
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2571–2584
May 2-6, 2023 ©2023 Association for Computational Linguistics

How Many and Which Training Points Would Need to be Removed
to Flip this Prediction?

Jinghan Yang
The University of Hong Kong
and Northeastern University

eciel@connect.hku.hk

Sarthak Jain
AWS AI Labs∗

jsarth@amazon.com

Byron C. Wallace
Northeastern University

b.wallace@northeastern.edu

Abstract
We consider the problem of identifying a mini-
mal subset of training data St such that if the in-
stances comprising St had been removed prior
to training, the categorization of a given test
point xt would have been different. Identifying
such a set may be of interest for a few rea-
sons. First, the cardinality of St provides a
measure of robustness (if |St| is small for xt,
we might be less confident in the correspond-
ing prediction), which we show is correlated
with but complementary to predicted probabili-
ties. Second, interrogation of St may provide
a novel mechanism for contesting a particular
model prediction: If one can make the case
that the points in St are wrongly labeled or
irrelevant, this may argue for overturning the
associated prediction. Identifying St via brute-
force is intractable. We propose comparatively
fast approximation methods to find St based
on influence functions, and find that—for sim-
ple convex text classification models—these
approaches can often successfully identify rela-
tively small sets of training examples which, if
removed, would flip the prediction.1

1 Introduction

In this work we pose the following problem in the
context of binary classification: For a test point
xt, identify a minimum subset St of training data
that one would need to remove in order to flip the
prediction ŷt for xt. This subset may be of interest
for a few reasons. First, the cardinality k of St
captures one measure of the (in)fragility of the pre-
diction ŷt: Small k indicates that a minor change in
the training data would have resulted in a different
(discrete) prediction for xt. We later show that this
measure is correlated with, but complementary to,
predicted probabilities.

Perhaps a more interesting motivation for recov-
ering St is to provide a potential mechanism for

∗Work done prior to joining Amazon.
1Code and data to reproduce all experiments available at:

https://github.com/ecielyang/Smallest_set

contesting model predictions (Hirsch et al., 2017;
Vaccaro et al., 2019), i.e., to enable individuals to
interrogate and dispute automatic determinations
that affect them. If removing a small set of training
points would have yielded a different prediction,
and if one could make the case for excluding these
points (e.g., because they seem mislabeled, or re-
flect systematic labeling biases), this might provide
a compelling case to overturn a model prediction.
Consider an educator using an automated essay
grading system.2 Assume the system has output a
comparatively poor grade for a student, a determi-
nation they see as unfair. Contesting the inclusion
of a small set of examples (St) which, if excluded,
would have resulted in a higher grade provides a
novel mechanism for disputation.

Naïvely attempting to find St by brute enumera-
tion and re-training would be hopelessly inefficient.
We introduce an algorithm for finding such sets ef-
ficiently using influence functions (Koh and Liang,
2017) which allow us to approximate changes in
predictions expected as a result of removing sub-
sets of training data (Koh et al., 2019). We then
provide an iterative variant of this method which
does a better job of identifying sets St.

Across different datasets and models, we find
that we are often able to recover subsets St with
relatively small cardinality k; i.e., one can often
identify a small to medium subset of training data
which, if removed, would flip a given prediction.
We also find that there are many test points for
which models make predictions with high confi-
dence but where k is small.

The contributions here include an investigation
of the task of identifying minimal training sets to
flip particular predictions in the context of text clas-
sification, algorithms for this problem, and an em-
pirical evaluation of their performance in the con-

2We put aside the question of whether using automated
approaches in this particular setting is appropriate to begin
with (likely not, though this may depend on how it is used).

2571

https://github.com/ecielyang/Smallest_set

text of binary text classification.3

2 Methods

Assume a binary text classification problem. Given
a training set Z tr = z1, ..., zN , where zi =
(xi, yi) ∈ X × Y , we aim to estimate the param-
eters θ of a classification model fθ : X → Y to
minimize the empirical risk, i.e., loss L over Z tr:
θ̂ := argminθ

1
N

∑N
i=1 L(zi, θ) + λ

2 θ
T θ, which we

will denote by R(θ). We assume throughout that
R is twice-differentiable and strongly convex in θ,
i.e., Hθ̂ := ∇2

θR(θ̂) := 1
N

∑N
i=1∇2

θL(zi, θ̂) + λI
exists and is positive definite. Suppose we re-
moved a subset of k training points S ⊂ Z tr and
re-estimated θ, yielding new parameters θ̂S . Let-
ting ε = − 1

N , we can write this as:

θ̂S = argminθ∈Θ{R(θ) + ε
∑

zi∈S
L(zi, θ)} (1)

In principle, one could remove the points in S
and re-train to find θ̂S . In practice this is infeasible
given the number of potential subsets S. Koh and
Liang (2017) provide (relatively) efficient approx-
imations to estimate θ̂S when k=1. Subsequent
work (Koh et al., 2019) found that this approxima-
tion correlates well with the actual empirical effects
of removing a set of points (where k > 1).

