 2018) and the prediction of type and relation
fillers for the SPARQL template is modeled as a
classification task over graph nodes, given the con-
versational context and the decoder hidden state.

Learning All modules outlined above are trained
in a multi-task manner, optimizing the weighted

3BIO labels for training are obtained by preforming string
matching between entity annotations and user utterances.

4https://www.elastic.co/
5This graph would be substantially bigger for a semantic

parsing system operating over the full Wikidata KG.

average of the following individual losses L =
λ1LF +λ2LG +λ3LR +λ4LO where LF is the loss
of the SPARQL template decoder, LG is the type
and relation prediction loss using the GAT network,
LR is the entity recognition loss, and LO the entity
reordering loss (and weights λ1:4 are learned during
training). We refer the interested reader to Kacupaj
et al. (2021) for mode details.

4 Results

We examine how the two models just described
fare on different question types and subtypes. We
report results on SPICE i.i.d train/valid/test splits
(containing 152,391/16,813/27,797 conversations,
respectively) but also create new splits that assess
out-of-distribution generalisation. In all cases, fol-
lowing previous work (Saha et al., 2018; Kacupaj
et al., 2021), we use execution-based automatic
metrics. Micro F1-score evaluates question parses
that return a set of entities, while Accuracy is used
for question parses that evaluate to True/False or
return a numerical value. In addition, we report
Exact Match (EM) against the gold SPARQL parse.

4.1 Performance per Question Type
Table 4 shows our results on the SPICE i.i.d
test split. BertSP variants differ in how they obtain
the set of KG entities Et (cf. Section 3.1) to build
the dynamic vocabulary. BertSPG has access to
oracle entities, types, and coreference annotations
which allows us to disassociate the complexity of
the SPARQL generation task from the problem of
grounding and disambiguating entities to KG sym-
bols. Variants BertSPS and BertSPA do not have
access to oracle annotations. BertSPS grounds men-
tions to KG entities with a simple algorithm based
on string matching (Marion et al., 2021); while
BertSPA relies on AllenNLP’s Named Entity Rec-
ognizer (NER) and the Elasticsearch inverted index
for Named Entity Linking (NEL). Both have to
identify coreferring entities using the conversation
context ct . Both BertSPS and BertSPA use string
matching for type linking (i.e., grounding general
entities to KG types).

Note that it is not straightforward to perform ora-
cle analysis for LasagneSP without compromising
the model structure which predicts entities, their
types, and relations in multiple stages.

Exact Match Performance We observe that ex-
ecution based metrics (F1-score and Accuracy) are
generally higher than EM. This is because in some
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BertSPG BertSPS BertSPA LasagneSP
Question Type F1 EM F1 EM F1 EM F1 EM
Clarification 84.89 82.53 80.21 77.69 83.91 76.58 86.29 73.41
Logical Reasoning (All) 90.61 82.90 85.55 66.89 22.74 28.61 88.80 57.41
Quantitative Reasoning (All) 94.42 88.55 82.95 66.40 76.20 59.01 94.90 91.47
Comparative Reasoning (All) 96.23 87.39 90.44 73.80 69.56 39.37 94.20 85.05
Simple Question (Coreferenced) 88.96 86.53 83.19 69.87 76.51 58.83 84.73 60.90
Simple Question (Direct) 91.81 91.59 87.13 80.69 71.43 58.71 87.21 66.88
Simple Question (Ellipsis) 79.51 89.71 72.50 71.67 58.14 50.90 74.35 61.53

AC EM AC EM AC EM AC EM
Verification (Boolean) 90.10 77.24 79.72 62.62 37.16 24.90 34.89 26.72
Quantitative Reasoning (Count) 87.91 84.97 76.88 73.20 50.86 48.44 60.51 56.15
Comparative Reasoning (Count) 90.05 85.99 73.18 66.79 43.48 40.67 89.09 83.69
Overall 81.50 85.74 81.18 70.96 59.00 48.60 79.50 66.32

Table 4: Accuracy (AC), and exact match (EM) on SPICE i.i.d test split. BertSPG has access to oracle
entities, types, and coreference annotations. Best EM predictions are shown in bold.

cases the SPARQL parse may be incorrect and still
yield some results. For instance, a parse requiring
the UNION of two graph patterns may yield a par-
tially correct answer by only including one graph
pattern; similarly, a parse can evaluate to False and
agree with the gold answer just because it included
a wrong relation symbol.

