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Abstract

The RVL-CDIP benchmark is widely used for
measuring performance on the task of docu-
ment classification. Despite its widespread use,
we reveal several undesirable characteristics of
the RVL-CDIP benchmark. These include (1)
substantial amounts of label noise, which we
estimate to be 8.1% (ranging between 1.6%
to 16.9% per document category); (2) pres-
ence of many ambiguous or multi-label doc-
uments; (3) a large overlap between test and
train splits, which can inflate model perfor-
mance metrics; and (4) presence of sensitive
personally-identifiable information like US So-
cial Security numbers (SSNs). We argue that
there is a risk in using RVL-CDIP for bench-
marking document classifiers, as its limited
scope, presence of errors (state-of-the-art mod-
els now achieve accuracy error rates that are
within our estimated label error rate), and lack
of diversity make it less than ideal for bench-
marking. We further advocate for the creation
of a new document classification benchmark,
and provide recommendations for what charac-
teristics such a resource should include.

1 Introduction

Within the document understanding research area,
the RVL-CDIP dataset (Harley et al., 2015) has
emerged as the primary benchmark for evaluat-
ing and comparing document classifiers. RVL-
CDIP is composed of 16 document type categories,
including resume, letter, invoice, etc. Its
large volume of training data—320,000 samples—
facilitates benchmarking state-of-the-art deep learn-
ing and transformer-based architectures. While ini-
tially released as a computer vision benchmark in
2015, more recent state-of-the-art models now in-
corporate image, text, and page layout modalities.
For instance, recent tri-modal models like Doc-
Former (Appalaraju et al., 2021), ERNIE-Layout
(Peng et al., 2022), LayoutLMv3 (Huang et al.,
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Figure 1: Model accuracy on RVL-CDIP by year and
modality. The horizontal dashed line represents our
estimated label error rate for RVL-CDIP’s test set.

2022), and Bi-VLDoc (Luo et al., 2022) now
achieve classification accuracies ranging in the mid-
to high-90s, with Bi-VLDoc reporting a state-of-
the-art of 97.12% on the RVL-CDIP test set. This
is a large improvement over earlier image-centric
work, and we chart this improvement in Figure 1.

As model performance on RVL-CDIP improves,
it becomes increasingly important to ensure that
further gains are meaningful with respect to the
classification task. This concern has been raised by
prior work that has found that benchmark evalua-
tion datasets often contain substantial amounts of
label errors or noise (e.g., Northcutt et al., 2021a),
substantial overlap between test and train data (e.g.,
Elangovan et al., 2021; Søgaard et al., 2021), and
data collection artifacts that cause models to over-
fit to spurious cues (e.g., Gururangan et al., 2018;
McCoy et al., 2019). Therefore, we cast a critical
eye to the RVL-CDIP benchmark to answer: Is
RVL-CDIP still suitable for effectively measuring
the performance of document classifiers?

In doing so, we first observe a lack of clear label
or annotation guidelines provided with the original
introduction of RVL-CDIP. Therefore, we create
verifiable label guidelines for the 16 RVL-CDIP
categories. With these guidelines, we are then able
to conduct a review of the data, and we find that
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label errors account for an estimated 8.1% of data
RVL-CDIP’s test split, a rate greater than the cur-
rent state-of-the-art model accuracy error rate, indi-
cating that contemporary high-performing models
are overfitting to noise. We also observe relatively
high rates of documents that have ambiguous or
multiple valid labels, which is problematic given
RVL-CDIP is a single-label classification bench-
mark. Additionally, we also observe a large overlap
between test and train data splits, where there are
(near-) duplicate documents seen in both train and
test splits, as well as documents that share common
templates. Lastly, our review of RVL-CDIP data
uncovered a surprisingly large amount of sensitive
personally-identifiable information, particularly in
the resume category, where we found 7.7% of doc-
uments contained US Social Security numbers.

We argue that the characteristics that we observe
make RVL-CDIP an unattractive benchmark for
training and evaluating document classifiers. We
end with recommendations for what qualities a new
document classification benchmark should have.

2 Related Work

This section discusses related work in two areas:
(1) prior work in document classification on RVL-
CDIP, and (2) prior work on analyzing datasets.

