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Abstract

Large pre-trained language models such as
BERT have been widely used as a frame-
work for natural language understanding (NLU)
tasks. However, recent findings have revealed
that pre-trained language models are insensitive
to word order. The performance on NLU tasks
remains unchanged even after randomly per-
muting the word of a sentence, where crucial
syntactic information is destroyed. To help pre-
serve the importance of word order, we propose
a simple approach called FORCED INVALIDA-
TION (FI): forcing the model to identify per-
muted sequences as invalid samples. We per-
form an extensive evaluation of our approach
on various English NLU and QA based tasks
over BERT-based and attention-based mod-
els over word embeddings. Our experiments
demonstrate that FI significantly improves the
sensitivity of the models to word order.1

1 Introduction

Ordering of words in a sentence is an important
structural attribute for natural languages such as
English, where subject-verb-object (SVO) structure
is common and important to convey the meaning
of the sentence. Understanding and comprehend-
ing natural language without strict adherence to
a systematic ordering of words would make it an
extremely challenging task. Recent work has in-
vestigated a surprising lack of sensitivity to word
order information in state-of-the-art masked lan-
guage models.

Recent research has focused on the impact of
word order perturbation during the evaluation of
models trained on well-ordered data. The results
show that masked language models exhibit a catas-
trophic lack of sensitivity to word order permuta-
tions or shuffles, even for complex tasks in which
task-relevant syntactic properties are completely

1Our code and data for replication are available at https:
//github.com/halnegheimish/ForcedInvalidation

destroyed (Pham et al., 2020; Al-Negheimish et al.,
2021; Sinha et al., 2021b; Gupta et al., 2021).
These studies show that models are still predicting
the gold label for examples even after sequences
have been permuted, and they also do so with high
confidence (Sinha et al., 2021b; Gupta et al., 2021).
This anomalous behaviour can potentially result in
undesirable shortcuts or can cause models to fail
catastrophically in simple adversarial settings. Fur-
thermore, Sinha et al. (2021a) study the effect of
pre-training masked language models on shuffled
data, and suggest that the model might simply be
capturing higher-order word co-occurrence statis-
tics, rather than uncovering sophisticated semantic
and syntactic structures necessary for language un-
derstanding.

In this paper, we present a simple, yet general ap-
proach called FORCED INVALIDATION (FI), where
we force models to explicitly identify sequence per-
mutations (§3). While our proposal is extensible
to multiple types of models, here we present a con-
trolled study over masked language model-based
BERT models, and attention-based models over
word-embeddings (§4). We present a large battery
of experiments over a variety of natural language
understanding tasks in the English language, in-
cluding complex question answering based tasks,
natural language inference based tasks and com-
monsense reasoning based tasks. Results show that
our proposal significantly improves the sensitivity
of the models to word-order information (§5).

2 Related Work

Recent work has proposed a few mitigation strate-
gies for classification-type tasks: Pham et al. (2020)
proposes improving word-order sensitivity by in-
cluding a precursor fine-tuning step on synthetic
CoLA-like tasks before finetuning for downstream
tasks. While this improves their defined word order
sensitivity score, accuracy on permuted samples
remains significantly above chance, making this
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approach unreliable. Gupta et al. (2021) present
three approaches: one based on entropy regulari-
sation, another on model probabilities threshold-
ing, and finally an approach based on augment-
ing additional data consisting of destructive trans-
formations, which include 1-gram permutations.
The model is modified with an additional class to
identify these destructive transformations. While
the first two approaches require changes to model
setup, the last one is based on a set of manual
heuristics. Our approach has some similarity with
the latter, however, our permutations are based on
the principals borrowed from the n-gram language
modelling literature (Roark et al., 2007), where
the n-grams capture sufficient first-order statistics
of the language. Our approach significantly re-
duces the models’ reliance only on simple first-
order statistics of language, and our empirical ob-
servations demonstrate the generalisability of our
approach to various settings.