Finding influential subsets Given input xt, we
aim to design an approach to efficiently identify the
smallest subset St of Z tr such that removing these
examples prior to training would change ŷt. Prior
work (Cook and Weisberg, 1982; Koh and Liang,
2017) derived the influence exerted by a train point
i on the loss incurred for a test point t as:

−∇θL(zt, θ̂)⊺H−1

θ̂
∇θL(zi, θ̂)︸ ︷︷ ︸
∆iθ

(2)

Where ∆iθ is the influence of upweighting zi dur-
ing training on estimates θ̂ (Cook and Weisberg,
1982). We are interested, however, in identifying
points that have a particularly strong effect on a
specific observed prediction. We therefore modify
Equation 2 to estimate the influence on prediction
(IP), i.e., the change in predicted probability for xt

3Recent related work in economics by Broderick et al.
(2020) proposed and investigated a similar problem, with a
focus on identifying the sensitivity of econometric analyses
to removal of small subsets of data. Recent work on data-
modeling (Ilyas et al., 2022) also considered a variant of this
problem (see Section 5).

observed after removing training instance i. This
can be expressed as:

∆tfi := −∇θfθ̂(xt)
⊺∆iθ (3)

We then approximate the change in prediction on
instance t we would anticipate after removing the
training subset St from the training data as the sum
of the ∆tfi terms for all points xi ∈ St.

Algorithm 1 describes a method for constructing
St. We estimate the change in output expected
upon removing each instance from the training
dataset and assemble these in ∆tf . We then greed-
ily consider adding these differences (effectively
adding points to St) until the resultant output is
expected to cross the classification threshold (τ); if
we exhaust the training dataset without crossing τ ,
then we have failed to identify a set St.

Algorithm 1: A simple method to find a
minimal subset to flip a test prediction

Input: f : Model; Z tr: Full training set; θ̂:
Parameters estimated Z tr; L: Loss
function; xt: A test point; τ :
Classification threshold (e.g., 0.5)

Output: St: minimal train subset
identified to flip the prediction (∅
if unsuccessful)

1 H ← ∇2
θL(Z tr, θ̂)

2 ∆θ ← H−1∇θ̂L(Z tr, θ′)
3 ∆tf ← ∇θfθ̂(xt)

⊺∆θ
4 ŷt ← f(xt) > τ // Binary prediction
// Sort instances (and estimated

output differences) in order of
the current prediction

5 direction← {↑ if ŷt else ↓}
6 indices← argsort(∆tf, direction)
7 ∆tf ← sort(∆tf, direction)
8 for k = 1 ... |Z tr| do
9 ŷ′t = (f(xt) + sum(∆tf [: k])) > τ

10 if ŷ′t ̸= ŷt then
11 return Z tr[indices[: k]]

12 return ∅

Algorithm 1 is simple and relatively fast, but
we can improve upon it by iteratively identifying
smaller subsets St in Algorithm 2. We detail this
approach in Appendix Algorithm 2, but describe it
briefly as follows.

We start with the entire train set as a “candidate”
S̃t, and then iteratively attempt to find strict subsets

2572

Models Algorithm 1 Algorithm 2
Movie reviews

BoW 247 151
BERT 484 303

Essays
BoW 352 134
BERT 484 135

Emotion classification
BoW 500 345
BERT 524 327

Hate speech
BoW 808 415
BERT 546 239

Tweet sentiment
BoW 345 177
BERT 858 569

Table 1: The comparison of average on k = |St| values
from Algorithm 1 and Algorithm 2 over the subsets of
test points xt for which we were able to successfully
identify a set of points |St|

of this that by themselves would flip the prediction
ŷt. On the first pass, this is equivalent to Algorithm
1, after which—if successful—we will have found
a candidate set S̃t. Here we update parameter esti-
mates θ to approximate “removing” the points in
S̃t, and then we recompute the approximation of
the influence that points in S̃t would have on ŷt
using a single-step Newton approximation. The
idea is that after the parameter update this approxi-
mation will be more accurate, potentially allowing
us to find a smaller St. This process continues until
we are unable to find a new (smaller) subset.

In sum, this variant of the algorithm attempts
to iteratively identify increasingly small subsets
S̃t which would, upon removal prior to training,
overturn the original prediction ŷt. There is a com-
putational cost to this, because each iteration in-
volves approximating the influence on a particular
prediction; this is computationally expensive. This
variant therefore trades run-time for (hopefully)
more accurate identification of minimal St. How-
ever, we find that empirically Algorithm 2 ends up
running for only 2.3 passes on average (across all
experiments). That is, the algorithm adds a scalar
to the run-time of Algorithm 1, but often yields
considerably smaller St. We show the comparison
of |St| returned by two algorithms in the Table 1.