The Importance of Entity Grounding Not sur-
prisingly, the model with access to oracle informa-
tion (variant BertSPG) obtains the best performance.
Results improve not only for questions with enti-
ties referring to previous context but also indirectly
for other types of questions. Since entities are cor-
rectly grounded in previous conversation turns ct ,
the model operates with more accurate graphs Gt

and richer dynamic vocabularies Vt .
Both BertSPS and BertSPA perform coreference

resolution using limited conversation context and
thus performance decreases. These models also
have to ground named (Detroit Tigers) and gen-
eral (tournament) entity mentions to KG symbols.
BertSPS which relies on string matching performs
overall better than BertSPA which struggles with
compound named entities such as President of the
Czech Republic) and disambiguation during NEL
(e.g., Saint Barbara the painting versus the Saint).

Model Comparison BertSPS and LasagneSP are
similar in the way they handle NER/NEL with a
task-specific approach, but differ in their concep-
tualization of the semantic parsing task (encoder-
decoder vs. multi-tasking). LasagneSP outper-
forms BertSPS in Comparative, Quantitative, and

Comparative-Count questions. These encompass
many question subtypes with general entities which
are very common in both training and testing.
LasagneSP has access to all types and relations en-
coded with the graph network. In contrast, BertSPS
relies on types which in the first place need to be
present in the entity neighbourhood subgraph and
then be preserved after truncating the input to fit
the model’s maximum sequence length. An advan-
tage of BertSPS over LasagneSP, is that it allows
for easier adaptation to new types and relations by
relying on dynamic vocabularies, while LasagneSP
would need to be retrained to accommodate them.

In Simple questions, where each question in-
volves fewer but more diverse types, BertSPS pre-
dicts more accurate types (thanks to the input text
and KG symbol contextualisation) and thus per-
forms better. LasagneSP does poorly on Verifica-
tion, Logical, and Quantitative-Count (which in-
cludes logical operators). This can be explained by
a modelling limitation, i.e., it is not able to point to
the same input entity more than once.

Errors in Predicted SPARQLs Manual inspec-
tion of SPARQL predictions revealed several com-
mon system errors including: prediction of erro-
neous entities and relations, failure to enumerate
all required entities (for questions with multiple
entities), and mistakes in argument order (i.e., enti-
ties and variables are correct but placed in incorrect
subject/object positions). To a lesser extent, we
also observed SPARQL queries with incorrect in-
tent predictions and ill-formed syntax.
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Phenomena BertSPG BertSPS BertSPA LasagneSP
Coref=−1 81.40 70.65 49.39 43.65
Coref<−1 67.82 0 0 0
Ellipsis 75.93 54.33 26.39 46.54
Entities 83.37 65.40 41.64 66.52

Table 5: Exact match (EM) on SPICE i.i.d test set;
questions are grouped into linguistic phenomena.

4.2 Linguistic Analysis

Table 5 shows model performance across-different
question subtypes aggregated for specific phenom-
ena. These include Coreference, Ellipsis, and Mul-
tiple Entities (Entities). We distinguish between
cases where coreference can be resolved in the
previous turn (Coref=−1) and further back in the
conversation history (Coref<−1). In addition, some
question subtypes contain plural mentions, i.e., they
are linked to multiple entities which the semantic
parser must enumerate in order to build the correct
parse. Ellipsis can be often resolved within the
previous interaction (Coref=−1), but not within the
wider discourse context. Questions with multiple
entities bring further disambiguation challenges. In
Appendix A, we provide the list of question sub-
types for each phenomenon in Table 5.

As can be seen, the oracle BertSPG model which
has access to gold annotations is superior to vari-
ants which rely on automatic entity and type link-
ing. BertSPS is better than LasagneSP at handling
coreference within immediate context (i.e., ct =
{dt−1}). Due to the fact that LasagneSP predicts
entity positions in SPARQL, it is particularly bad at
resolving mentions to multiple entities in the previ-
ous context or even multiple mentions of the same
entity in the output parse (as is the case with Verifi-
cation questions). Perhaps unsurprisingly, neither
BertSPS nor LasagneSP can resolve mentions to
non-immediately preceding utterances. BertSPS
performs better than LasagneSP in questions with
ellipsis; we conjecture that the input context and
contextualisation of KG symbols help in ground-
ing elided relation mentions. Ellipsis and multiple
entities improve by a large margin with access to
gold annotations (see BertSPG in Table 5).