3 Methodology: FORCED INVALIDATION

Our method is grounded on recent observations
which show that masked language models and other
similar models tend to exploit shortcuts based on
information about distributional word vicinity infor-
mation for a diverse set of natural language process-
ing tasks (Al-Negheimish et al., 2021; Sinha et al.,
2021a). These shortcuts tend to make the models
less sensitive to word-order information even for
tasks that require the preservation of word order-
ing for accurate recovery of meaning (Sinha et al.,
2021b). Al-Negheimish et al. (2021), in particular,
show the insensitivity on a variety of n-gram based
permutations of samples, where the authors specifi-
cally experiment with {1,2,3}-gram permutations.
Further, {1,2,3}-gram based permutations capture
a variety of word vicinity based patterns and also
capture some of the most frequently occurring uni-
gram, bigram and trigram patterns in a variety of
benchmark datasets. Based on these salient ob-
servations, for each given dataset, the FORCED

INVALIDATION (FI) methodology consists of the
following two steps:

1. Augmenting training data with {1,2,3}-gram
permutation samples (sampled from trainset)
labelled with invalid as the additional label.

2. Modifying models to account for the new la-
bel and training them in the standard setting
with a combination of standard training exam-
ples and the augmented invalid samples.

We observe that this simple FI approach im-
proves the sensitivity of the model to word order
and also improves the robustness of the models
across a variety of tasks to first-order shortcuts.
In the following sections, we present a rigorous
experimental study that showcases the utility of FI.

4 Experimental settings

Data To generate n-gram permutations, we sim-
ply subsample from the training dataset, such that
the ratio to the valid samples (samples with correct
word order and the task-specific label) and invalid
samples (samples with permuted n-grams and the
invalid label) is 1-1. The invalid samples are gener-
ated such that they contain a uniform distribution
of {1,2,3}-gram permutations.2 Furthermore, we
split the training set such that we use 90% of the
samples for training the models and the remaining
10% is used as a development set. The develop-
ment set is used to monitor training and perform
early-stopping. Evaluations are done on a separate
unseen task-specific validation set provided by the
dataset creators.

We perform two evaluations: well-ordered and
permuted. The first one is the standard evaluation
of the model over the original unperturbed task-
specific unseen validation set. For our experimental
evaluations over permutations, we retain the origi-
nal label of the same unseen validation set, but we
permute the specific components of samples (e.g.,
premise or the hypothesis, question or the passage,
etc.); we expect the models to reject the permuted
sample instead of predicting the same ground-truth
label. This setup allows us to evaluate the sensi-
tivity of the model to word-order permutations of
various degrees over the different components of
the data.

Models We predominantly experiment with
BERT-based models that either use BERT represen-
tations as the contextualised embeddings or classi-
fiers that are directly trained with BERT. We also
experiment with an additional simpler model that
largely exploits attention over word-embeddings.3

We will expand on the specific models for each of
the tasks in the following section. Results for FI are

2Input string is divided to n-grams (based on white-space),
and permuted, preserving the final punctuation. The only
condition is that it varies from the original string, which is a
weaker constraint than previous studies that require that no
n-gram stays in its original position.

3Details about training parameters can be found in the
appendix A
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Figure 1: Accuracy using exact match (EM) on the DROP QA dataset, (a) NAQANet, (b) MTMSN Base, and (c) MTMSN Large.
dev, numset and contrast sets are unperturbed well-ordered datasets, while the other bars show {1,2,3}-gram permutations on
numset. FI models exhibit clear sensitivity to word order, as they no longer predict the original answer in most perturbed cases.
FI accuracy is averaged over training with 3-random seeds, and the standard deviation is shown over the yellow bars. FI-models
are confident in identifying invalid samples.

reported over the averages and standard deviation
of models trained with three random seeds.

5 Results and Observations

5.1 Unconstrained Question Answering

DROP (Dua et al., 2019) is a reading-
comprehension dataset with unconstrained
answers. It comprises questions that require
reasoning over the content of different paragraphs.
Even though this is designed to be a challenging
task, Al-Negheimish et al. (2021) show that for
most models, permuting questions had little impact
on the model’s ability to predict the correct answer
for numerical reasoning questions. This was found
specifically problematic as the task consists of
complex questions, and permutations render the
questions syntactically and semantically redundant.
We apply FI for two module-based models
designed specifically for this task, NAQANet
(Dua et al., 2019), an attention-based model
with GloVe-based embeddings (Pennington et al.,
2014), which is the original model proposed by
the authors of the dataset; and MTMSN (Hu
et al., 2019), which is based on BERT-based
(Devlin et al., 2019) contextual representations.
These models have separate modules targeting
different kinds of reasoning, e.g. a module for
counting and a module for arithmetic expressions.
We augment these with an additional module to
force invalidation over invalid permuted samples,
a two-way classification module that learns to
distinguish between permuting either the question
or passage. FI models should now choose the
invalid type for permuted samples, instead of
giving the same answer as well-ordered samples.
Fig 1 shows a comparison of the Exact Match
accuracy of NAQANet and MTMSN, between
original and FI models. We observe that question