2.1 RVL-CDIP and Document Classification

The RVL-CDIP corpus has been used as a bench-
mark for document classification since its intro-
duction by Harley et al. (2015), who used it to
evaluate convolutional neural network (CNN) im-
age classifiers on the dataset’s document images.
Most immediate follow-up work followed Harley
et al. (2015) and explored different image-based
CNN models, as done in Csurka et al. (2016); Afzal
et al. (2017); Tensmeyer and Martinez (2017); Das
et al. (2018); Ferrando et al. (2020). Just relying
on image features is limited, as much of a docu-
ment’s "essence" is informed by its textual content.
Therefore, more recent work has incorporated the
textual modality, including Audebert et al. (2019)
and Dauphinee et al. (2019).

Even more recent work has capitalized on the
transformer model architecture, often combining
vision transformers with large transformer-based
language models (and often combining these with
a third modality based on page layout derived from
detected optical character recognition (OCR) re-
gions) as in LayoutLMv1 (Xu et al., 2020), Lay-

Model (Reported by) Modality Accuracy

Bi-VLDoc (Luo et al., 2022) I, T, L 97.12
ERNIE-Layout-large (Peng et al., 2022) I, T, L 96.27
UDOP-Dual (Tang et al., 2022) I, T, L 96.22
DocFormer-base (Appalaraju et al., 2021) I, T, L 96.17
StructuralLM-large (Li et al., 2021a) T, L 96.08
UDOP (Tang et al., 2022) I, T, L 96.00
LayoutLMv3-large (Huang et al., 2022) I, T, L 95.93
LiLT-base (Wang et al., 2022a) T, L 95.68
LayoutLMv2-large (Xu et al., 2021) I, T, L 95.65
BROS-base (Wang et al., 2022a) T, L 95.58
TILT-large (Powalski et al., 2021) I, T, L 95.52
DocFormer-large (Appalaraju et al., 2021) I, T, L 95.50
LayoutLMv3-base (Huang et al., 2022) I, T, L 95.44
Donut (Kim et al., 2021) I, T 95.30
Wukong-Reader-large (Bai et al., 2022) I, T, L 95.26
Pham et al. (2022) T, L 95.25
TILT-base (Powalski et al., 2021) I, T, L 95.25
LayoutLMv2-base (Xu et al., 2021) I, T, L 95.25
UDoc-star (Gu et al., 2021) I, T, L 95.05
Wukong-Reader-base (Bai et al., 2022) I, T, L 94.91
LayoutLMv1-base (Xu et al., 2020) I, T, L 94.43
LayoutLMv1-large (Xu et al., 2020) I, T, L 94.42
MATrIX (Delteil et al., 2022) I, T, L 94.20
DocXClassifier-xl (Saifullah et al., 2022a) I 94.17
DocXClassifier-large (Saifullah et al., 2022a) I 94.15
DocXClassifier-base (Saifullah et al., 2022a) I 94.00
UDoc (Gu et al., 2021) I, T, L 93.96
Longformer-base (Pham et al., 2022) T 93.85
Longformer-large (Pham et al., 2022) T 93.73
MGDoc (Wang et al., 2022b) I, T, L 93.64
Dessurt (Davis et al., 2022) I 93.60
Bigbird-base (Pham et al., 2022) T 93.48
Pramanik et al. (2022) I, T, L 93.36
Bigbird-large (Pham et al., 2022) T 93.34
Multimodal Ensemble (Dauphinee et al., 2019) I, T 93.07
SelfDoc (Li et al., 2021b) I, T, L 92.81
LadderNet (Sarkhel and Nandi, 2019) I 92.77
Zingaro et al. (2021) I, T 92.70
DiT-large (Li et al., 2022) I 92.69
VLCDoC (Bakkali et al., 2022) I, T 92.64
InceptionResNetV2 (Xu et al., 2021) I 92.63
EfficientNet (Ferrando et al., 2020) I 92.31
Region Ensemble (Das et al., 2018) I 92.21
DiT-base (Li et al., 2022) I 92.11
MAE-base (Li et al., 2022) I 91.42
Stacked CNN Single (Das et al., 2018) I 91.11
BEiT-base (Li et al., 2022) I 91.09
VGG-16 (Afzal et al., 2017) I 90.97
Csurka et al. (2016) I 90.70
ResNext-101 (Li et al., 2022) I 90.65
Audebert et al. (2019) I, T 90.60
ResNet-50 (Afzal et al., 2017) I 90.40
RoBERTa-large (Li et al., 2021a) T 90.11
RoBERTa-base (Li et al., 2021a) T 90.06
BERT-large (Li et al., 2021a) T 89.92
BERT-base (Li et al., 2021a) T 89.81
Tensmeyer and Martinez (2017) I 89.31
GoogLeNet (Afzal et al., 2017) I 89.02
AlexNet (Afzal et al., 2017) I 88.60