4.3 Generalisation

We further evaluate the models’ ability to gener-
alise by creating “query-based” splits (Finegan-
Dollak et al., 2018), i.e., splits with query pat-
terns seen only at test time. Our splits include:

Unseen Combinations BertSPS LasagneSP
(Train/valid/test) EM EM
COUNTLOGIC 0.94 0
UNIONMULTI 19.74 16.89
VERIFY3 0 0

Table 6: Exact match (EM) for BertSPS and
LasagneSP on SPICE non-i.i.d splits.

(a) question subtypes that involve a count op-
eration over a union operator (COUNTLOGIC;
individual operators are seen at training time
but not the combination thereof); this split has
153,562/14,262/29,177 instances for training/val-
idation/testing; (b) question subtypes that involve
a union operator over two graph patterns with dif-
ferent relations (UNIONMULTI; the union of two
graph patterns with the same relation is seen during
training); this split contains 157,331/14,426/25,244
instances; and (c) verification questions with three
entities involving 154,027/13,869/29,105 instances
(VERIFY3; questions with 2 entities only are seen
during training).

As shown in Table 6, both BertSPS and
LasagneSP perform poorly across different splits.
While in some cases the models grasp the
overall SPARQL structure for unseen questions
(e.g., Which watercourses are located in the neigh-
bourhood of Bremen or are the tributaries of Ob? in
UNIONMULTI), they ignore specific query details
and simply default to familiar patterns seen in the
training (e.g., Which people are the creators of The
Theory of Everything or Ten Minutes to Live? ). In
the UNIONMULTI split, the models produce an ap-
propriate SPARQL template but systematically copy
the same relation in both graph patterns. BertSPS
performs slightly better than LasagneSP; we hy-
pothesize that contextualised KG embeddings oc-
casionally help the model select different relations.
We observe a similar trend for COUNTLOGIC and
VERIFY3. Appendix D shows examples of unseen
questions, their SPARQLs, and common errors.

5 Related Work

Much previous work on semantic parsing focuses
on mapping stand-alone utterances to logical forms.
Relatively few datasets have been constructed for
conversational semantic-parsing (Suhr et al., 2018;
Dahl et al., 1994; Yu et al., 2019b,a) partly due to
the difficulty of eliciting annotations in an inter-
active context. As a result, existing benchmarks
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are either single-domain or small-scale (see the
comparison in Table 3). For instance, although
ATIS (Suhr et al., 2018) exemplifies several chal-
lenging long-range discourse phenomena (Jain and
Lapata, 2021), it is restricted to a single domain
with a simple database schema. SParC (Yu et al.,
2019b) and CoSQL (Yu et al., 2019a) present cross-
domain challenges in mapping natural language
queries onto SQL, but the conversation length is
fairly short and the databases relatively small-scale.

Large KGs, like Wikidata (Vrandečić, 2012), are
becoming an increasing valuable source of infor-
mation. Various question-answering datasets have
been recently released (Dubey et al. 2019; Talmor
and Berant 2018; Christmann et al. 2019, 2022,
inter alia), which are either not conversational or
contain sequences of dialogue turns but the ques-
tions are not annotated with executable queries like
SPARQL. The CSQA dataset introduced in Saha
et al. (2018) is conversational and covers a wide
range of linguistic phenomena (e.g., ellipsis, coref-
erence) but frames the QA task as an information
retrieval problem. Follow-on work (Marion et al.,
2021; Kacupaj et al., 2021; Shen et al., 2019) has
used hand-crafted grammars to automatically ob-
tain semantic annotations which are are not exe-
cutable with a real KG engine (e.g., Blazegraph),
and cumbersome to extend to new question intents.

