
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2714–2731
May 2-6, 2023 ©2023 Association for Computational Linguistics

Methods for Measuring, Updating, and Visualizing Factual Beliefs in
Language Models

Peter Hase1,2 Mona Diab1 Asli Celikyilmaz1 Xian Li1
Zornitsa Kozareva1 Veselin Stoyanov1 Mohit Bansal2 Srinivasan Iyer1

1Meta AI 2UNC Chapel Hill
{peter, mbansal}@cs.unc.edu

{mdiab, aslic, xianl, zori, ves, sviyer}@fb.com

Abstract

Language models can memorize a considerable
amount of factual information during pretrain-
ing that can be elicited through prompting or
finetuning models on tasks like question an-
swering. In this paper, we discuss approaches
to measuring model factual beliefs, updating
incorrect factual beliefs in models, and visualiz-
ing graphical relationships between factual be-
liefs. Our main contributions include: (1) new
metrics for evaluating belief-updating meth-
ods focusing on the logical consistency of be-
liefs, (2) a training objective for Sequential,
Local, and Generalizing updates (SLAG) that
improves the performance of existing hypernet-
work approaches, and (3) the introduction of
the belief graph, a new form of visualization
for language models that shows relationships
between stored model beliefs. Our experiments
suggest that models show only limited consis-
tency between factual beliefs, but update meth-
ods can both fix incorrect model beliefs and
greatly improve their consistency. Although
off-the-shelf optimizers are surprisingly strong
belief-updating baselines, our learned optimiz-
ers can outperform them in more difficult set-
tings than have been considered in past work.1

1 Introduction

Pretrained language models have been shown to
store a large amount of factual information about
the world that can be elicited by cloze prompting
(Petroni et al., 2019), few-shot learning (Brown
et al., 2020), or finetuning models for question
answering or true/false statement classification
(Roberts et al., 2020). We refer to this kind of
stored information as model factual beliefs.2

1Code is available at https://github.com/
peterbhase/SLAG-Belief-Updating.

2We use the term factual belief rather than knowledge
as in related work (Zhu et al., 2020; De Cao et al., 2021)
because “belief” is a weaker term than “knowledge.” In a
traditional view of knowledge as Justified True Belief, it is
more difficult to describe information as knowledge than as a
belief (Schwitzgebel, 2019).

While pretrained models clearly store factual be-
liefs, it is not well understood how to efficiently
edit the stored beliefs. Model editing is an exciting
recent direction of research with several practical
uses cases (Sinitsin et al., 2020; Zhu et al., 2020;
De Cao et al., 2021; Mitchell et al., 2021). For
LMs, these uses include updating factually inaccu-
rate outputs and preventing other unwanted model
outputs (e.g. toxic generated text) without expen-
sive data curation and retraining efforts. These are
important applications given that LMs (1) struggle
with future data when trained on data from the past
(Lazaridou et al., 2021; Dhingra et al., 2021), (2)
often generate morally undesirable text (Gehman
et al., 2020; Bender et al., 2021), and (3) simply
give inaccurate outputs for tasks like question an-
swering (Lin et al., 2021). Notably, there is good
evidence that scaling models to larger sizes will not
fix these particular problems or may even exacer-
bate them (Lazaridou et al., 2021; Gehman et al.,
2020; Lin et al., 2021).

In the remainder of this paper, we present new
methods for measuring, updating, and visualizing
factual beliefs in LMs. We further describe each
of these three contributions below. Figure 1 repre-
sents the core ideas behind measuring and updating
factual beliefs, while belief visualization is done
via belief graphs (shown later in Figure 2).

