How Many and Which Training Points Would Need to be Removed to Flip this Prediction?

Jinghan Yang
The University of Hong Kong
and Northeastern University
eciel@connect.hku.hk

Sarthak Jain
AWS AI Labs*
jsarth@amazon.com

Byron C. Wallace
Northeastern University
b.wallace@northeastern.edu

Abstract

We consider the problem of identifying a minimal subset of training data S_t such that if the instances comprising S_t had been removed prior to training, the categorization of a given test point x_t would have been different. Identifying such a set may be of interest for a few reasons. First, the cardinality of S_t provides a measure of robustness (if $|S_t|$ is small for x_t, we might be less confident in the corresponding prediction), which we show is correlated with but complementary to predicted probabilities. Second, interrogation of S_t may provide a novel mechanism for contesting a particular model prediction: If one can make the case that the points in S_t are wrongly labeled or irrelevant, this may argue for overturning the associated prediction. Identifying S_t via brute-force is intractable. We propose comparatively fast approximation methods to find S_t based on influence functions, and find that—for simple convex text classification models—these approaches can often successfully identify relatively small sets of training examples which, if removed, would flip the prediction.\footnote{Work done prior to joining Amazon.}

1 Introduction

In this work we pose the following problem in the context of binary classification: For a test point x_t, identify a minimum subset S_t of training data that one would need to remove in order to flip the prediction \hat{y}_t for x_t. This subset may be of interest for a few reasons. First, the cardinality k of S_t captures one measure of the (in)fragility of the prediction \hat{y}_t. Small k indicates that a minor change in the training data would have resulted in a different (discrete) prediction for x_t. We later show that this measure is correlated with, but complementary to, predicted probabilities.

Perhaps a more interesting motivation for recovering S_t is to provide a potential mechanism for contesting model predictions (Hirsch et al., 2017; Vaccaro et al., 2019), i.e., to enable individuals to interrogate and dispute automatic determinations that affect them. If removing a small set of training points would have yielded a different prediction, and if one could make the case for excluding these points (e.g., because they seem mislabeled, or reflect systematic labeling biases), this might provide a compelling case to overturn a model prediction. Consider an educator using an automated essay grading system.\footnote{Assume the system has output a comparatively poor grade for a student, a determination they see as unfair. Contesting the inclusion of a small set of examples (S_t) which, if excluded, would have resulted in a higher grade provides a novel mechanism for disputation.} Assume the system has output a comparatively poor grade for a student, a determination they see as unfair. Contesting the inclusion of a small set of examples (S_t) which, if excluded, would have resulted in a higher grade provides a novel mechanism for disputation.

Naïvely attempting to find S_t by brute enumeration and re-training would be hopelessly inefficient. We introduce an algorithm for finding such sets efficiently using influence functions (Koh and Liang, 2017) which allow us to approximate changes in predictions expected as a result of removing subsets of training data (Koh et al., 2019). We then provide an iterative variant of this method which does a better job of identifying sets S_t.

Across different datasets and models, we find that we are often able to recover subsets S_t with relatively small cardinality k; i.e., one can often identify a small to medium subset of training data which, if removed, would flip a given prediction. We also find that there are many test points for which models make predictions with high confidence but where k is small.

The contributions here include an investigation of the task of identifying minimal training sets to flip particular predictions in the context of text classification, algorithms for this problem, and an empirical evaluation of their performance in the con-
2 Methods

Assume a binary text classification problem. Given a training set \(Z^u = z_1, ..., z_N \), where \(z_i = (x_i, y_i) \in \mathcal{X} \times \mathcal{Y} \), we aim to estimate the parameters \(\theta \) of a classification model \(f_\theta : \mathcal{X} \rightarrow \mathcal{Y} \) to minimize the empirical risk, i.e., loss \(\mathcal{L} \) over \(Z^u \):

\[
\hat{\theta} := \arg\min_{\theta \in \Theta} \frac{1}{N} \sum_{i=1}^{N} \mathcal{L}(z_i, \theta) + \frac{1}{2}\lambda \|	heta\|^2,
\]

which we will denote by \(R(\theta) \). We assume throughout that \(R \) is twice-differentiable and strongly convex in \(\theta \), i.e., \(H_\theta := \nabla^2 R(\theta) := \frac{1}{N} \sum_{i=1}^{N} \nabla^2 \mathcal{L}(z_i, \theta) + \lambda I \) exists and is positive definite. Suppose we removed a subset of \(k \) training points \(S \subset Z^u \) and re-estimated \(\theta \), yielding new parameters \(\hat{\theta}_S \). Letting \(\varepsilon = -\frac{1}{N} \), we can write this as:

\[
\hat{\theta}_S = \arg\min_{\theta \in \Theta} \{ R(\theta) + \varepsilon \sum_{z_i \in S} \mathcal{L}(z_i, \theta) \}.
\]