6 Conclusion

In this work we introduce SPICE, a conversational
semantic parsing dataset over knowledge graphs.
Our dataset contains SPARQL annotations which
are executable on a real KG engine and requires
handling complex questions, type, relation, and en-
tity linking on a large scale. Moreover, it showcases
multiple linguistic phenomena such as coreference
and ellipsis. We establish two strong baselines for
the semantic parsing task and present detailed anal-
ysis stratifying performance by question type and
linguistic phenomena. We also study generalisa-
tion to unseen intents and create multiple dataset
splits with different query patterns. To move for-
ward conversational semantic parsing over large
scale KGs would need to improve entity linking,
modelling of conversation context, and generalisa-
tion capabilities. We hope our dataset will serve as
a useful testbed for the development of conversa-
tional semantic parsers.
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8 Limitations

Both models discussed in this work make simpli-
fying assumptions. BertSP variants need to trun-
cate the linearised graphs for computational cost
reasons. LasagneSP works with a smaller graph
ontology which can easily fit in memory. However,
this restricts the model to predicting seen types
or relations which is unrealistic. A real-world se-
mantic parser should ideally have access to the full
Wikidata. Our results show that both models do
not generalise to unseen question intents, which is
a known limitation of current neural sequence-to-
sequence architectures (Furrer et al., 2020; Finegan-
Dollak et al., 2018; Keysers et al., 2020; Kim and
Linzen, 2020; Li et al., 2021). Finally, our results
also suggest that there is scope for improvement in
handling previous context (including questions and
answers).
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A The SPICE Dataset: Question Types
and Subtypes

Table 9 provides the list of question types and sub-
types in SPICE. For each question subtype we
provide an example user question. For cases in-
volving ellipsis and coreference, we include the
conversation context (in grey colour).

Table 7 provides the list of question subtypes
grouped grouped according to linguistic phenom-
ena. Coreference (=−1 and <−1), Ellipsis, and Mul-
tiple Entities.

Coreference

More/Less | Mult. entity type (Coreference) # More/-
Less | Single entity type (Coreference) # Single Entity
(Coreference) # 2 entities, one direct and one indirect,
object is indirect # 2 entities, one direct and one indi-
rect, subject is indirect # 3 entities, 2 direct, 2(direct) are
query entities, subject is corefered # one entity, multiple
entities (as object) corefered # Count | Logical operators
(Coreference) # Count | Single entity type (Coreference)
# Count over More/Less | Mult. entity type (Coreference)
# Count over More/Less | Single entity type (Corefer-
ence)

Ellipsis

Difference | Single Relation (Ellipsis) # Intersection | Sin-
gle Relation (Ellipsis) # Union | Single Relation (Ellipsis)
# More/Less | Mult. entity type (Ellipsis) # More/Less |
Single entity type (Ellipsis) # object parent is changed,
subject and predicate remain same # Incomplete count-
based ques # Count over More/Less | Mult. entity type
(Ellipsis) # Count over More/Less | Single entity type
(Ellipsis)

Multiple Entities

Difference | Multiple Relation # Intersection | Multiple
Relation # Union | Multiple Relation # Atleast/ Atmost/
Approx. the same/Equal | Mult. entity type # Min/Max
| Mult. entity type # More/Less | Mult. entity type #
More/Less | Mult. entity type (Ellipsis) # More/Less |
Mult. entity type (Coreference) # Mult. Entity (Simple
Question Direct and Coreference) # one entity, multiple
entities (as object) coreferred # Count over Atleast/ At-
most/ Approx. the same / Equal | Mult. entity type #
Count | Mult. entity type # Count over More/Less | Mult.
entity type # Count over More/Less | Mult. entity type
(Ellipsis) # Count over More/Less | Mult. entity type
(Coreference)

Table 7: Question subtypes grouped according to
linguistic phenomena.

Table 8 provides the list of unseen question sub-
types for each of the non-i.i.d splits.

B Creating a Knowledge Graph from the
CSQA Data

Deploying a full copy of Wikidata locally as a stan-
dalone service requires huge resources in addition
to cluster dependent tweaking to obtain fast query

COUNTLOGIC

Count | Logical operators # Count | Logical operators
(Coreference)

UNIONMULTI

Union | Multiple Relation
VERIFY3

3 entities, 2 direct, 2(direct) are query entities, subject is
indirect # 3 entities, all direct, 2 are query entities

Table 8: Unseen question subtypes in SPICE non-
i.i.d splits.

processing and high-performance.6 To enable eas-
ier deployment and fast access for research pur-
poses we created a smaller graph from the CSQA
data files. We mapped the contents of these files7

onto triples which we subsequently converted to
ttl format8 with full URI to allow loading them
to the KG query engine. We also filled missing
information where possible, for example, missing
relations such as “instance of” was filled with re-
lation P31 and added data type information when
this was omitted from the original files.