Measuring factual beliefs. We measure the de-
gree to which LMs possess consistent factual be-
liefs using models finetuned on fact verification and
question answering tasks. Beyond simply checking
individual model responses, we want to assess the
structural properties of model outputs: Are they
consistent under paraphrase? Are they logically
consistent? Does changing one belief correctly
change other entailed beliefs? Does it erroneously
change other unrelated beliefs? Past work has fo-
cused primarily on consistency under paraphrase
(Elazar et al., 2021; De Cao et al., 2021; Mitchell
et al., 2021). Here, we adapt data from Talmor

2714

https://github.com/peterbhase/SLAG-Belief-Updating
https://github.com/peterbhase/SLAG-Belief-Updating

SLAG: Sequential, Local, and Generalizing Model Updates

(Main Input)

(Entailed Data)

(Local Neutral Data)

(Paraphase Data)

(Random Data)

A viper is a vertebrate.

A viper has a brain.

A viper is venemous.

Chile is a country.

Vipers are vertebrates.

Figure 1: Relying only on a Main Input Mi, we want to update a language model’s weights in order to (1) change
the output for Mi to a desired output y∗i , (2) change the output for paraphrases of Mi, (3) appropriately change
outputs for data Ei entailed by the tuple (Mi, y

∗
i), and (4) avoid changing outputs for other logically neutral data

LNi, even if it is similar (local) to Mi. This is done iteratively for T requested updates.

et al. (2020) to measure consistency under entail-
ment (including for contrapositives), and we use
the Wikidata5m dataset (Wang et al., 2021) to con-
struct logically neutral belief pairs for checking
that models do treat these beliefs as independent.

Updating factual beliefs. We propose a Sequen-
tial, Local, and Generalizing belief update objec-
tive (SLAG) that substantially improves the per-
formance of the comparable KNOWLEDGEEDI-
TOR method from De Cao et al. (2021). KNOWL-
EDGEEDITOR is a learned optimizer that edits a
model’s weights to change its prediction on an in-
put while satisfying other desiderata, like consis-
tency under paraphrase. Principally, we identify
more difficult training data for the learned opti-
mizer, and we learn to apply many small edits
rather than one big edit. These changes markedly
improve the update success rate and lower the
rate at which other beliefs are corrupted. We also
find that KNOWLEDGEEDITOR almost totally fails
when updating multiple beliefs in a row as opposed
to a changing a single belief. However, by explic-
itly training the optimizer to update multiple beliefs
sequentially, we recover much of the lost perfor-
mance. Lastly, we advocate that these methods be
evaluated for their ability to fix false or morally
undesirable model beliefs, rather than to arbitrarily
change beliefs to plausible alternatives as in past
work (De Cao et al., 2021; Mitchell et al., 2021).

Visualizing belief graphs. We explore a new form
of visualization for understanding language mod-
els, the belief graph. Given a set of factual beliefs,
we construct belief graphs by changing each model
belief and checking what other beliefs are sensitive
to those changes. Each belief becomes a node, and

directed edges between nodes show that updating
one belief changes the other. We discuss graph met-
rics that help summarize the dependencies between
model beliefs.

We summarize our main conclusions as follows:
1. ∼100M parameter models exhibit limited belief-

like qualities, as paraphrase consistency scores
are under 70%, and models show mixed levels
of consistency under entailment (Sec. 5.1).

2. Off-the-shelf optimizers are quite effective up-
date methods, often outperforming learned opti-
mizers when updating a single belief (Sec. 5.2).

3. When updating multiple beliefs in a row, per-
formance greatly declines across methods, but
SLAG can improve learned optimizers’ perfor-
mance beyond strong baselines (Sec. 5.2).

4. Belief graphs reveal many nonsensical depen-
dencies between model beliefs, and they show
the presence of “core” model beliefs that are
connected to many other stored facts (Sec. 6).