3 Experimental Setup

Datasets We use five binary text classification
tasks: Movie review sentiment (Socher et al.,
2013); Twitter sentiment classification (Go et al.,
2009); Essay grading (Foundation, 2010); Emo-
tion classification (Saravia et al., 2018), and; Hate

Features Found St Flip successful
Movie reviews

BoW 78% 78%
BERT 79% 72%

Essays
BoW 12% 11%
BERT 9% 8%

Emotion classification
BoW 91% 91%
BERT 83% 71%

Hate speech
BoW 67% 60%
BERT 53% 44%

Tweet sentiment
BoW 99% 91%
BERT 90% 68%

Table 2: Percentages of test examples for which Al-
gorithm 2 successfully identified a set St to remove
(center) and for which upon removing these instances
and retraining the prediction indeed flipped (right).

speech detection (de Gibert et al., 2018). We bina-
rize the essay data by labeling the top 10% score
points as 1 (“A”s) and others as 0. For the emo-
tion dataset, we include only “joy” and “sadness”.
We provide dataset statistics in Appendix Table
A1. Because the hate speech data is severely im-
balanced, we selected a classification threshold τ
post-hoc in this case to maximize train set F1 (yield-
ing τ = 0.25); for other datasets we used τ = 0.5,
which corresponded to reasonable F1 scores—for
reference we report prediction performance on all
datasets in Appendix Table A2.

Models We consider only ℓ2 regularized logis-
tic regression (for which influence approximation
is well-behaved). As features, we consider both
bag-of-words and neural embeddings (induced via
BERT; Devlin et al. 2018).

4 Results

Here we present results for the iterative method
(Appendix Algorithm 2), which outperforms the
simpler Algorithm 1. We provide full results for
both methods in the in the Appendix.

How often can we find St and how frequently
does removing the instances it contains flip the
prediction? As can be seen in Table 2, this varies
considerably across datasets. For movie reviews,
Algorithm 2 returns a set St for ∼80% of test
points, whereas for the (more complex) essays
data it does so for only ∼10% of instances. Other
datasets see success somewhere in-between these
extremes. However, when the algorithm does re-
turn a set St, removing this and re-training almost

2573

0

10

20

30

40

50

60

S
S

T
(m

ov
ie

s)

median: 67

678/872

BoW

median: 162

688/872

BERT

200 400 600 800 1000 1200
k

0

10

20

30

40

50

60

E
ss

ay
s

median: 95

150/1298

200 400 600 800 1000 1200
k

median: 96

114/1298

(a) Histograms of k = |St| values over the subsets of test
points xt for which we were able to successfully identify a set
of points St such that removing them would flip the prediction
for ŷt. We report the fraction for which we were able to do so
in the lower sub-plot right corners.

0.0

0.1

0.2

0.3

0.4

0.5

S
S

T
(m

ov
ie

s)
|0

.5
p

(y
=

1)
|

Moderate-high confidence
but small k

678/872

BoW

688/872

BERT

0 250 500 750 1000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
ss

ay
s

|0
.5

p
(y

=
1)

|

150/1298

0 250 500 750 1000
k

114/1298

(b) Relationship between predicted probabilities and k = |St|
identified. These are correlated (as we would expect), but there
are many points for which the model is moderately or highly
confident, but where removing a relatively small set of training
data would change the prediction.

Figure 1: Results characterizing St on two illustrative datasets (sentiment classification and essay scoring).

always flips the prediction ŷt (right-most column).

What is the distribution of k = |St|? Figure
1a shows empirical distributions of k values for
subsets St identified by Algorithm 2 for the illustra-
tive movie review and essay grading datasets (full
results in Appendix). The take-away here is that
when we do find St, its cardinality is often quite
small. Indeed, for many test points removing tens
of examples would have flipped the prediction.

How does k relate to predicted probability?
Does the size of St tell us anything beyond what we
might infer from the predicted probability p(yt =
1)? In Figure 1b we show (again for just two
datasets here) a scatter of k = |St| against the
distance of the predicted probability from 0.5. The
former provides complementary information, in
that there exist instances about which the model
is confident, but where removing a small set of
training instances would overturn the prediction.

Qualitative example. One reason to recover sets
St is to support contestation—if k is small, one
might argue against the appropriateness of the
points in St and hence against the determination yt.
As a simple example,4 consider the movie review
test instance “Manages to transcend the sex drugs
and show tunes plot into something far richer”.
The true label is positive, but the model predicted
negative. Algorithm 2 reveals that removing a sin-
gle example (k = 1) from the training set would

4We provide more qualitative analysis in the Appendix.

have reversed the prediction—specifically, this neg-
ative review: “An overstylized pureed melange of
sex psychology drugs and philosophy”. It seems
this training point is only superficially similar to the
test point, which may make a case for overturning
the prediction. While standard influence functions
(Koh and Liang, 2017) can be used to rank training
points, the novelty here is observing that removing
this point alone would change the prediction.

5 Related Work

Influence functions (Hampel, 1974; Cook and
Weisberg, 1980, 1982) provide machinery to iden-
tify training points that most informed a particular
test prediction. Influence can provide insight into
predictions made by modern neural networks (Koh
and Liang, 2017), and can be used to debug models
and training data by surfacing mislabeled training
points and/or reliance on artifacts (Adebayo et al.,
2020; Han et al., 2020; Pezeshkpour et al., 2022;
Teso et al., 2021), and tuning influence can be used
to demote reliance on unwanted correlations (Han
and Tsvetkov, 2021). Influence can also be used to
audit models by inspecting training data responsi-
ble for predictions Marx et al. (2019).