Table 1: Model accuracy on RVL-CDIP for various
image (I), text (T), and layout-based (L) document clas-
sification models, ordered by reported score. Models
incorporating multiple modalities typically outperform
uni-modal models.

outLMv2 (Xu et al., 2021), LayoutLMv3 (Huang
et al., 2022), DocFormer (Appalaraju et al., 2021),
TILT (Powalski et al., 2021), and ERNIE-layout
(Peng et al., 2022). These more recent transformer-
based models have achieved state-of-the-art accu-
racy scores on RVL-CDIP, the most recent being
Luo et al. (2022)’s Bi-VLDoc, which achieves a
reported accuracy of 97.12% on RVL-CDIP. (For
a listing of models benchmarked on RVL-CDIP
since Harley et al. (2015), see Table 1.)
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memo handwritten invoice scientific_pub. specification

Figure 2: Samples from the RVL-CDIP dataset.

advertisement memo
budget news_article
email presentation

file_folder questionnaire
form resume

handwritten scientific_publication
invoice scientific_report
letter specification

Table 2: RVL-CDIP document type categories.

Despite these high scores, recent work has ex-
posed gaps in models trained on RVL-CDIP. In
particular, recent work has found that models
trained on RVL-CDIP perform poorly on out-of-
distribution data (Larson et al., 2022) and perturbed
in-distribution data (Saifullah et al., 2022b). We
also mention that RVL-CDIP is often used as a pre-
training dataset, where models are first pre-trained
on RVL-CDIP (and perhaps others) and then eval-
uated on other downstream tasks or datasets (e.g.,
Nguyen et al. (2021); Kanchi et al. (2022)). Other
datasets like FUNSD are subsets of RVL-CDIP
(Jaume et al., 2019).

2.2 Analysis of Datasets

Prior work has investigated the presence of label
and annotation errors and corpus quality in NLP
and image datasets. This work includes Abed-
jan et al. (2016); Radenović et al. (2018); Müller
and Markert (2019); Pleiss et al. (2020); North-
cutt et al. (2021a); Kreutzer et al. (2022); Ying
and Thomas (2022); Chong et al. (2022). One
common conclusion is that the utility of a bench-
mark evaluation dataset is lessened if the label er-
ror and/or ambiguity rate is close to- or exceeds
model prediction error rate. This has been ob-
served for various datasets, such as ATIS (Béchet
and Raymond, 2018; Niu and Penn, 2019), and
the CNN/Daily Mail reading comprehension task
(Chen et al., 2016).

Orthogonal to label errors, prior work has also
observed non-trivial overlap between test and train
splits in datasets on which natural language process-
ing and computer vision models are evaluated (e.g.,

Finegan-Dollak et al., 2018; Allamanis, 2019; Barz
and Denzler, 2020; Lewis et al., 2021; Wen et al.,
2022; Croft et al., 2023). Such work often argues
that non-trivial amounts of overlap between test
and train data can lead to "inflated" performance
scores, as overlapping data can reward a model’s
ability to memorize training data (Elangovan et al.,
2021), and to under-estimate out-of-sample error
(Søgaard et al., 2021). Evidence of this can also be
found in the multitude of studies that report lower
model performance scores on newly-collected eval-
uation sets versus reported scores on benchmarks
(e.g., Augenstein et al., 2017; Recht et al., 2019;
Harrigian et al., 2020; Kim and Kang, 2022; Lar-
son et al., 2022). In this paper, we investigate the
presence of errors, ambiguous data, and overlap-
ping test-train data for the RVL-CDIP benchmark
dataset.

3 The RVL-CDIP Dataset

The RVL-CDIP dataset was introduced in Harley
et al. (2015) as a benchmark for evaluating image-
based classification and retrieval tasks.1 Since then,
RVL-CDIP has primarily been used as a document
type classification benchmark. RVL-CDIP consists
of 400,000 document images distributed across 16
document type categories, listed in Table 2. Ex-
ample documents from RVL-CDIP are shown in
Figure 2. Documents in RVL-CDIP were sampled
from the larger IIT-CDIP Test Collection, which
itself is a snapshot of the voluminous Legacy To-
bacco Documents Library (LTDL) collection — at
that time, LDTL contained approximately 7 million
documents (Lewis et al., 2006).2 These documents
were made publicly available as part of legal pro-

1Harley et al. (2015) referred to RVL-CDIP as BigTobacco.
2The LTDL is now called the Truth Tobacco Industry