Part 1 Part 2
Variation dev 3-gram 2-gram 1-gram 3-gram 2-gram 1-gram

U
Q

A

NAQANet 3.15 94.64 97.18 99.59 99.01 99.93 100.00
MTMSN Base 0.19 97.14 98.99 99.91 99.80 99.99 100.00
MTMSN Large 0.07 95.01 97.52 98.98 99.43 100.00 100.00

N
L

I

RTE 0.36 94.57 98.19 99.64 96.01 96.74 98.55
MNLI_M 1.36 94.52 97.60 99.21 94.83 97.35 99.45
MNLI_MM 1.25 96.20 98.17 99.49 94.47 97.43 99.51
ANLI1 0.70 99.80 100.00 100.00 95.20 98.10 99.69
ANLI2 0.50 99.90 100.00 100.00 93.89 98.50 99.10
ANLI3 1.33 99.83 99.92 100.00 94.83 97.33 98.67

G
A CoLA 2.30 92.66 92.35 97.93 - - -

Table 1: Percentage of evaluation data predicted as invalid in
FI models in all of the tasks. dev is the unperturbed validation
set. {n}-gram permutations of part 1 correspond to permuta-
tions of the question in UQA and of the premise in NLI. CoLA
is made up of single sentences. All models succeed at flagging
these samples as invalid.

permutations have little effect on the original
model, as previously noted in (Al-Negheimish
et al., 2021). Interestingly, passage permuta-
tions can drastically reduce performance by a
third. While performance degrades for passage
permutations, it remains unacceptably high, as
we note that DROP is an unconstrained-QA
task, so the space of possible answers is large.
FI, on the other hand, succeeds in making the
model sensitive to almost all permutations. We
see that this generalises across BERTBASE and
BERTLARGE. More importantly, we observe that
while the model with FI is sensitive to word
order (no longer predicting original answers for
permuted examples), the model’s performance
on well-ordered data is largely retained. To
demonstrate that FI are correctly predicting invalid,
table 1 shows the percentage of the data predicted
as invalid, which is near-perfect for permuted
samples.

5.2 Grammatical Acceptability
CoLA (Wang et al., 2018) is a task that measures
models’ ability to determine the grammatical ac-
ceptability of sentences. Pham et al. (2020) show
that from the GLUE benchmark (Wang et al., 2018),
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Figure 2: Accuracy for NLI tasks (a) trained on RTE, (b-f) trained on MNLI data. Original models exhibit a lack of sensitivity
to word order, as they have the same accuracy regardless of the n-gram permutations. FI models are able to tell apart invalid
examples even in out-of-distribution ANLI data.
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Figure 3: Accuracy of original models and FI on CoLA gram-
matical acceptability task. While the original model is below
chance, we note that because this task is grammar-detection,
the original model should not accept any of the permuted sam-
ples.

this task requires models to be most sensitive to
word order. We applied FI by extending the BERT-
based classification model with another ‘invalid’
class label, to flag permuted sentences. Grammar
and syntax have been destroyed in permuted sen-
tences, we would expect the original model to label
them as not acceptable. However, we see in Fig 3
that it maintains significantly high accuracy for 3-
gram and 2-gram permutations (note that CoLA
is an imbalanced dataset (70% acceptable)). Con-
cretely, we observe that the standard BERT-based
model labels 185/967 3-gram permutations, and
114/967 2-gram permutations as acceptable. Our
FI approach significantly ameliorates this problem
by increasing the sensitivity of the model to word-
order permutations, as we observe in Fig 3.