Schulam and Saria (2019) audit individual pre-
dictions by approximating how much they might
have changed under different samples from the
training distribution. Ting and Brochu (2018) con-
sider influence functions as a tool for optimally
subsampling data in service of computational effi-

2574

ciency. Koh et al. (2019) considered approximating
the effect of removing a group of training points
using influence functions, and found that they do
so fairly well (a result that we use). They assumed
groups were given and then evaluated the accuracy
of the influence approximation to the change in
prediction. By contrast, we are interested in finding
a (minimal) group which would have the specific
effect of flipping a prediction. Elsewhere, Khanna
et al. (2019) ask: “Which training examples are
most responsible for a given set of predictions?”.

Broderick et al. (2020) assess the robustness of
economic analyses when a fraction of data is re-
moved. They therefore focus on the magnitude/sig-
nificance of parameter estimates. This framing dif-
fers from our ML-centric motivation, which aims
to recover specific small subsets of data that, if re-
moved, would change a particular prediction (and
so might support contestability).

Robustness of data analyses to dropping train-
ing data In the process of review it was brought to
our attention that Broderick et al. (2020) addressed
a closely related problem to what we have consid-
ered here, albeit from a quite different motivating
perspective—namely assessing the sensitivity of
econometric analyses to removals of small subsets
of data. It turns out that the algorithm that was (in-
dependently) proposed by Broderick et al. (2020)
in that work is similar to Algorithm 1. The present
effort is novel in our focus on machine learning,
and specifically on identifying minimal subsets of
training data which would flip a particular predic-
tion if removed prior to training.

Minimal feature set removal Another related line
of work concerns a natural complement to the prob-
lem we have considered: Instead of identifying
a minimal set of instances to remove in order to
change a prediction, the idea is to find a minimal
subset of features such that, if these were set to
uninformative values, a particular prediction would
change (Harzli et al., 2022). Work on counterfac-
tual examples has similarly sought to identify mini-
mal (feature) edits to instances that would change
the associated label (Kaushik et al., 2019).

Datamodeling Recent work on datamodeling
(Ilyas et al., 2022) provided a generalized frame-
work for analyzing model behavior as a function
training data. This approach entails learning to
estimate (via a parameterized model) changes we
would anticipate observing for a particular instance

if the model had been trained on some subset of
the original training set. This approach is flexible,
and one thing it permits is identifying the data sup-
port of a particular prediction for xt, i.e., what we
have called St (4.1.1 in Ilyas et al. 2022). Further-
more, this method is not restricted to the simple
regularized linear models we have considered here.
However, this comes with the downside of high
computation costs: One needs to re-train the al-
gorithm being modeled many times with different
training data subsets to yield a “training set” to be
used to estimate model behavior under conterfac-
tual training sets. The main comparative advantage
of our more focused approach is therefore relative
computational efficiency.

Contestability (Vaccaro et al., 2019; Almada,
2019) in ML is the idea that individuals affected
by a prediction ought to be able to challenge this
determination, which may require parties to “mar-
shal evidence and create counter narratives that ar-
gue precisely why they disagree with a conclusion
drawn by an AI system” (Hirsch et al., 2017). The
right to contestability is in some cases enshrined
into law (Almada, 2019). Identifying St for review
by an individual affected by the prediction ŷt may
constitute a concrete mechanism for contestation.

6 Conclusions

In the context of binary text classification, we inves-
tigated the problem of identifying a minimal set of
training points St such that, if excluded from train-
ing, the prediction for test instance xt would flip.
We proposed two relatively efficient algorithms for
this—both using approximate group influence (Koh
and Liang, 2017; Koh et al., 2019)—and showed
that for regularized linear models they can often
find relatively small St. We provided empirical
evidence that this captures uncertainty in a way
that is somewhat complementary to predicted prob-
abilities, and may serve as a mechanism to support
contestability, by allowing individuals to review
(and dispute) instances in St.

Limitations

A key limitation of this work is that we have re-
stricted analysis to regularized linear models with
convex loss. We leave extension and evaluation of
the proposed methods for more complex models
to future work. Indeed, our hope is that this initial
effort inspires further work on the problem of iden-
tifying minimal train sets which would overturn a

2575

specific prediction if removed.
More conceptually, the implications of finding

a small subset St are not entirely clear. Intuitively,
small sets would seem to indicate fragility, but we
have not formalized or evaluated this further. More-
over, there may in certain cases exist multiple (dis-
tinct) subsets St, such that removing any of these
subsets would flip the prediction for xt. This would
complicate the process of contestation envisioned.
Furthermore, assuming a stochastic parameter esti-
mation method (e.g., SGD) the composition of St
may depend on the arbitrary random seed, similarly
complicating the interpretation of such sets.