Documents collection, and is included in the broader Indus-
try Documents Library (IDL) hosted by the UCSF Library:
https://www.industrydocuments.ucsf.edu/. For more
background on the LTDL, see Schmidt et al. (2002) and Tasker
et al. (2022).
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Category Description

advertisement
Advertisements from print-form media like newspapers and magazines. Also a small amount of scripts for television or
radio advertisements. A small amount of "ad order instructions" and "ad insertion" documents.

budget
Includes various budget documents such as expense, spending, sales, cash, and accounting reports and forecasts;
budgets; quotes and estimates; and income and bank statements. Also includes receipt-like documents such as political
campaign contribution requests and other receipts, as well as checks and check stubs.

email Scanned images of printed emails.

file_folder
Scanned images of folders and binders. Folder scans are often characterized by vertically oriented text (indicating a
folder label). A moderate amount of file folders in RVL-CDIP contain handwritten text or notes. Some scanned folders
may be indistinguishable from blank pages.

form
Form documents with form-like elements (e.g., lines or spaces for user-provided data entry). The form-like elements
can appear empty or filled.

handwritten Includes handwritten documents like handwritten letters and scientific notes.

invoice Includes invoices, bills, and account statements.

letter
Letters, often with letterhead and commonly with "Dear..." salutations. The distinction between letters and memos is
often unclear in RVL-CDIP.

memo Memoranda or inter-office correspondence documents, often with clear "TO", "FROM", "SUBJECT" headings.

news_article
Includes news articles in the form of clippings from newspapers and other print-form news media, as well as a small
amount of news articles from the web.

presentation
Includes scanned images of presentation and overhead slides, transcripts of speeches and statements. Also includes a
large amount of press releases.

questionnaire
Includes customer surveys and questionnaires, as well as survey and questionnaire prompts for surveyors. Also includes
questionnaires appearing to be part of legal proceedings and investigations. In RVL-CIDP, many questionnaires have a
substantial amount of form-like elements.

resume
Includes resumes, curricula vitae (CVs), biographical sketches, executive biographies (e.g., those written in third-
person), a small amount of business cards.

scientific_pub.
Mainly papers and articles from scientific journals and book chapters, but also includes book title pages. Also includes
news articles from science newsletters. News articles from science newsletters are very similar to the news_article
category.

scientific_rep.
Includes bioassay, pathology, and test reports; charts, graphs, and tables; research reports (including progress reports),
research proposals, abstracts, paper drafts. Many reports and abstracts bear similarities to scientific publications. Many
test result documents are similar to documents in the specification category.

specification
Data sheets (including safety data sheets); product, material, and test specifications. Also includes specification change
reports.

Table 3: RVL-CDIP categories alongside our descriptions and notes.

ceedings and settlements against several American
tobacco and cigarette companies and organizations,
and as such, the documents in RVL-CDIP are al-
most exclusively related to the tobacco industry.3

Most document images in RVL-CDIP capture
the initial page of a document; some common ex-
ceptions appear to be charts and tables (these are
typically labeled as scientific_report) as well
as presentation slides (labeled as presentation).
Additionally, almost all of the documents (that
contain readable text) are in English, although we
did find small amounts of documents in other lan-
guages (including German, Dutch, French, Span-
ish, Portuguese, Italian, Japanese, Chinese, Arabic,
and Hebrew) as part of our review. Examples of
non-English RVL-CDIP samples are displayed in
Figure 11 in the Appendix.

3For more background on the history of the litigation and
documents, see Glantz et al. (1996); Ciresi et al. (1999); Tasker
et al. (2022).

There are 320,000 training, 40,000 validation,
and 40,000 test samples, but Harley et al. (2015)
provides no information on how the data was parti-
tioned into these splits, so we assume it was done
randomly for each of the 16 document categories.
Harley et al. (2015) report that the 16 categories
were chosen, in part, because these categories had
ample representation (i.e., at least 25,000 samples)
in IIT-CDIP. Unfortunately, we are unaware of any
published guidelines, criteria, rules, or documen-
tation defining or describing each of the 16 RVL-
CDIP categories, nor is it clear who or what pro-
vided the initial category labels in IIT-CDIP (nor in
LTDL).4 Thus, we describe how we developed la-
bel guidelines for each RVL-CDIP document type
category in Section 3.1 below.

4Schmidt et al. (2002) and Tasker et al. (2022) indicate
that type labels may have been ascribed to the documents by
human workers employed at UCSF’s LTDL.
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3.1 Establishing Label Guidelines

The RVL-CDIP dataset does not have a published
list of descriptions, rules, or guidelines describing
each of the 16 document type categories. We dis-
cuss an extensive analysis from which we develop
such guidelines.