We used Blazegraph9 to deploy the local server,
which uses only CPU-based resources and has ac-
cess to 150G of RAM. Further details along with
the script to host the server will be released upon
acceptance.

C BertSP Model Configuration

Our model is implemented using pytorch (Paszke
et al., 2019). For all experiments, we used the
ADAM optimizer (Kingma and Ba, 2015) with
20,000 BERT warmup steps and 10,000 steps for
decoder warm up. We use separate optimizers for
the BERT encoder and decoder. BERT was fine-
tuned during training with the initial learning rate
set to 0.00002. A learning rate of 0.001 was set
for the rest of model parameters. Our model was
trained for 100,000 steps; we used 4 GPUs with
12GB of memory. We performed model selection
on the validation set. We report results with the
best performing model which had 6 decoder layers.

D Examples on Generalisation Splits

Table 10 shows examples from the generalisation
splits: similar question subtypes see during train-

6https://www.mediawiki.org/wiki/Wikidata_
Query_Service/User_Manual#Standalone_service

7Described at https://amritasaha1812.github.io/
CSQA/download_CQA/

8http://www.w3.org/TR/turtle/
9https://blazegraph.com/
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ing, unseen question subtype, and error on pre-
diction. The most common error across different
splits is that models use similar SPARQLs seen dur-
ing training but fail to adapt them to the details
(entities, types, relations, argument positions) in
the unseen question subtype. Other errors encom-
pass using the incorrect SPARQL query (incorrect
question intent) and incorrect entities and types.
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Table 9: Full list of question subtypes (intents) in SPICE. For each subt-type we show an example
question, whenever the question subtype involves a conversational phenomenon (coreference or ellipsis);
previous conversation interactions necessary for the interpretation of the question are shown in grey.

Question Subtype Example User Question
Clarification

Simple Question | Single Entity (Coreference)
U: Which political territory is that sporting event located in?
S: Did you mean Speed skating at the 2010 Winter Olympics – Men’s 500 metres?
U: Yes

Logical Reasoning (All)

Difference | Multiple Relation U: Which people were awarded with Order of Merit for Arts and Science and are not working as
singer?

Difference | Single Relation U: Which international organizations had Poland but not Bulgaria as their member?

Difference | Single Relation (Ellipsis)

U: Which city was Pierre Laffont born in?
S: Marseille
U: Which administrative territories are the sister cities of that city?
S: Shanghai, Odessa, Naples
U: But not Bologna

Intersection | Multiple Relation U: Which human settlements are situated close to Trave and have an adjacent border with Her-
zogtum Lauenburg?

Intersection | Single Relation U: Which works of art were filmed at Edinburgh and Berlin?

Intersection | Single Relation (Ellipsis)
U: Which language does José María Lassalle speak in?
S: Spanish
U: And also Sergio Gil

Union | Multiple Relation U: Which watercourses are located in the neighbourhood of Bremen or are the tributaries of Ob?
Union | Single Relation U: Which people are the creators of The Theory of Everything or Ten Minutes to Live?
Union | Single Relation (Ellipsis) U: What is the profession of Mai Yamada?

S: announcer
U: Or Kazimierz Rogoyski?

Quantitative Reasoning (All)
Min/Max | Single entity type U: Which musical instruments are played by min number of people?

Min/Max | Mult. entity type U: Which organizations are the main building contractors of max number of architectural struc-
tures and buildings?

Atleast/ Atmost/ Approx. the same/Equal | Single entity type U: Which musical instruments are played by exactly 5 people?

Atleast/ Atmost/ Approx. the same/Equal | Mult. entity type U: Which events are demonstrated in atleast 3 prints and genres of sculpture?

Comparative Reasoning (All)

More/Less | Mult. entity type U: Which landforms are known for containing lesser number of chemical compounds or minerals
naturally than Stetind pegmatite?

More/Less | Mult. entity type (Ellipsis) U: Which landforms are known for containing lesser number of chemical compounds or minerals
naturally than Stetind pegmatite?
S: Euboea, Izalco, Mount Nyiragongo
U: And also tell me about Tuften quarry?