Acknowledgements

We thank our anonymous EACL reviewers for help-
ful feedback, especially with respect to relevant
related work. We also thank Gautam Kamath for
highlighting connections to the datamodeling work
(Ilyas et al., 2022). This work was supported in part
by the Army Research Office (W911NF1810328),
and in part by the Overseas Research Fellowship
under the University of Hong Kong.

Ethics Statement

Models are increasingly used to make (or aid) deci-
sions that directly affect individuals. In addition to
the broader (potential) “interpretability” afforded
by recovering small sets of training data that would
change a prediction if removed, this may provide
a new mechanism for individuals to contest such
automated decisions, specifically by disputing this
set of training data in some way. However, our pro-
posed method only finds training points that highly
impact the model prediction for a given example;
these may or may not be noisy or problematic in-
stances. Human judgement is required to assess the
accuracy and relevancy of the instances in St.

A broader view might be that classification mod-
els are simply not appropriate for the kinds of sen-
sitive applications we have used as motivation here.
The use of (semi-)automated methods for essay
grading, e.g., has long been debated (Hearst, 2000).
One might argue that rather than trying to provide
mechanisms to contest ML predictions, a better
choice may be not to use models in cases where
these would be necessary at all. We are sympathetic
to this view, but view the “appropriateness” of ML
for a given problem as a spectrum; contestability
may be useful even in “lower stakes” cases. More-
over, the general problem we have introduced of

identifying small training sets which can by them-
selves swing predictions, and the corresponding
methods we have proposed for recovering these,
may be of intrinsic interest beyond contestability
(e.g., as an additional sort of model uncertainty).

References
Julius Adebayo, Michael Muelly, Ilaria Liccardi, and

Been Kim. 2020. Debugging tests for model expla-
nations. arXiv preprint arXiv:2011.05429.

Marco Almada. 2019. Human intervention in automated
decision-making: Toward the construction of con-
testable systems. In Proceedings of the Seventeenth
International Conference on Artificial Intelligence
and Law, pages 2–11.

Elnaz Barshan, Marc-Etienne Brunet, and
Gintare Karolina Dziugaite. 2020. Relatif:
Identifying explanatory training samples via relative
influence. In International Conference on Artificial
Intelligence and Statistics, pages 1899–1909. PMLR.

Tamara Broderick, Ryan Giordano, and Rachael Mea-
ger. 2020. An automatic finite-sample robustness
metric: When can dropping a little data make a big
difference? arXiv preprint arXiv:2011.14999.

Guillaume Charpiat, Nicolas Girard, Loris Felardos,
and Yuliya Tarabalka. 2019. Input similarity from
the neural network perspective. Advances in Neural
Information Processing Systems, 32.

R Dennis Cook and Sanford Weisberg. 1980. Char-
acterizations of an empirical influence function for
detecting influential cases in regression. Technomet-
rics, 22(4):495–508.

R Dennis Cook and Sanford Weisberg. 1982. Residuals
and influence in regression. New York: Chapman
and Hall.

Ona de Gibert, Naiara Perez, Aitor García-Pablos, and
Montse Cuadros. 2018. Hate Speech Dataset from
a White Supremacy Forum. In Proceedings of the
2nd Workshop on Abusive Language Online (ALW2),
pages 11–20, Brussels, Belgium. Association for
Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Hewlett Foundation. 2010. The hewlett foundation:
Automated essay scoring.

Alec Go, Richa Bhayani, and Lei Huang. 2009. Twit-
ter sentiment classification using distant supervision.
CS224N project report, Stanford, 1(12):2009.

Frank R Hampel. 1974. The influence curve and its
role in robust estimation. Journal of the american
statistical association, 69(346):383–393.

2576

https://doi.org/10.18653/v1/W18-5102
https://doi.org/10.18653/v1/W18-5102
https://doi.org/https://www.kaggle.com/competitions/asap-aes/overview
https://doi.org/https://www.kaggle.com/competitions/asap-aes/overview

Xiaochuang Han and Yulia Tsvetkov. 2021. Influence
tuning: Demoting spurious correlations via instance
attribution and instance-driven updates. In Findings
of the Association for Computational Linguistics:
EMNLP 2021, pages 4398–4409, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Xiaochuang Han, Byron C Wallace, and Yulia Tsvetkov.
2020. Explaining black box predictions and unveil-
ing data artifacts through influence functions. arXiv
preprint arXiv:2005.06676.

Ouns El Harzli, Bernardo Cuenca Grau, and Ian Hor-
rocks. 2022. Minimal explanations for neural net-
work predictions. arXiv preprint arXiv:2205.09901.

Marti A Hearst. 2000. The debate on automated essay
grading. IEEE Intelligent Systems and their Applica-
tions, 15(5):22–37.

Tad Hirsch, Kritzia Merced, Shrikanth Narayanan,
Zac E Imel, and David C Atkins. 2017. Design-
ing contestability: Interaction design, machine learn-
ing, and mental health. In Proceedings of the 2017
Conference on Designing Interactive Systems, pages
95–99.