We established our list of guidelines by first sam-
pling 1,000 documents from each of the 16 cat-
egories in the training set (for a total of 16,000
documents). We then reviewed these samples cat-
egory by category. This review process helped us
identify commonalities within each category, and
helped us discover that many of the categories seem
to have distinct groups of sub-types within them.
For instance, we found that the resume category
is largely composed of (1) resumes and curricula
vitae, (2) "Biographical Sketch" documents (i.e.,
those required for grant applications for the Na-
tional Institutes of Health (example shown in Fig-
ure 3a), (3) executive biographies, and (4) scanned
business cards. Such cases reveal opportunities for
refining and diversifying appropriate categories.

In another category, advertisement, we found
samples mostly consisted of advertisements from
print-form media like newspapers and magazines,
as well as smaller amounts of scripts for television
or radio advertisements. The advertisement cat-
egory also included a small amount of document
images identical to the one shown in Figure 3b.
We found that this "IMAGE NOT AVAILABLE"
document appears mostly in the advertisement
category, yet it is an example of a document that
we do not include in our label guidelines for this
category, as it is not at all faithful to the semantic
nature of the advertisement category.

Our annotation guidelines are listed in Table 3,
along with our notes and observations. It was oc-
casionally necessary to review multiple document
categories prior to establishing rules. This was the
case with the budget and invoice categories, each
of which included non-trivial amounts of scanned
check images and contribution requests. (Examples
of cases like these are displayed in Figures 21-23 in
the Appendix.) For cases like these, we annotated
these sub-types in the relevant categories in order to
estimate their relative frequencies. We then would
append our annotation guidelines accordingly; for
instance, 8.8% of budget documents and 3.8% of
invoice documents that we reviewed were check
images, so our guidelines specify that the budget
category consists of check images, while invoice

(a) (b)

Figure 3: Example "Biographical Sketch" resume docu-
ment (a) and "IMAGE NOT AVAILABLE" document
found mostly in advertisement.

does not. Ultimately, our goal with establishing
such guidelines is to provide repeatable, verifiable
criteria that faithfully reflect the semantic nature of
each category.

4 Label Errors and Ambiguities in
RVL-CDIP

Armed with better knowledge of what constitutes
each of the 16 RVL-CDIP categories, we analyze
the contents of the RVL-CDIP test set to estimate
the amount of label errors and ambiguities found
in this set.

We manually checked for errors in the RVL-
CDIP test set by sampling 1,000 documents from
each of the 16 categories (for a total of 16,000 docu-
ments). We used our label guidelines established in
Section 3.1 to help us determine the validity of each
of these 16,000 samples. We tracked several types
of errors and ambiguities: (1) documents found in
a category that clearly are mis-labeled and instead
belong in a different RVL-CDIP category — we re-
fer to this error type as mis-labeled; (2) documents
that do not appear to have a single clear RVL-CDIP
label — we refer to this label type as unknown;
(3) documents that have mixed or multiple features
that belong to at least two RVL-CDIP categories —
we refer to this type as mixed. Examples of docu-
ments exhibiting these error types can be seen in
Figure 4. We point out a particularly interesting
mixed case: the first two mixed examples are nearly
identical, but the original label is news_article in
one case but letter in the second. More examples
are shown in the Appendix in Figures 12–14.

Findings. Our estimated error rates in the RVL-
CDIP test set are shown in Table 4. We estimate
that error rates (i.e., combined rates for mis-labeled
and unknown) range between 1.6% (in the case
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questionnaire
advertisement

letter
memo

email
scientific_rep.

budget
file_folder

handwritten
questionnaire

questionnaire
advertisement

news_article
letter

news_article
handwritten

handwritten handwritten letter scientific_rep. letter

news_article
letter

letter
news_article

Figure 4: Example errors and ambiguities. Top row: unknown, middle row: mis-label, bottom row: mixed.