5.3 Natural Language Inference (NLI)

NLI has been one of the important testbeds of pre-
vious work studying BERT-based models and their

lack of sensitivity to word-order information (Sinha
et al., 2021b; Abdou et al., 2022). These studies
suggest that BERT-based models almost always as-
sign the same labels to examples with perturbed
word order as well-ordered ones highlighting the
lack of sensitivity to word order, and likely de-
pendence on shallow features. Similarly to §5.2,
applying FI to an NLI BERT model was done by
simply extending it with another class to represent
invalid input. We perform a battery of experiments
over a variety of NLI tasks in GLUE (Wang et al.,
2018) such as RTE and MNLI (Williams et al.,
2018) tasks. FI makes models highly sensitive
to permuted sequences, as shown in Fig. 2. We
verify in table 1 that those invalid sentences were
correctly flagged as invalid. We also observe that
FI-based models trained on MNLI and tested on
out-of-distribution ANLI (Nie et al., 2020) show ex-
treme sensitivity to word-order perturbations; this
shows that the model has learned to flag invalid
input and generalise to similar unseen tasks. Ad-
ditionally, we observe that FI makes the models
less likely to suffer from shortcut effects, which are
common in models trained for NLI tasks (McCoy
et al., 2019). Further experiments on Arabic NLI
are presented in Appendix D, where we demon-
strate that FI works well for other languages be-
yond English.

Heuristic Analysis
McCoy et al. (2019) introduces an evaluation
set Heuristic Analysis for NLI Systems (HANS),
that examines surface heuristics NLI models are
prone to adopting. They show in the existence
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Lexical
Overlap

Subsequence Constituent

Original Entailment 97.76 99.92 100.00
Non-Entailment 14.74 0.58 2.66

FI Entailment 80.94 99.56 99.60
Non-Entailment 64.56 38.14 11.48

Table 2: Comparison of BERT finetuned on MNLI with and
without FI, FI makes the model more robust to the syntactic
heuristics presented in (McCoy et al., 2019)
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Figure 4: Accuracy of original models and FI on SWAG
multiple-choice commonsense reasoning task, both are pre-
sented with the same four answer choices, FI enforces sensi-
tivity to word order, especially on the endings.

of these heuristics, models always predict entail-
ment, as they have near-perfect accuracy for that
label, but perform poorly when the actual label
is non-entailment (accuracy close to 0% in most
cases). The heuristics targeted by this dataset are
special cases of each other: the most general, lex-
ical overlap heuristic: assume that all hypothe-
ses constructed from words in the premise are en-
tailed. Next follows is the subsequence heuristic:
assume all hypotheses made up of contiguous sub-
sequences of the premise are entailed. Finally, the
constituent heuristic: assume all hypotheses made
up of complete subtrees of the premise’s parse tree
are entailed. We expect that FI-models will be
more robust to these shortcuts, and find (table 2)
that this is indeed the case for lexical-overlap and
the more challenging subsequence heuristics, sub-
stantially improving non-entailment performance,
indicating that the models are no longer strictly
biased with the presence of these heuristics. We
note a surprising result of a drop in accuracy for
entailed lexical overlap samples, which could be
caused by the model no longer taking that short-
cut, and warrants additional investigation in future
work.

5.4 Multiple Choice Commonsense Reasoning
SWAG (Zellers et al., 2018) is a commonsense
and grounded reasoning task that requires choos-
ing between different possible ending scenarios
given some context, where the context comprises

of a primary sentence followed by the initial set
of words for the following sentence. The model is
trained to predict the most likely ending scenario
given context and a list of four ending scenarios.
To train our FORCED INVALIDATION model, we
add an additional answer choice ‘is invalid.’
to the data and perform n-gram based permutation
of the primary sentence or over each of the endings.
Nothing is changed in the architecture of the model.
For evaluation, we maintain the same datasets for
the Original and FI models, so they only con-
tain the same number of answer choices, without
the ‘invalid’ choice. Ideally, the models should
achieve random performance in the permuted cases.
We present our results in Fig. 4; where firstly we
observe that FI does not seem to reliably affect
the model’s sensitivity to word order perturbations
with all the combinations. We specifically observe
that n-gram permutations of primary sentence have
little impact on the performance of FI-models and
they seem to be less sensitive to word-order per-
turbations than expected. However, n-gram per-
mutations of endings result in FI-models obtaining
near-random performance as expected. We investi-
gated the cause of this anomaly and observed that
SWAG dataset has a prominent problem, in that,
the primary sentence for a majority of cases is al-
most irrelevant to the model. A model trained on
SWAG dataset is able to predict the correct answer
for 60% of the examples without having access to
the primary sentence.