More/Less | Mult. entity type (Coreference) U: Which administrative territory is that person a civilian of?
S: Spain
U: Which administrative territories are the countries of origin of lesser number of television
programs or works of art than that administrative territory?

More/Less | Single entity type U: Which television programs have been dubbed by more number of people than Puss in Boots:
The Three Diablos?

More/Less | Single entity type (Ellipsis) U: Which television programs have been dubbed by more number of people than Puss in Boots:
The Three Diablos?
S: House, K-On!, K-On!!
U: And also tell me about Chip ’n Dale Rescue Rangers?

More/Less | Single entity type (Coreference) U: Which languages are max number of literary works composed in?
S: English
U: Which languages are the mother tongues of less number of people than that language?

Simple Question (Direct)
Simple Question U: Which type of sport did Amel Tuka participate in?
Single Entity U: What is the capital of Sweden?

Mult. Entity
U: Who were the writers of On being and essence, De vegetabilis et plantis libri septem and
Historia de regibus Gothorum, Vandalorum et Suevorum?

Simple Question (Ellipsis)
only subject is changed, parent and relation remains same U: Which organizations are the sponsors of Janice Anderson?

S: Montrail, Patagonia, Inc.
U: And also tell me about Manikala Rai?

object parent is changed, subject and relation remain same U: Which watercourses are situated nearby Munich?
S: Eisbach, Würm, Isar
U: And which river?

Simple Question (Coreference)
Mult. Entity U: Which releases have Motown as their record label?

S: What’s Going On, Got to Be There, Can’t Slow Down
U: Which genre do those releases belong to?

Single Entity (Coreference) U: Which narrative location is The Penalty set in?
S: San Francisco
U: Which color is associated with that film genre?

Verification (Boolean) (All)
2 entities, both direct U: Is Zugspitze located in Germany?
2 entities, one direct and one corefered, object is corefered U: Which university was Eden Stiles educated at?

Continued on next page
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Table 9 – Continued from previous page
Question Type/Subtype Example User Question

S: University of Michigan
U: And what about C. V. Raman?
S: University of Madras
U: Was Ravindra Wijegunaratne educated at that university?

2 entities, one direct and one corefered, subject is corefered U: Which German business organization was Gustav Peichl a member of?
S: Academy of Arts, Berlin
U: What was designed by that person?
S: Millennium Tower
U: Does that tower block belong to Austria?

3 entities, 2 direct, 2(direct) are query entities, subject is corefered U: Which administrative territory was Gary Collier born at?
S: Fort Worth
U: Is that administrative territory a sister city of Adamsville, New Brunswick and Yuen Long
Kau Hui?

3 entities, all direct, 2 are query entities U: Is Aix-en-Provence partner town of Baton Rouge and Hemmatabad, Alborz?
one entity, multiple entities (as object) coreferred U: Which armed conflicts are Battle of the Argeş or Battle of the Yellow Sea a part of?

S: Romania during World War I, Russo-Japanese War
U: Did those armed conflicts fight in Rui Natsukawa?

Quantitative Reasoning (Count) (All)
Incomplete count-based ques U: How many people influenced Chris Marker?

S: 1
U: And also tell me about Ada Yonath?
S: 1
U: And what about Mikhail Bakunin?

Count over Atleast/ Atmost/ Approx. the same/Equal|Mult. entity type U: How many cities are the terminus locations of atleast 5 thoroughfares and roads?
Count over Atleast/ Atmost/ Approx. the same/Equal|Single entity type U: How many musical instruments are played by exactly 2 people?
Count | Logical operators U: How many bodies of water or watercourses are situated nearby Lübeck?
Count | Logical operators (Coreference) U: Which administrative territory is the native country of Carolina Goic Boroevic?

S: Chile
U: Who is the head of the government of that administrative territory?
S: Michelle Bachelet
U: What is the capital of that administrative territory?
S: Santiago
U: How many capitals or cities are sister towns of that city?

Count | Mult. entity type U: How many people starred in Django Kill or Shatterday?
Count | Single entity type U: How many people starred in Captain America: Civil War?
Count | Single entity type (Coreference) U: Which armed conflict did Lionel of Antwerp, 1st Duke of Clarence take part in?