Category m
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la
be

led
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kn

ow
n

To
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Er
ro

r

m
ix

ed

advertisement 1.9% 4.5% 6.4% 3.5%
budget 9.7% 4.1% 13.8% 1.5%
email 1.7% 8.3% 10.0% 0.4%
form 4.4% 6.4% 10.8% 0.5%
file_folder 0.4% 3.1% 3.5% 1.9%
handwritten 2.5% 5.2% 7.7% 2.4%
invoice 9.7% 1.3% 11.0% 0.2%
letter 13.5% 3.4% 16.9% 0.5%
memo 2.0% 2.4% 4.4% 2.1%
news_article 4.6% 2.5% 7.1% 0.4%
presentation 1.8% 4.9% 6.7% 1.0%
questionnaire 5.6% 7.3% 12.9% 6.9%
resume 0.2% 1.4% 1.6% 0.4%
scientific_pub. 2.5% 1.8% 4.3% 0.0%
scientific_rep. 4.6% 3.9% 8.5% 5.6%
specification 1.5% 1.9% 3.4% 0.4%

Average 4.2% 3.9% 8.1% 1.7%

Table 4: Estimated label error and multi-label rates in
the RVL-CDIP test set.

of resume) and 16.9% (in the case of letter).
The average of each category’s error rates is 8.1%,
which is higher than the classification accuracy
error rates reported by many state-of-the-art mod-
els listed in Table 1. In some cases, the majority
of a category’s errors were mis-labels of a partic-
ular type. For instance, about 59% of the erro-
neous letter documents we reviewed were actu-
ally memo documents. Similarly, 74% of the erro-
neous invoice documents were actually budget
documents. Lastly, roughly 1.7% of RVL-CDIP’s
test set is data that have multiple valid labels.

5 Overlap Between Test and Train Splits

Our analysis also reveals a substantial degree of
undesirable overlap between train and test samples
within RVL-CDIP. To measure this overlap, we
use an approach similar to Larson et al. (2019)
and Elangovan et al. (2021), which, for each test
sample in each document type category, finds the
maximally similar sample in the same document
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resume: 0.977 news_article: 0.981 invoice: 0.937

Figure 5: Example test-train pairs with corresponding maximum cosine similarity scores. These three example pairs
show instances of near-duplicates (left and center) and documents that have highly similar structure (right).

Category mean median

advertisement 0.893 0.903
budget 0.963 0.968
email 0.976 0.982
form 0.948 0.956
file_folder 0.967 0.974
handwritten 0.945 0.952
invoice 0.962 0.966
letter 0.953 0.960
memo 0.957 0.961
news_article 0.919 0.936
presentation 0.929 0.945
questionnaire 0.961 0.968
resume 0.965 0.967
scientific_pub. 0.936 0.955
scientific_rep. 0.950 0.961
specification 0.972 0.978

Average 0.950 0.958

Table 5: Mean and median of maximum cosine similar-
ity scores between train and test sets for each RVL-CDIP
category.

type category’s training split. We then average
these maximum similarity scores together for each
document category. That is, for each document
category C in RVL-CDIP, we compute

1

|testC |
X

b2testC

max
a2trainC

sim(a, b)

where a and b are samples from category C’s train
and test splits, respectively. We use CLIP (Rad-
ford et al., 2021) to extract a 512-dimension fea-
ture embedding from each sample, and use cosine
similarity for sim(·, ·). We note that this vector-
based similarity technique is common practice in
the image- and information retrieval (e.g., Babenko
et al. (2014)).

Findings. Average and median of the maximum
similarity scores for test-train pairs are shown
in Table 5 for each RVL-CDIP category. Over-
all, we see a high degree of similarity across test
and train data: mean scores range between 0.893
(advertisement) and 0.976 (email), with an av-
erage of 0.950. Ten of the 16 document categories

Figure 6: Sampled subset of maximal similarity scores
for test-train pairs with scores between 0.93 and 1.0.

have average scores at- or above 0.95. The median
score for each category is larger than the mean in
all cases, indicating a long tail in the distribution
of scores. Indeed, we see this in Figure 10 (in
Appendix), which charts the distribution of similar-
ity scores for all test data in RVL-CDIP. Figure 5
shows three examples of test-train pairs with sim-
ilarity scores ranging between 0.937 and 0.981.
Two of the three pairs in Figure 5 seem to be near-
duplicates, where there appear to be minor differ-
ences in scanning or noise artifacts between each
document. In the third (invoice) example, we see
that the two samples are distinct, yet both share a
large degree of similarity because both use the same
document template (e.g., invoices from the same
company that are structurally and visually similar
but that contain different "data"). We show more
example pairs in Figures 15–18 in the Appendix.