Finding influential subsets

Given input \(x_t \), we aim to design an approach to efficiently identify the smallest subset \(S_t \) of \(Z^u \) such that removing these examples prior to training would change \(\hat{y}_t \). Prior work (Cook and Weisberg, 1982; Koh and Liang, 2017) derived the influence exerted by a train point \(i \) on the loss incurred for a test point \(t \) as:

\[
\Delta_i \hat{\theta} = -\nabla_{\theta} \mathcal{L}(z_t, \hat{\theta})^\top H_\theta^{-1} \nabla_{\theta} \mathcal{L}(z_i, \hat{\theta})
\]

Where \(\Delta_i \hat{\theta} \) is the influence of upweighting \(z_i \) during training on estimates \(\hat{\theta} \) (Cook and Weisberg, 1982). We are interested, however, in identifying points that have a particularly strong effect on a specific observed prediction. We therefore modify Equation 2 to estimate the influence on prediction (IP), i.e., the change in predicted probability for \(x_t \) observed after removing training instance \(i \). This can be expressed as:

\[
\Delta_t f_i := -\nabla_{\theta} f_\theta(x_t)^\top \Delta_i \hat{\theta}
\]

We then approximate the change in prediction on instance \(t \) we would anticipate after removing the training subset \(S_t \) from the training data as the sum of the \(\Delta_t f_i \) terms for all points \(z_i \in S_t \).

Algorithm 1 describes a method for constructing \(S_t \). We estimate the change in output expected upon removing each instance from the training dataset and assemble these in \(\Delta_t f \). We then greedily consider adding these differences (effectively adding points to \(S_t \)) until the resultant output is expected to cross the classification threshold (\(\tau \)); if we exhaust the training dataset without crossing \(\tau \), then we have failed to identify a set \(S_t \).

Algorithm 1: A simple method to find a minimal subset to flip a test prediction

1. \(H \leftarrow \nabla^2 \mathcal{L}(Z^u, \hat{\theta}) \)
2. \(\Delta \hat{\theta} \leftarrow H^{-1} \nabla \mathcal{L}(Z^u, \hat{\theta}') \)
3. \(\Delta_t f_i \leftarrow -\nabla_{\theta} f_\theta(x_t)^\top \Delta_i \hat{\theta} \)
4. \(\hat{y}_t \leftarrow f(x_t) > \tau \) // Binary prediction
 // Sort instances (and estimated output differences) in order of the current prediction
5. \(\text{direction} \leftarrow \{ \uparrow \text{if } \hat{y}_t \text{ else } \downarrow \} \)
6. \(\text{indices} \leftarrow \text{argsort}(\Delta_t f, \text{direction}) \)
7. \(\Delta_t f \leftarrow \text{sort}(\Delta_t f, \text{direction}) \)
8. \(\text{for } k = 1 \ldots |Z^u| \text{ do} \)
9. \[\hat{y}_t' = f(x_t) + \text{sum}(\Delta_t f[:k]) > \tau \]
10. \(\text{if } \hat{y}_t' \neq \hat{y}_t \text{ then} \)
11. \[\text{return } Z^u[\text{indices}[:k]] \]
12. \(\text{return } \emptyset \)

Algorithm 1 is simple and relatively fast, but we can improve upon it by iteratively identifying smaller subsets \(S_t \) in Algorithm 2. We detail this approach in Appendix Algorithm 2, but describe it briefly as follows.

We start with the entire train set as a “candidate” \(S_t \), and then iteratively attempt to find strict subsets.
Models Algorithm 1 Algorithm 2

<table>
<thead>
<tr>
<th></th>
<th>Movie reviews</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW</td>
<td>247</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>484</td>
<td>303</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>352</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>484</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emotion classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>500</td>
<td>345</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>524</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hate speech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>808</td>
<td>415</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>546</td>
<td>239</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tweet sentiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>345</td>
<td>177</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>858</td>
<td>569</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: The comparison of average on $k = |S_t|$ values from Algorithm 1 and Algorithm 2 over the subsets of test points x_t for which we were able to successfully identify a set of points $|S_t|$.