Andrew Ilyas, Sung Min Park, Logan Engstrom, Guil-
laume Leclerc, and Aleksander Madry. 2022. Data-
models: Understanding predictions with data and
data with predictions. In Proceedings of the 39th
International Conference on Machine Learning, vol-
ume 162 of Proceedings of Machine Learning Re-
search, pages 9525–9587. PMLR.

Divyansh Kaushik, Eduard Hovy, and Zachary C Lipton.
2019. Learning the difference that makes a differ-
ence with counterfactually-augmented data. arXiv
preprint arXiv:1909.12434.

Rajiv Khanna, Been Kim, Joydeep Ghosh, and Sanmi
Koyejo. 2019. Interpreting black box predictions
using fisher kernels. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pages
3382–3390. PMLR.

Pang Wei Koh and Percy Liang. 2017. Understanding
black-box predictions via influence functions. In
International conference on machine learning, pages
1885–1894. PMLR.

Pang Wei W Koh, Kai-Siang Ang, Hubert Teo, and
Percy S Liang. 2019. On the accuracy of influence
functions for measuring group effects. Advances in
neural information processing systems, 32.

Charles Marx, Richard Phillips, Sorelle Friedler, Carlos
Scheidegger, and Suresh Venkatasubramanian. 2019.
Disentangling influence: Using disentangled repre-
sentations to audit model predictions. Advances in
Neural Information Processing Systems, 32.

Pouya Pezeshkpour, Sarthak Jain, Sameer Singh, and
Byron Wallace. 2022. Combining feature and in-
stance attribution to detect artifacts. In Findings of

the Association for Computational Linguistics: ACL
2022, pages 1934–1946, Dublin, Ireland. Association
for Computational Linguistics.

Elvis Saravia, Hsien-Chi Toby Liu, Yen-Hao Huang,
Junlin Wu, and Yi-Shin Chen. 2018. CARER: Con-
textualized affect representations for emotion recog-
nition. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3687–3697, Brussels, Belgium. Association
for Computational Linguistics.

Peter Schulam and Suchi Saria. 2019. Can you trust this
prediction? auditing pointwise reliability after learn-
ing. In The 22nd International Conference on Arti-
ficial Intelligence and Statistics, pages 1022–1031.
PMLR.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Stefano Teso, Andrea Bontempelli, Fausto Giunchiglia,
and Andrea Passerini. 2021. Interactive label clean-
ing with example-based explanations. Advances in
Neural Information Processing Systems, 34:12966–
12977.

Daniel Ting and Eric Brochu. 2018. Optimal subsam-
pling with influence functions. Advances in neural
information processing systems, 31.

Kristen Vaccaro, Karrie Karahalios, Deirdre K Mulligan,
Daniel Kluttz, and Tad Hirsch. 2019. Contestability
in algorithmic systems. In Conference Companion
Publication of the 2019 on Computer Supported Co-
operative Work and Social Computing, pages 523–
527.

2577

https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://doi.org/10.18653/v1/2021.findings-emnlp.374
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://proceedings.mlr.press/v162/ilyas22a.html
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/2022.findings-acl.153
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404
https://doi.org/10.18653/v1/D18-1404

Dataset # Train # Test % Pos
Movie reviews 6920 872 0.52
Essays 11678 1298 0.10
Emotion 9025 1003 0.53
Hate speech 9632 1071 0.11
Tweet sentiment 18000 1000 0.50

Table A1: Text classification dataset statistics.

Models Accuracy F1-score AUC
Movie reviews

BoW 0.79 0.80 0.88
BERT 0.82 0.83 0.91

Essays
BoW 0.97 0.80 0.99
BERT 0.97 0.84 0.99

Emotion classification
BoW 0.77 0.79 0.86
BERT 0.80 0.82 0.88

Hate speech
BoW 0.87 0.40 0.81
BERT 0.89 0.63 0.88

Tweet sentiment
BoW 0.70 0.70 0.75
BERT 0.75 0.76 0.84

Table A2: The model performance respect to datasets
included in the experiment.

A Appendix

A.1 Dataset Statistics and Predictive
Performance

We present basic statistics describing our text clas-
sification datasets in Table A1. For the tweet senti-
ment dataset, we randomly sampled 19000 points
from the 1600000 points to make experiments fea-
sible. For reference, we also report the predictive
performance realized by the models considered on
the test sets of these corpora in Table A2.

A.2 Full results

Table A3 reports the percentages of instances for
which Algorithm 1 identifies a subset St (center
column), and for which this set actually flipped
the prediction following removal (right column).
Contrast this with Table 2, which reports the same
for the proposed iterative approach in Algorithm 2.

We provide histograms of k = |St| for the sets
we were able to identify via Algorithm 1 in Figure
A.2, and the same plots for Algorithm 2 in Figure
A.4.

Finally, we plot the relationship between k and
predicted probabilities under Algorithms 1 and 2
in Figures A.3 and A.5, respectively.