2 Related Work

Measuring factual beliefs in language models.
Much past work has explored how information is
stored and represented in pretrained language mod-
els (Rogers et al., 2020). Petroni et al. (2019) pro-
vide evidence that LMs store relational information
between entities, and Roberts et al. (2020) show
that LMs can answer open-ended questions. Subse-
quent work has further explored how much knowl-
edge is stored in LMs (Heinzerling and Inui, 2021).
Most relevant to our work are studies from Tal-
mor et al. (2020) and Elazar et al. (2021). Talmor
et al. (2020) train LMs to perform True/False clas-
sification of factual claims, and they measure how

2715

beliefs correlate between entailed facts. We use
their LeapOfThought data as a part of our SLAG
objective (Eq. 1) and to measure model consis-
tency under entailment before and after updating
beliefs in models. Meanwhile, Elazar et al. (2021)
measure the consistency of model predictions for
paraphrased inputs. We adopt their metric for para-
phrase consistency as a measure of belief. In other
recent work, Kassner et al. (2021) measure consis-
tency under entailment and paraphrase for factual
belief with a new small-scale dataset, BeliefBank.

Updating factual beliefs in language models.
Approaches to making targeted updates to model
beliefs vary along a few dimensions. First is
whether the methods alter model training or oper-
ate in a post-training setting. Sinitsin et al. (2020)
use a meta-learning objective during training to
encourage ease of editing afterwards. A larger
family of methods perform post-training model
updates: Dai et al. (2021) propose a hand-crafted
algorithm that edits model weights, while Zhu
et al. (2020) use projected gradient descent for
batches of points. De Cao et al. (2021) train a
hypernetwork (learned optimizer) that processes
model gradients in order to produce a new model
that (1) gives the desired output for an input, while
(2) satisfying other objectives like minimizing
changes in predictions for other data. Mitchell et al.
(2021) focus on scaling up the underlying hypernet-
work architecture, which is a complementary but
orthogonal research direction that is not the focus
of this paper. In a different approach, Kassner
et al. (2021) “update” model beliefs by adding in
relevant information to the input at test time. But
this approach does not change the model weights
and hence does not influence model outputs
on all other potentially relevant inputs. Lastly,
Meng et al. (2022) provide a specialized method
focused on rank-one updates to MLP matrices in
Transformer-based LMs, but they do not address
the problem of updating multiple model beliefs
and do not measure model consistency under
entailment or unintended corruption of local
neutral beliefs (metrics (5) and (6) in Sec. 3).

Visualizing factual beliefs in language models.
We do not know of any prior work on visualizing
dependencies between factual beliefs in language
models, although our approach is notably inspired
by older AI methods like Bayes Nets (Pearl, 2009).
Different from Bayes Nets, we draw dependencies
between two individual nodes when editing the

model to change one belief also results in a change
to the other belief, rather than there being a
probabilistic model specifying the relationship
between the two beliefs.

3 Updating Beliefs in Language Models

Here we describe the problem of updating model
beliefs and our learned optimizer method. We also
discuss metrics for measuring factual beliefs below,
while our Belief Graphs are presented in Sec. 6.

Problem statement and metrics. We suppose
we have a model fθ = pθ(y|x) parametrized by
θ. For an input xi that has some undesired model
output ŷi = argmaxy pθ(y|x), we wish to obtain
a new model θ∗ that produces a desired output y∗i
for xi. This new model θ∗ should also fulfill a
few other desiderata. As in past work (De Cao
et al., 2021; Mitchell et al., 2021), we operational-
ize these desiderata in the following metrics:

1. Update Success Rate (Main Input): The pro-
portion of Main Inputs xi for which the up-
dated model gives the desired output y∗i .

2. Update Success Rate (Paraphrase): The pro-
portion of paraphrases of xi for which the
updated model gives the same new prediction
as it does for xi (averaged across xi).

3. Retain Rate (All Data): The proportion of
the updated model’s predictions which are un-
changed for all data besides the Main Input.

4. ∆-Acc (All Data): The change in accuracy on
all other data besides the Main Input.

In practice, Retain Rate (All Data) and ∆-Acc are
computed with random subsets of a dataset, since
these must be computed after every belief update.
We add two metrics to those used in past work:

5. Update Success Rate (Entailed Data): The
new model’s accuracy on data that is logically
entailed by the new Main Input prediction.