Features Found S_t Flip successful

<table>
<thead>
<tr>
<th></th>
<th>Movie reviews</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BoW</td>
<td>78%</td>
<td>78%</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>79%</td>
<td>72%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Essays</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>12%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>9%</td>
<td>8%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Emotion classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>91%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>83%</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hate speech</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>67%</td>
<td>60%</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>53%</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tweet sentiment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>99%</td>
<td>91%</td>
<td></td>
</tr>
<tr>
<td>BERT</td>
<td>90%</td>
<td>68%</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Percentages of test examples for which Algorithm 2 successfully identified a set S_t to remove (center) and for which upon removing these instances and retraining the prediction indeed flipped (right).

of this that by themselves would flip the prediction \hat{y}_t. On the first pass, this is equivalent to Algorithm 1, after which—if successful—we will have found a candidate set \bar{S}_t. Here we update parameter estimates θ to approximate “removing” the points in \bar{S}_t, and then we recompute the approximation of the influence that points in \bar{S}_t would have on \hat{y}_t using a single-step Newton approximation. The idea is that after the parameter update this approximation will be more accurate, potentially allowing us to find a smaller \bar{S}_t. This process continues until we are unable to find a new (smaller) subset.

In sum, this variant of the algorithm attempts to iteratively identify increasingly small subsets \bar{S}_t which would, upon removal prior to training, overturn the original prediction \hat{y}_t. There is a computational cost to this, because each iteration involves approximating the influence on a particular prediction; this is computationally expensive. This variant therefore trades run-time for (hopefully) more accurate identification of minimal \bar{S}_t. However, we find that empirically Algorithm 2 ends up running for only 2.3 passes on average (across all experiments). That is, the algorithm adds a scalar to the run-time of Algorithm 1, but often yields considerably smaller \bar{S}_t. We show the comparison of $|S_t|$ returned by two algorithms in the Table 1.

3 Experimental Setup

Datasets

We use five binary text classification tasks: Movie review sentiment (Socher et al., 2013); Twitter sentiment classification (Go et al., 2009); Essay grading (Foundation, 2010); Emotion classification (Saravia et al., 2018), and; Hate speech detection (de Gibert et al., 2018). We binaryize the essay data by labeling the top 10% score points as 1 (“A’s”) and others as 0. For the emotion dataset, we include only “joy” and “sadness”. We provide dataset statistics in Appendix Table A1. Because the hate speech data is severely imbalanced, we selected a classification threshold τ post-hoc in this case to maximize train set F1 (yielding $\tau = 0.25$); for other datasets we used $\tau = 0.5$, which corresponded to reasonable F1 scores—for reference we report prediction performance on all datasets in Appendix Table A2.

Models

We consider only ℓ_2 regularized logistic regression (for which influence approximation is well-behaved). As features, we consider both bag-of-words and neural embeddings (induced via BERT; Devlin et al. 2018).

4 Results

Here we present results for the iterative method (Appendix Algorithm 2), which outperforms the simpler Algorithm 1. We provide full results for both methods in the in the Appendix.

How often can we find S_t, and how frequently does removing the instances it contains flip the prediction? As can be seen in Table 2, this varies considerably across datasets. For movie reviews, Algorithm 2 returns a set S_t for ~80% of test points, whereas for the (more complex) essays data it does so for only ~10% of instances. Other datasets see success somewhere in-between these extremes. However, when the algorithm does return a set S_t, removing this and re-training almost
always flips the prediction \hat{y} (right-most column).

What is the distribution of $k = |S_t|$? Figure 1a shows empirical distributions of k values for subsets S_t identified by Algorithm 2 for the illustrative movie review and essay grading datasets (full results in Appendix). The take-away here is that when we do find S_t, its cardinality is often quite small. Indeed, for many test points removing tens of examples would have flipped the prediction.

How does k relate to predicted probability?

Does the size of S_t tell us anything beyond what we might infer from the predicted probability $p(y_t = 1)$? In Figure 1b we show (again for just two datasets here) a scatter of $k = |S_t|$ against the distance of the predicted probability from 0.5. The former provides complementary information, in that there exist instances about which the model is confident, but where removing a small set of training instances would overturn the prediction.