To help better understand the similarity scores,
we conduct an experiment where we categorize
each similarity pair into one of the following: du-
plicate, if the test-train pair represents the same
document; template, if both documents in a pair
use the same document template; and different, for
all other pairs. We annotated a sample of 1,086
similarity pairs with maximum similarity scores
ranging between 0.93 and 1.0. A visualization of
the relationship between maximal similarity score
and match type is shown in Figure 6, where we
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Figure 7: Example documents from RVL-CDIP show-
ing sensitive personally identifiable information (PII;
redacted by us).

observe that the likelihood of a pair being either a
duplicate or template match increases with similar-
ity score.

Considering the overall median maximal similar-
ity score is 0.958, we can estimate a lower-bound
for the rate of duplicate and template match pairs
by scaling the proportion of documents above the
median maximal score (i.e., half, or 0.5) by the
fraction of duplicate and template matches above
the median (0.958). This gives us 0.5⇥ 0.641, and
therefore we estimate that at least 32% of samples
from the RVL-CDIP test set have either a duplicate
counterpart or a sample that shares a template lay-
out in the training set. While there is generally no
established acceptable number or percentage for
test-train overlaps, prior work (e.g., Søgaard et al.
(2021); Elangovan et al. (2021)) has argued that
overlaps are undesirable, and that building gener-
alizable, robust models entails evaluation against
novel, unseen data points (e.g., Koh et al. (2021);
Malinin et al. (2021); Larson et al. (2022)).

6 Presence of Sensitive Information

While reviewing samples from RVL-CDIP, we no-
ticed that the resume category had a non-trivial
quantity of documents that contain sensitive and
personally-identifiable entities. Naturally, resumes
typically contain a person’s name and basic con-
tact information (e.g., phone numbers or email ad-
dresses). However, we found a plethora of sensitive
entities like citizenship and marital statuses, places

and dates of birth, names of children and spouses,
and national ID numbers like US Social Security
and Canadian National ID numbers.

Out of a sample of 1,000 documents from the
resume test set, we found that 7.7% contained a US
Social Security Number. While we recognize that
US Social Security numbers were not considered
sensitive several decades ago (when many of the
resume documents in RVL-CDIP were created),
their presence in so many documents in a publicly
accessible dataset5 is still striking, especially con-
sidering the coexistence of this entity type with oth-
ers like person names, dates and places of birth, etc.
In particular, malicious Social Security numbers
are often connected with fraud and identity theft
crimes in the USA. Moreover, the sensitive enti-
ties discussed in this section are considered highly
sensitive under many state and national laws.6 Ad-
ditionally, we found that 43.6% of the test resumes
contain birth dates, 19.9% contain places of birth,
11.4% contain marital (or spousal or parental) sta-
tuses, and 8.9% contain citizenship statuses. Exam-
ple documents containing sensitive PII can be seen
in Figure 7.

Given the presence of sensitive PII in RVL-
CDIP, it is reasonable to wonder if sensitive PII
also appears in datasets derived from RVL-CDIP,
like FUNSD (Jaume et al., 2019). Similarly, we
also wonder if sensitive PII appears in datasets
that were derived from the larger IIT-CDIP or
UCSF Industry Documents Library corpora, such
as Tobacco-800 (Zhu et al., 2007; Zhu and Doer-
mann, 2007), Tobacco-3482 (Kumar et al., 2014),
DocVQA (Mathew et al., 2021), and OCR-IDL
(Biten et al., 2022). We will investigate this in
future work.

7 Discussion and Recommendations

Given our findings concerning labeling errors,
test/train overlap, and presence of sensitive infor-
mation in the RVL-CDIP document classification
benchmark, we discuss several concrete recom-
mendations to raise awareness among researchers
engaged in benchmarking classifiers using this
dataset:

(0) Sub-Types in RVL-CDIP. Our investigation
into RVL-CDIP revealed that many of the RVL-
CDIP categories are in fact composed of several

5On 9 Feb. 2023, RVL-CDIP tallied "1,765 downloads last
month" on the Hugging Face Datasets platform.

6For example, the State of Michigan’s Social Security
Number Privacy Act (2004).
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sub-types. We encourage researchers and practi-
tioners to be aware of this fact. For instance, cur-
ricula vitae, bigraphical sketches, executive biogra-
phies, and business cards are the four sub-types
of the resume category. This finding has implica-
tions for modeling tasks where prior knowledge
of the label set is assumed, like in zero-shot set-
tings where each category may be specified to the
model as a string, as done in Siddiqui et al. (2021).
Additionally, unsupervised clustering analyses like
Finegan-Dollak and Verma (2020) may exhibit low
performance scores on RVL-CDIP due to many
of the categories having distinct and disparate sub-
types (e.g., radio scripts versus print advertisements
in the advertisement category, or business cards
versus biographical sketches in the resume cate-
gory).