6. Retain Rate (Local Neutral): The proportion
of the updated model’s predictions which are
unchanged for data that is similar to the Main
Input but still logically neutral.

We use Update Success Rate (Entailed Data) to
measure logical consistency for an updated model,
since changing one belief entails changes in logi-
cally entailed beliefs. Retain Rate (Local Neutral)

2716

Dataset Data Type Input Label(s)

zsRE Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Table 1: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

uses special Local Neutral data. Unlike random
data, Local Neutral data is guaranteed to be logi-
cally independent of the Main Input, while still be-
ing similar (local) to it, which we ensure by using
data with the same subject entity. Together, these
six metrics better cover the criteria for belief out-
lined by Newen and Starzak (2020). We compute
the metrics using data of the kind shown in Table 1.

Evaluation procedure. To date, methods have
been evaluated on the basis of their ability to
change model predictions for all data. Moreover,
the desired labels {y∗i }ni=1 on sequence prediction
tasks have each been selected from the model’s pre-
dictive beam search (De Cao et al., 2021; Mitchell
et al., 2021). We propose for evaluation to focus
on a more valuable but difficult setting: changing
the predictions on incorrect points to be correct.

Sequential updates. The standard evaluation in
past work is to update a single model belief, evalu-
ate the new model, then rollback the update before
repeating the process for each test point. We ob-
tain sequential versions of all metrics by applying r
model updates in a row before checking the metrics,
meaning there are floor(n/r) measurements for a
test set of n points. We consider it important to
evaluate a sequential setting because, in practice, it
is likely that model developers will want to update
many factual beliefs of a trained model over time.

Belief updating method. As our base architecture,
we use the KNOWLEDGEEDITOR architecture from
De Cao et al. (2021), which is a hypernetwork that
takes in model gradients as inputs and outputs a
new update to apply to the model parameters. For
further details of this method, we refer readers to
Appendix A. Let it suffice for now to observe that
a new model is given as a differentiable function

θ∗ = θ + gϕ(xi, ŷi, y
∗
i , θ)

using the learned optimizer gϕ, current LM weights
θ, Main Input xi, current prediction ŷi, and desired
model output y∗i . Then, we can package the above
update as θ(k+1) = θ(k) + gϕ(xi, ŷi, y

∗
i , θ

(k)), and
obtain new model parameters via a looped update,

θ∗ = θ(k) +
K−1∑

j=0

gϕ(xi, ŷi, y
∗
i , θ

(k+j))

= Update(xi, ŷi, y∗i , θ
(k);ϕ,K)

taking K small steps from initial parameters θ(k).
De Cao et al. (2021) use such a loop at test time;
we incorporate the loop into training to align the
train and test-time distributions.

Learned optimizer training. The training objec-
tive for KNOWLEDGEEDITOR includes differen-
tiable terms corresponding to Update Success for
the Main Input and paraphrases, as well as Retain
Rate for all other data. We also consider terms
for Update Success on entailed data and the Local
Neutral Retain Rate, when this is possible given
available data. The overall objective requires sev-
eral kinds of additional data for each point, which
we denote by DR for other random data, DLN for
local neutral data, DE for entailed data, and DP for
paraphrases of xi. For a data point xi with desired
prediction y∗i , the full objective is then:

L(ϕ;xi, ŷi, y∗i , θ) = λ1LTask(fθ∗(xi), y
∗
i)

+ λ2
1

|DP |
∑

xP∈DP

LTask(fθ∗(xP), y
∗
i)

+ λ3
1

|DE |
∑

xE ,yE∈DE

LTask(fθ∗(xE), yE)

+ λ4
1

|DLN |
∑

xLN∈DLN

KL(fθ∗(xLN)||fθ(xLN))

+ λ5
1

|DR|
∑

xR∈DR

KL(fθ∗(xR)||fθ(xR)) (1)

2717

where LTask is the loss used to get gradients for fθ.
We use the Cross Entropy loss for binary classifica-
tion and sequence-to-sequence tasks.