6 Conclusion

In this paper, we presented a simple yet general
technique called FORCED INVALIDATION, that sig-
nificantly improves the sensitivity of models to-
wards word order information. Our methodology
requires minimal changes to the model and is sam-
ple efficient and drastically increases the sensitivity
of the models to permutations of word order for
a variety of tasks. We present a focused empir-
ical validation of our methodology to showcase
its generalisability. While in this paper we have
focused on masked language models and attention-
based models over word embeddings, we expect
FI to generalise for other modelling setups such as
RNN-based and CNN-based models and leave it
as future work. We anticipate that this approach
will also serve as a solution for other undesired
behaviors in the model by explicitly invalidating
such behaviours. We leave this as future work.
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Limitations

While our empirical results showcase the effective-
ness of FI and increase models’ sensitivity to word
order, the causal mechanisms are not currently ob-
vious. It is not clear whether or not positional
encodings are reflecting this change. Like previous
work, our observations are additionally only re-
stricted currently to English and Arabic (appendix
D), further experiments are required to establish
the problems relating to word order sensitivity and
the utility of FI for other languages.
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A Training Details

We use BERTBASE models with a classification head
on top (BERTForSequenceClassification (Wolf
et al., 2020)) for NLI and CoLA. It was trained for
5 epochs, batch size 16, learning rate 2e-5. We use
a BERTBASE model (Wolf et al., 2020), for SWAG.
It was trained for 3 epochs, batch size 16, learning
rate 5e-5. All of the above are done using google
colab with high-ram. MTMSN is based on the pub-
lished codebase (Hu et al., 2019), and we use the
same parameters to train, namely: BERTbase: batch
size 24, 5 epochs and learning rate 3e-5, BERTlarge:

batch size 12, 10 epochs and learning rate 3e-5.
Training was done on four RTX6000 GPUs with
24GB of RAM each for BERTLARGE, and a single
one was used for BERTBASE. Models are trained
for both settings, original and FI, to provide a fair
comparison.

B Dataset Statistics

As described before, we filter out examples with
sentences containing less than three words, such
that we can generate at least 1 3-gram shuffle. Ta-
ble 3 describes the tasks’ validation sets before and
after filtration.

Original Used p1 #words p2 #words

DROP numset 6848 6848 11 182
RTE 277 276 31 8
MNLI 9815 9289 16 9
MNLI-mm 9832 9551 17 10
ANLI1 1000 999 54 10
ANLI2 1000 999 54 9
ANLI3 1200 1199 52 9
CoLA 1043 967 7 -
SWAG 20006 19352 11 8

Table 3: Statistics of the validation set of datasets used for
evaluation, including the original number of examples, after
filtration, and median number of words for the first and second
components.

Dataset licenses are mentioned in table 4:

License

DROP numset CC BY 4.0
RTE Unknown
MNLI OANC
MNLI-mm OANC
ANLI1 CC BY-NC 4.0
ANLI2 CC BY-NC 4.0
ANLI3 CC BY-NC 4.0
CoLA Unknown
SWAG MIT license

Table 4: Artifact licenses for the datasets used.

C FI as a precursor to downstream task
finetuning

Inspired by (Pham et al., 2020), we first perform FI
on BERT to solely categorise valid and invalid sam-
ples for sentences that are sampled from Wikipedia.
We replace the standard BERT-based contextual
representations in MTMSN with FI-BERT based
contextual embeddings, to see if it helps it become
more sensitive to word order in the downstream
DROP task. This did not show an improvement,
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Figure 5: Accuracy of original models and FI on an Arabic
NLI task. Once more, we see that the original models are
insensitive to word order even in Arabic, while FI models
learn to flag invalid samples.

however, where permuted examples are still pre-
dicted the same as well-ordered ones. This indi-
cates that having an explicit way to flag invalid
examples is helpful to the models.

D FORCED INVALIDATION with Other
Languages

To establish the generalizability of this approach
to other languages, we applied FIon an Arabic
NLI task. We used the Arabic split of the XNLI
dataset (Conneau et al., 2018) to finetune the Ar-
BERT model (Abdul-Mageed et al., 2021), and
compare the original training setup with FORCED

INVALIDATION. Figure 5 shows that this approach
successfully preserves the importance of word or-
der beyond the English language.
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