Qualitative example. One reason to recover sets S_t is to support contention—if k is small, one might argue against the appropriateness of the points in S_t and hence against the determination y_t. As a simple example, consider the movie review test instance “Manages to transcend the sex drugs and show tunes plot into something far richer”. The true label is positive, but the model predicted negative. Algorithm 2 reveals that removing a single example ($k = 1$) from the training set would have reversed the prediction—specifically, this negative review: “An overstylized pureed melange of sex psychology drugs and philosophy”. It seems this training point is only superficially similar to the test point, which may make a case for overturning the prediction.

While standard influence functions (Koh and Liang, 2017) can be used to *rank* training points, the novelty here is observing that *removing this point alone* would change the prediction.

5 Related Work

Influence functions (Hampel, 1974; Cook and Weisberg, 1980, 1982) provide machinery to identify training points that most informed a particular test prediction. Influence can provide insight into predictions made by modern neural networks (Koh and Liang, 2017), and can be used to *debug* models and training data by surfacing mislabeled training points and/or reliance on artifacts (Adebayo et al., 2020; Han et al., 2020; Pezeshkpour et al., 2022; Teso et al., 2021), and tuning influence can be used to demote reliance on unwanted correlations (Han and Tsvetkov, 2021). Influence can also be used to *audit* models by inspecting training data responsible for predictions Marx et al. (2019).

Schulam and Saria (2019) audit individual predictions by approximating how much they might have changed under different samples from the training distribution. Ting and Brochu (2018) consider influence functions as a tool for optimally subsampling data in service of computational effi-
ciency. Koh et al. (2019) considered approximating the effect of removing a group of training points using influence functions, and found that they do so fairly well (a result that we use). They assumed groups were given and then evaluated the accuracy of the influence approximation to the change in prediction. By contrast, we are interested in finding a (minimal) group which would have the specific effect of flipping a prediction. Elsewhere, Khanna et al. (2019) ask: “Which training examples are most responsible for a given set of predictions?”.

Broderick et al. (2020) assess the robustness of economic analyses when a fraction of data is removed. They therefore focus on the magnitude/significance of parameter estimates. This framing differs from our ML-centric motivation, which aims to recover specific small subsets of data that, if removed, would change a particular prediction (and so might support contestability).

Robustness of data analyses to dropping training data In the process of review it was brought to our attention that Broderick et al. (2020) addressed a closely related problem to what we have considered here, albeit from a quite different motivating perspective—namely assessing the sensitivity of econometric analyses to removals of small subsets of data. It turns out that the algorithm that was (independently) proposed by Broderick et al. (2020) in that work is similar to Algorithm 1. The present effort is novel in our focus on machine learning, and specifically on identifying minimal subsets of training data which would flip a particular prediction if removed prior to training.

Minimal feature set removal Another related line of work concerns a natural complement to the problem we have considered: Instead of identifying a minimal set of instances to remove in order to change a prediction, the idea is to find a minimal subset of features such that, if these were set to uninformative values, a particular prediction would change (Harzli et al., 2022). Work on counterfactual examples has similarly sought to identify minimal (feature) edits to instances that would change the associated label (Kaushik et al., 2019).

Datamodeling Recent work on datamodelling (Ilyas et al., 2022) provided a generalized framework for analyzing model behavior as a function training data. This approach entails learning to estimate (via a parameterized model) changes we would anticipate observing for a particular instance if the model had been trained on some subset of the original training set. This approach is flexible, and one thing it permits is identifying the data support of a particular prediction for x_t, i.e., what we have called S_t (4.1.1 in Ilyas et al. 2022). Furthermore, this method is not restricted to the simple regularized linear models we have considered here. However, this comes with the downside of high computation costs: One needs to re-train the algorithm being modeled many times with different training data subsets to yield a “training set” to be used to estimate model behavior under counterfactual training sets. The main comparative advantage of our more focused approach is therefore relative computational efficiency.

Contestability (Vaccaro et al., 2019; Almada, 2019) in ML is the idea that individuals affected by a prediction ought to be able to challenge this determination, which may require parties to “marshal evidence and create counter narratives that argue precisely why they disagree with a conclusion drawn by an AI system” (Hirsch et al., 2017). The right to contestability is in some cases enshrined into law (Almada, 2019). Identifying S_t for review by an individual affected by the prediction \hat{y}_t may constitute a concrete mechanism for contestation.