(1) Errors. Users of RVL-CDIP should be aware
that there are many label errors and noisy samples
with unknown labels in RVL-CDIP. Recall from
Section 4 that an estimated 8.1% of test samples
from RVL-CDIP contain label errors, with an addi-
tional 1.7% being ambiguous mixed or multi-label
cases. This is problematic for benchmarking new
models, since the estimated label error rate is now
greater than state-of-the-art model accuracy error
rates. Here, the implication is that high-capacity
models like CNNs and transformers are now over-
fitting to noise. This is indeed the case for mod-
els like DiT (Li et al., 2022), which predict the
"IMAGE NOT AVAILABLE" document to be an
advertisement document due to its relative abun-
dance in that category’s training set.

(2) Ambiguities. Users of RVL-CDIP should be
aware that there are many samples in RVL-CDIP
that could have multiple valid document type labels.
We estimate this number to be 1.7% of the RVL-
CDIP test set. Like label errors, such mixed or
multi-label cases make it challenging to evaluate a
model effectively, as there are samples for which a
model may make a wrong prediction according to
the RVL-CDIP test label annotations, but in reality
many of these wrong predictions could actually be
reasonable.

(3) Test-Train Overlap. Practitioners and re-
searchers should be aware that there is a high de-
gree of overlap between the RVL-CDIP test set
and the train set. Recall from Section 5 that al-
most a third of RVL-CDIP test samples have a
near-duplicate in the training set for the same doc-
ument type category, or a training sample that

uses the same document template. This is undesir-
able, as testing models on data that is very simi-
lar to the training data can lead to "inflated" accu-
racy scores (Elangovan et al., 2021; Søgaard et al.,
2021). Moreover, highly similar train and test splits
do not facilitate the evaluation of a model’s ability
to generalize well to new in-domain data.

(4) Sensitive Information. There is an unset-
tling amount of sensitive information in the RVL-
CDIP dataset, which naturally leads to informa-
tion and data privacy concerns. We estimate that
7.7% of resume test samples contain Social Secu-
rity numbers. While RVL-CDIP is already publicly
available, researchers and practitioners should take
care when disseminating samples or copies of RVL-
CDIP. Moreover, we highlight that prior work (e.g.,
Carlini et al. (2021)) showed that it is possible to
extract training data from machine learning models,
making production deployments of models trained
on RVL-CDIP an information privacy and security
risk.

Suggestions for a future dataset. We suggest the
development and adoption of a new benchmark for
evaluating document classifiers. Several qualities
of a such a benchmark would include (1) minimal
label errors; (2) multi-label annotations, to allow
for modeling more natural occurrences of docu-
ments; (3) minimal test-train overlap; (4) absence
of sensitive information. Going beyond the points
made in this paper, a new benchmark would do
well to be (5) large-scale, consisting of 100+ or
even 250+ document categories, to test a model’s
ability to handle breadth, and (6) multi-lingual, to
benchmark language transfer approaches.

8 Conclusion

RVL-CDIP has been used as the de facto bench-
mark for evaluating state-of-the-art document clas-
sification models, but this paper provides an in-
depth analysis of the RVL-CDIP dataset and shows
that there are several undesirable characteristics of
this dataset. We first provide a set of label guide-
lines for each RVL-CDIP category, and we use this
to help us quantify the presence of errors in RVL-
CDIP, finding that the RVL-CDIP test set contains
roughly 8.1% label errors. We then observe that
roughly a third of the test data is highly similar to
the training set. Lastly we observe an unsettling
amount of personally sensitive information in RVL-
CDIP. Given these findings, we offer suggestions
for a new document classification benchmark.
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Limitations

The RVL-CDIP dataset has no official set of label
guidelines, making error analyses challenging since
we could not rely on pre-defined rules. For this rea-
son we followed best practices to create annotation
rules to help us in our error analysis. Detecting du-
plicates in RVL-CDIP is also challenging, as two
documents may appear to be the same, but may
have minor differences due to scanning artifacts or
even different indexing labels (it appears that many
of the documents have been scanned and included
in IIT-CDIP more than once). Therefore we again
have to rely on best judgement when labeling pairs
as duplicates (or near-duplicates). Additionally,
due to limitations in human resources, we were un-
able to exhaustively inspect all 400,000 RVL-CDIP
samples for the presence of errors, ambiguities,
sensitive information, etc., and thus had to rely on
sampling the dataset in order to draw conclusions.
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