S: Hundred Years’ War
U: How many people did that armed conflict engage in?

Comparative Reasoning (Count) (All)

Count over More/Less | Mult. entity type U: How many administrative territories have adopted lesser number of holidays and people as
patron saint than Santo Stefano al Mare?

Count over More/Less | Mult. entity type (Ellipsis) U: How many administrative territories have adopted lesser number of holidays and people as
patron saint than Santo Stefano al Mare?
S: 296
U: And what about San Donato Milanese?

Count over More/Less | Mult. entity type (Coreference) U: Which administrative territories are Luigi Einaudi the head of state of and have UTC+01:00
as their time zone?
S: Italy
U: How many administrative territories are the origins of greater number of literary works or
releases than that administrative territory?

Count over More/Less | Single entity type U: How many legislatures represent lesser number of states than East Bengal Legislative Assem-
bly?

Count over More/Less | Single entity type (Ellipsis) U: How many legislatures represent lesser number of states than East Bengal Legislative Assem-
bly?
U: 207
U: And how about Estates of Curaçao?

Count over More/Less | Single entity type (Coreference) U: Which french administrative division was Philippe Esnault born in?
S: Alençon
U: Which occupation has that person as his/her ’s career?
S: historian
U: Which administrative territory is the native country of that person?
S: France
U: How many administrative territories inspired less number of fictional locations than that ad-
ministrative territory?
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COUNTLOGIC
S

E
E

N

Union | Single Relation

Which people are the creators of The Theory of

Everything or Ten Minutes to Live?

SELECT ?x WHERE {
{wd : Q15079318 wdt : P162 ?x . ?x wdt : P31 wd : Q502895 . }
UNION
{wd : Q7699260 wdt : P162 ?x . ?x wdt : P31 wd : Q502895 . } }

Count | Single entity type

How many people starred in Captain America:

Civil War?

SELECT (COUNT( * ) AS ?count ) WHERE {
wd : Q18407657 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . }

U
N

S
E

E
N Count | Logical operators

How many national association football teams

or national sports teams represent Slovenia?

SELECT (COUNT ( DISTINCT ?x ) AS ?count ) WHERE {
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . }
UNION
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q1194951 . } }

P
R

E
D

SELECT (COUNT( DISTINCT ?x ) AS ?count ) WHERE {
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . }
UNION
{? x wdt : P1532 wd : Q215 . ?x wdt : P31 wd : Q6979593 . } }

UNIONMULTI

S
E

E
N

Union | Single Relation

Which people are the creators of The Theory of

Everything or Ten Minutes to Live?

SELECT ?x WHERE {
?x wdt : P915 wd : Q1247373 . ?x wdt : P31 wd : Q838948 . }

Count | Mult. entity type

How many people starred in Django Kill or Shat-

terday?

SELECT (COUNT( DISTINCT ?x ) AS ?count ) WHERE {
{wd : Q1261875 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . }
UNION
{wd : Q7490688 wdt : P161 ?x . ?x wdt : P31 wd : Q502895 . } }

U
N

S
E

E
N Union | Multiple Relation

Which administrative territories are the origin of

Les Chics Types or are the native countries of

Robert Kuraś?

SELECT ?x WHERE {
{wd : Q3231475 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . }
UNION
{wd : Q9310937 wdt : P27 ?x . ?x wdt : P31 wd : Q15617994 . } }

P
R

E
D

SELECT ?x WHERE {
{wd : Q3231475 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . }
UNION
{wd : Q9310937 wdt : P495 ?x . ?x wdt : P31 wd : Q15617994 . } }

VERIFIY3

S
E

E
N 2 entities, both direct

Is Zugspitze located in Germany?
ASK {wd : Q3375 wdt : P17 wd : Q183 . }

U
N

S
E

E
N 3 entities, all direct, 2 are query entities

Is Violet Oakley a civilian of United States of

America and Scheden?

ASK {wd :Q30 wdt : P27 wd : Q1226556 .
wd : Q557427 wdt : P27 wd : Q1226556 . }

P
R

E
D

ASK {wd:Q1226556 wdt:P27 wd:Q30 .
wd : Q557427 wdt : P27 wd : Q557427 . }

Table 10: Generalisation splits, unseen question subtypes, support question subtypes seen during training, and
example common errors on unseen predictions. 2522