6 Conclusions

In the context of binary text classification, we investigated the problem of identifying a minimal set of training points S_t such that, if excluded from training, the prediction for test instance x_t would flip. We proposed two relatively efficient algorithms for this—both using approximate group influence (Koh and Liang, 2017; Koh et al., 2019)—and showed that for regularized linear models they can often find relatively small S_t. We provided empirical evidence that this captures uncertainty in a way that is somewhat complementary to predicted probabilities, and may serve as a mechanism to support contestability, by allowing individuals to review (and dispute) instances in S_t.

Limitations

A key limitation of this work is that we have restricted analysis to regularized linear models with convex loss. We leave extension and evaluation of the proposed methods for more complex models to future work. Indeed, our hope is that this initial effort inspires further work on the problem of identifying minimal train sets which would overturn a
specific prediction if removed.

More conceptually, the implications of finding a small subset S_t are not entirely clear. Intuitively, small sets would seem to indicate fragility, but we have not formalized or evaluated this further. Moreover, there may in certain cases exist multiple (distinct) subsets S_t, such that removing any of these subsets would flip the prediction for x_t. This would complicate the process of contestation envisioned. Furthermore, assuming a stochastic parameter estimation method (e.g., SGD) the composition of S_t may depend on the arbitrary random seed, similarly complicating the interpretation of such sets.

Acknowledgements

We thank our anonymous EACL reviewers for helpful feedback, especially with respect to relevant related work. We also thank Gautam Kamath for highlighting connections to the datamodeling work (Ilyas et al., 2022). This work was supported in part by the Army Research Office (W911NF1810328), and in part by the Overseas Research Fellowship under the University of Hong Kong.

Ethics Statement

Models are increasingly used to make (or aid) decisions that directly affect individuals. In addition to the broader (potential) “interpretability” afforded by recovering small sets of training data that would change a prediction if removed, this may provide a new mechanism for individuals to contest such automated decisions, specifically by disputing this set of training data in some way. However, our proposed method only finds training points that highly impact the model prediction for a given example; these may or may not be noisy or problematic instances. Human judgement is required to assess the accuracy and relevancy of the instances in S_t.

A broader view might be that classification models are simply not appropriate for the kinds of sensitive applications we have used as motivation here. The use of (semi-)automated methods for essay grading, e.g., has long been debated (Hearst, 2000). One might argue that rather than trying to provide mechanisms to contest ML predictions, a better choice may be not to use models in cases where these would be necessary at all. We are sympathetic to this view, but view the “appropriateness” of ML for a given problem as a spectrum; contestability may be useful even in “lower stakes” cases. Moreover, the general problem we have introduced of identifying small training sets which can by themselves swing predictions, and the corresponding methods we have proposed for recovering these, may be of intrinsic interest beyond contestability (e.g., as an additional sort of model uncertainty).

References

Table A1: Text classification dataset statistics.

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Train</th>
<th># Test</th>
<th>% Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie reviews</td>
<td>6920</td>
<td>872</td>
<td>0.52</td>
</tr>
<tr>
<td>Essays</td>
<td>11678</td>
<td>1298</td>
<td>0.10</td>
</tr>
<tr>
<td>Emotion</td>
<td>9025</td>
<td>1003</td>
<td>0.53</td>
</tr>
<tr>
<td>Hate speech</td>
<td>9632</td>
<td>1071</td>
<td>0.11</td>
</tr>
<tr>
<td>Tweet sentiment</td>
<td>18000</td>
<td>1000</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Table A2: The model performance respect to datasets included in the experiment.

<table>
<thead>
<tr>
<th>Models</th>
<th>Accuracy</th>
<th>F1-score</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Movie reviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>0.79</td>
<td>0.80</td>
<td>0.88</td>
</tr>
<tr>
<td>BERT</td>
<td>0.82</td>
<td>0.83</td>
<td>0.91</td>
</tr>
<tr>
<td>Essays</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>0.97</td>
<td>0.80</td>
<td>0.99</td>
</tr>
<tr>
<td>BERT</td>
<td>0.97</td>
<td>0.84</td>
<td>0.99</td>
</tr>
<tr>
<td>Emotion classification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>0.77</td>
<td>0.79</td>
<td>0.86</td>
</tr>
<tr>
<td>BERT</td>
<td>0.80</td>
<td>0.82</td>
<td>0.88</td>
</tr>
<tr>
<td>Hate speech</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>0.87</td>
<td>0.40</td>
<td>0.81</td>
</tr>
<tr>
<td>BERT</td>
<td>0.89</td>
<td>0.63</td>
<td>0.88</td>
</tr>
<tr>
<td>Tweet sentiment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BoW</td>
<td>0.70</td>
<td>0.70</td>
<td>0.75</td>
</tr>
<tr>
<td>BERT</td>
<td>0.75</td>
<td>0.76</td>
<td>0.84</td>
</tr>
</tbody>
</table>

Table A3: Percentages of test examples for which Algorithm 1 successfully identified a set S_t (center) and for which upon removing these instances and retraining the prediction indeed flipped (right).