Features Found St Flip successful
Movie reviews

BoW 78% 78%
BERT 79% 76%

Essays
BoW 12% 12%
BERT 9% 9%

Emotion classification
BoW 91% 91%
BERT 83% 78%

Hate speech
BoW 67% 65%
BERT 53% 49%

Tweet sentiment
BoW 99% 98%
BERT 90% 73%

Table A3: Percentages of test examples for which Algo-
rithm 1 successfully identified a set St (center) and for
which upon removing these instances and retraining the
prediction indeed flipped (right).

A.3 Additional qualitative analysis
We conclude with a brief qualitative analysis of
examples in St retrieved in the case of the essays
data. The model operating over BERT representa-
tions classified this test point (xt) as 0, i.e., not an
“A”: “The cyclist in this essay was a very brave man
...”. The example is about a paragraph in length
total, but details adventures of a cyclist. In this
case it happens that the reference label is, in fact,
an “A”, so the model is incorrect. Algorithm 2
reveals that removing a single training point and
retraining would have overturned this prediction,
yielding an “A”. The point in question is labeled 0
(so below an “A”) and is about the mood of a mem-
oir, in particular arguing that the person central to
this was happy. The student-author of the cyclist
essay might reasonably argue that this example is
not at all relevant to their essay, and the fact that
excluding this single example would have meant
their essay received an “A” may be an adequate
case for changing their grade accordingly.

A.4 Time complexity
We recorded wall clock times required to search
for |St| on all test points in each dataset using Al-
gorithm 1 and Algorithm 2 on Intel(R) Core(TM)
i9-9920X CPUs; we report these times in Table
A4. For Algorithm 1, the longest running time is
required for the essay dataset because most test
predictions cannot be flipped even after iterating
over all training points. Algorithm 2 is consider-
ably slower than Algorithm 1. The main reason
lies in recording the set of training points not in St
(line 20 in Algorithm 2) and re-calculating the IP

2578

value in each iteration to reduce the minimal candi-
date set. This additional time is traded off against
the ability to (typically) find smaller St compared
with 1. Overall, the running time required to find
|St| for one test point is relatively minimal for both
algorithms.

A.5 Attribution methods

We consider different methods (i.e., other than influ-
ence functions) to rank training instances including
gradient similarities in terms of the loss, similarity-
based methods and randomly sampling training
points. Of these we found that the proposed method
works best in terms of finding instances which exert
maximal influence on the prediction.

One natural way to quantify the impact of a
training point xi on a training point xt by simi-
larity methods. If the model has training points
similar to the test point, it may classify the test cor-
rectly with high probability. We consider three of
similarity-based methods: EUC = −||xt − xi||2,
DOT = ⟨xi, xt⟩, and COS = cos(xi, xt).

Apart from influence function and IP, we con-
sider gradient-based instance attribution methods:

1) RIF = cos(H− 1
2∇θL(xt), H− 1

2∇θL(xi))

2) GD = ⟨∇LL(xt),∇θLL⟩
3) GC = cos(∇θL(xt),∇θL(xi))
RIF was proposed to mitigate the issues of out-

liers and mislabeled points being returned by the
standard influence functions (Barshan et al., 2020).
GC and GD measure the similarity between two
instances can also become an effective way to in-
terpret the model from the instance perspective
(Charpiat et al., 2019). Apart from the methods
above, we randomly sample training subsets and
remove them accordingly.

We apply the above methods to the movie review
dataset trained with a logistic regression model.
We evaluate each attribution method as follows:
First, we remove the top k = |St| training points
from the training dataset according to the score
calculated from the attribution method. Then we
train a new with the same dataset except for the
removed points. Finally, we compare the difference
in predictions for each test point from the old model
to the new model. To show the impact of attribution
methods under different k = |St|, we iterated with
k = |St| from 50 to 3000. The mean absolute
difference is plotted along with k = |St| shown in
Figure A.1. IP has a larger impact on the predicted
probability, compared to removing training points

0 500 1000 1500 2000 2500 3000
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

on
 c

ha
ng

e
of

 p
ro

ba
bi

lit
y

EUC
DOT
CS
IF
RIF
GC
GD
IP
Random

Figure A.1: The relationship between the mean of ab-
solute difference on predicted probabilities for all test
points results from removing |St| training points, using
different methods.

ranked according to other methods.

2579

Datasets Movie reviews Essays Emotion Hate speech Tweet
Bow Algorithm 1 5 155 5 40 11

Algorithm 2 239 257 534 444 1529
BERT Algorithm 1 3 161 19 52 8

Algorithm 2 604 288 761 522 2203

Table A4: Running time (in seconds) to find |St| for all test points in each data set by Algorithm 1 and Algorithm 2.

Algorithm 2: An iterative approach to finding a minimal set to flip a prediction
Input: f : Model; Z tr: Full training set; θ̂: Parameters estimated Z tr; L: Loss function; xt: A test point; τ :

Classification threshold (e.g., 0.5)
Output: St: minimal train subset identified to flip prediction for xt (∅ if unsuccessful)

1 θ′ ← θ̂

2 Z tr
r , S̃t ← Z tr, Z tr // Track remaining points and candidate subset S̃t

3 H ← ∇2
θL(Z tr, θ′)

4 ∆θ ← H−1∇θL(Z tr, θ′)
5 ∆tf ← ∇θfθ̂(xt)

⊺∆θ
6 ŷt ← f(xt) > τ
7 ∆tfsum ← 0
8 k′ ← |Z tr|
9 while S̃ changed since last iteration do

// Sort instances (and estimated output differences) in order of the current prediction
10 direction← {↑ if ŷt else ↓}
11 indices← argsort(∆tf, direction)
12 ∆tf ← sort(∆tf, direction)

13 for k = 1 ... |S̃t| do
14 ŷ′

t ← (f(xt) + sum(∆tf [: k])) > τ
15 if ŷ′

t ̸= ŷt then
16 ∆tfsum ← sum(∆tf [: k])
17 diff← k′ − k
18 k′ ← k

19 S̃t ← S̃t[indices[: k]] // Update candidate subset

20 Z tr
r ← Z tr/S̃t // And the set of training points not in S̃t

21 θ′ ← θ +∆θ[indices[: k]]
// Update Hessian and ∇ of loss using updated θ estimate

22 H ← ∇2
θL(Z tr

r , θ
′)

23 ∆θ ← H−1∇θL(S̃t, θ′)
24 ∆tf ← ∇θfθ̂(xt)

⊺∆θ
25 break

26 if |S̃t| = |Ztr| then
27 return ∅
28 return S̃t

2580

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
S

T
(m

ov
ie

s)
P

er
ce

nt
median: 83

678/872

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
S

T
(m

ov
ie

s)
P

er
ce

nt

median: 199

688/872

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
ss

ay
s

P
er

ce
nt

median: 129

150/1298

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
ss

ay
s

P
er

ce
nt

median: 131

114/1298

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
m

ot
io

n
P

er
ce

nt

median: 216

916/1003

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
m

ot
io

n
P

er
ce

nt

median: 196

831/1003

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
pe

ec
h

P
er

ce
nt

median: 336

713/1071

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
pe

ec
h

P
er

ce
nt

median: 139

571/1071

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

Tw
ee

t
P

er
ce

nt

median: 288

904/1000

BERT

Figure A.2: Histograms of k = |St| values from Algorithm 1 over the subsets of test points xt for which we were
able to successfully identify a set of points St such that removing them would flip the prediction for ŷt.

2581

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

S
S

T
(m

ov
ie

s)
|0

.5
p

(y
=

1)
|

678/872

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

S
S

T
(m

ov
ie

s)
|0

.5
p

(y
=

1)
|

688/872

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
ss

ay
s

|0
.5

p
(y

=
1)

|

150/1298

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
ss

ay
s

|0
.5

p
(y

=
1)

|
114/1298

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
m

ot
io

n
|0

.5
p

(y
=

1)
|

916/1003

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
m

ot
io

n
|0

.5
p

(y
=

1)
|

831/1003

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ec
h

|0
.2

5
p

(y
=

1)
|

713/1071

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

S
pe

ec
h

|0
.2

5
p

(y
=

1)
|

571/1071

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

Tw
ee

t
|0

.5
p

(y
=

1)
|

904/1000

BERT

Figure A.3: Relationship between predicted probabilities and k = |St| identified from Algorithm 1.

2582

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
m

ot
io

n
P

er
ce

nt

median: 183

916/1003

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

E
m

ot
io

n
P

er
ce

nt

median: 157

831/1003

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
pe

ec
h

P
er

ce
nt

median: 246

713/1071

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

S
pe

ec
h

P
er

ce
nt

median: 117

571/1071

BERT

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

Tw
ee

t
P

er
ce

nt

median: 71

988/1000

BoW LR

500 1000 1500 2000 2500 3000 3500 4000
k

0

10

20

30

40

50

60

Tw
ee

t
P

er
ce

nt

median: 251

904/1000

BERT

Figure A.4: Histograms of k = |St| values from Algorithm 2 over the subsets of test points xt for which we were
able to successfully identify a set of points St such that removing them would flip the prediction for ŷt.

2583

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
m

ot
io

n
|0

.5
p

(y
=

1)
|

916/1003

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

E
m

ot
io

n
|0

.5
p

(y
=

1)
|

831/1003

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ec
h

|0
.2

5
p

(y
=

1)
|

713/1071

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

S
pe

ec
h

|0
.2

5
p

(y
=

1)
|

571/1071

BERT

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

Tw
ee

t
|0

.5
p

(y
=

1)
|

988/1000

BoW LR

0 500 1000 1500 2000 2500 3000 3500 4000
k

0.0

0.1

0.2

0.3

0.4

0.5

Tw
ee

t
|0

.5
p

(y
=

1)
|

904/1000

BERT

Figure A.5: Relationship between predicted probabilities and k = |St| identified from Algorithm 2.

2584