A.3 Additional qualitative analysis

We conclude with a brief qualitative analysis of examples in S_t retrieved in the case of the essays data. The model operating over BERT representations classified this test point (x_t) as 0, i.e., not an “A”: “The cyclist in this essay was a very brave man...”. The example is about a paragraph in length total, but details adventures of a cyclist. In this case it happens that the reference label is, in fact, an “A”, so the model is incorrect. Algorithm 2 reveals that removing a single training point and retraining would have overturned this prediction, yielding an “A”. The point in question is labeled 0 (so below an “A”) and is about the mood of a memoir, in particular arguing that the person central to this was happy. The student-author of the cyclist essay might reasonably argue that this example is not at all relevant to their essay, and the fact that excluding this single example would have meant their essay received an “A” may be an adequate case for changing their grade accordingly.

A.4 Time complexity

We recorded wall clock times required to search for $|S_t|$ on all test points in each dataset using Algorithm 1 and Algorithm 2 on Intel(R) Core(TM) i9-9920X CPUs; we report these times in Table A4. For Algorithm 1, the longest running time is required for the essay dataset because most test predictions cannot be flipped even after iterating over all training points. Algorithm 2 is considerably slower than Algorithm 1. The main reason lies in recording the set of training points not in S_t (line 20 in Algorithm 2) and re-calculating the IP.
value in each iteration to reduce the minimal candidate set. This additional time is traded off against the ability to (typically) find smaller S_t compared with 1. Overall, the running time required to find $|S_t|$ for one test point is relatively minimal for both algorithms.

A.5 Attribution methods

We consider different methods (i.e., other than influence functions) to rank training instances including gradient similarities in terms of the loss, similarity-based methods and randomly sampling training points. Of these we found that the proposed method works best in terms of finding instances which exert maximal influence on the prediction.

One natural way to quantify the impact of a training point x_i on a training point x_t by similarity methods. If the model has training points similar to the test point, it may classify the test correctly with high probability. We consider three of similarity-based methods: EUC $= -||x_t - x_i||^2$, DOT $= \langle x_i, x_t \rangle$, and COS $= \cos(x_i, x_t)$.

Apart from influence function and IP, we consider gradient-based instance attribution methods:

1) $RIF = \cos(H^{-\frac{1}{2}}\nabla_{\theta} L(x_t), H^{-\frac{1}{2}}\nabla_{\theta} L(x_i))$
2) $GD = \langle \nabla_{\theta} L(x_t), \nabla_{\theta} L(x_i) \rangle$
3) $GC = \cos(\nabla_{\theta} L(x_t), \nabla_{\theta} L(x_i))$

RIF was proposed to mitigate the issues of outliers and mislabeled points being returned by the standard influence functions (Barshan et al., 2020). GC and GD measure the similarity between two instances can also become an effective way to interpret the model from the instance perspective (Charpiat et al., 2019). Apart from the methods above, we randomly sample training subsets and remove them accordingly.

We apply the above methods to the movie review dataset trained with a logistic regression model. We evaluate each attribution method as follows: First, we remove the top $k = |S_t|$ training points from the training dataset according to the score calculated from the attribution method. Then we train a new with the same dataset except for the removed points. Finally, we compare the difference in predictions for each test point from the old model to the new model. To show the impact of attribution methods under different $k = |S_t|$, we iterated with $k = |S_t|$ from 50 to 3000. The mean absolute difference is plotted along with $k = |S_t|$ shown in Figure A.1. IP has a larger impact on the predicted probability, compared to removing training points ranked according to other methods.

Figure A.1: The relationship between the mean of absolute difference on predicted probabilities for all test points results from removing $|S_t|$ training points, using different methods.
Datasets	Movie reviews	Essays	Emotion	Hate speech	Tweet
Bow	Algorithm 1:	5	135	5	40
Algorithm 2:	239	257	344	444	1529
BERT	Algorithm 1:	3	161	19	52
Algorithm 2:	604	288	761	522	2203

Table A4: Running time (in seconds) to find |S_t| for all test points in each data set by Algorithm 1 and Algorithm 2.

Algorithm 2: An iterative approach to finding a minimal set to flip a prediction

Input: \(f \): Model; \(Z^n \): Full training set; \(\theta \): Parameters estimated \(Z^n \); \(\mathcal{L} \): Loss function; \(x_t \): A test point; \(\tau \): Classification threshold (e.g., 0.5)

Output: \(\tilde{S}_t \): minimal train subset identified to flip prediction for \(x_t \) (\(\emptyset \) if unsuccessful)

```plaintext
1. \( \theta' \leftarrow \theta \)
2. \( Z^n, \tilde{S}_i \leftarrow Z^n, Z^n /\) Track remaining points and candidate subset \( \tilde{S}_i \)
3. \( H \leftarrow \nabla^2_{\theta} \mathcal{L}(Z^n, \theta') \)
4. \( \Delta \theta \leftarrow H^{-1} \nabla_{\theta} \mathcal{L}(Z^n, \theta') \)
5. \( \Delta f \leftarrow \nabla_{\theta} f_{\tilde{\theta}}(x_t) \Delta \theta \)
6. \( \hat{y}_t \leftarrow f(x_t) > \tau \)
7. \( \Delta f_{\text{sum}} \leftarrow 0 \)
8. \( k' \leftarrow |Z^n| \)
9. while \( \tilde{S}_i \) changed since last iteration do
   // Sort instances (and estimated output differences) in order of the current prediction direction ← \{↑ if \( \hat{y}_t \) else ↓\}
   indices ← argsort(\( \Delta f_{\text{sum}}, \text{direction} \))
   \( \Delta f_{\text{sum}} \leftarrow \text{sort}(\Delta f_{\text{sum}}, \text{direction}) \)
   for \( k = 1 \ldots |\tilde{S}_i| \) do
      \( \hat{y}'_t \leftarrow (f(x_t) + \text{sum}(\Delta f_{\text{sum}}[:k])) > \tau \)
      if \( \hat{y}'_t \neq \hat{y}_t \) then
         \( \Delta f_{\text{sum}} \leftarrow \text{sum}(\Delta f_{\text{sum}}[:k]) \)
         \( \text{diff} \leftarrow k’ - k \)
         \( \tilde{S}_i \leftarrow \tilde{S}_i[\text{indices}[:k]] \) // Update candidate subset
      \( Z^n \leftarrow Z^n / \tilde{S}_i \) // And the set of training points not in \( \tilde{S}_i \)
      \( \theta' \leftarrow \theta + \Delta \theta[\text{indices}[:k]] \)
      // Update Hessian and \( \nabla \) of loss using updated \( \theta \) estimate
      \( H \leftarrow \nabla^2_{\theta} \mathcal{L}(Z^n, \theta') \)
      \( \Delta \theta \leftarrow H^{-1} \nabla_{\theta} \mathcal{L}(\tilde{S}_i, \theta') \)
      \( \Delta f \leftarrow \nabla_{\theta} f_{\tilde{\theta}}(x_t) \Delta \theta \)
      break
   end for
26. if \( |\tilde{S}_i| = |Z^n| \) then
27.   return \( \emptyset \)
28. return \( \tilde{S}_i \)
```

2580
Figure A.2: Histograms of $k = |S_t|$ values from Algorithm 1 over the subsets of test points x_t for which we were able to successfully identify a set of points S_t such that removing them would flip the prediction for \hat{y}_t.
Figure A.3: Relationship between predicted probabilities and $k = |S_t|$ identified from Algorithm 1.
Figure A.4: Histograms of $k = |S_t|$ values from Algorithm 2 over the subsets of test points x_t for which we were able to successfully identify a set of points S_t such that removing them would flip the prediction for \hat{y}_t.

median: 183
916/1003
BoW LR

median: 157
831/1003
BERT

median: 246
713/1071
BoW LR

median: 117
571/1071
BERT

median: 71
988/1000
BoW LR

median: 251
904/1000
BERT
Figure A.5: Relationship between predicted probabilities and $k = |S_t|$ identified from Algorithm 2.