We optimize this objective w.r.t. ϕ using
AdamW (Loshchilov and Hutter, 2019). To obtain
update labels {y∗i }ni=1, we always use the oppo-
site class in binary classification. For sequence-to-
sequence tasks, we use the correct label when ŷi
is incorrect, and when ŷi is correct, we randomly
select another label from the training data. This
choice is in contrast to De Cao et al. (2021) and
Mitchell et al. (2021), who use samples from the
model beam search as update labels for all points.

SLAG objective. To prepare the update method for
a sequential-update setting, we consider training
gϕ to update multiple datapoints in a row. Using
the per-datapoint loss in Eq. 1, we obtain our Se-
quential, Local, and Generalizing (SLAG) loss for
a set of r Main Inputs D = {xi, ŷi, y∗i }ri=1 as

LSequential(ϕ;D, θt)=

r∑

i=1

L(ϕ;xi, ŷi, y∗i , θt+i) (2)

where θt+i = Update(xi, ŷi, y∗i , θt+i−1;ϕ,K) are
the model parameters obtained from updating on
the first i points in D (starting from θt). This objec-
tive allows us to train gϕ to update multiple beliefs
in a row. To ensure training with this objective is
still efficient, we limit how far back through the up-
date history we backpropagate when computing the
gradient w.r.t. ϕ for each term in the RHS sum of
Eq. 2. Each parameter vector θt depends on ϕ and
θt−1. We always apply the stop-gradient function
to the most recent vector θt−1 to prevent backprop-
agating through it (visualized in Appendix Fig. 3).
This choice allows our memory use to remain con-
stant in r (see Appendix Fig. 4).

4 Experiment Setup

Datasets. We run experiments with four datasets
(example data shown in Appendix Table 15). (1)
FEVER includes 115,409 True/False factual claims
(Thorne et al., 2018). We use the original test set
of 10,444 points, and we randomly split the train-
ing data into 94,469 train points and 10,496 dev
points. (2) zsRE includes 151,631 questions based
on relational knowledge from Wikipedia, which
we randomly shuffle into train/dev/test splits with
80/10/10% of the data (Levy et al., 2017). Tal-
mor et al. (2020) introduce (3) the LeapOfThought
dataset, consisting of factual claims that are en-
tailed to be true or false depending on a context

Belief Consistency ↑
Dataset Paraphrase Entailed Contrapos.

LeapOfThought - 85.6 (1.1) 16.5 (2.7)
zsRE 69.5 (1.1) - -
Wikidata5m 25.8 (0.5) - -

Table 2: Belief metric results across datasets.

Paraphrase Consistency ↑
Dataset Model Incorrect Model Correct

zsRE 61.39 (1.33) 91.82 (1.17)
Wikidata5m 24.55 (0.48) 37.20 (2.06)

Table 3: Paraphrase consistency by the correctness of
the model prediction on the Main Input.

fact. We filter the data so that the context facts are
unique, then shuffle the resulting 14,939 points into
train/dev/test splits with 60/10/30% of the data.

In order to get Local Neutral data, we construct
(4) a sequence prediction task using Wikidata5m,
a relational knowledge base with over 20 million
triplets (Wang et al., 2021). Each input consists
of an entity e1 and relation r, and the label is an-
other entity e2 that completes the triplet. All inputs
come in pairs that share the same entity e1 but use
different relations with different labels. In general,
the completion e2 to the Main Input triplet (e1, r1,
e2) has no logical consequences for its paired in-
put, (e1, r2, ?). The paired points are also local to
the Main Input, i.e. they pertain to the same entity
e1 as the Main Input. We obtain four paraphrases
for each Main Input using different aliases for the
entity and synonyms of the relation. We construct
a train set of 150k points and dev/test sets of 10k
points each. See Appendix B for further details.

Models. We train five models with different ran-
dom seeds for each dataset, using RoBERTa-base
for binary tasks and BART-base for sequence-to-
sequence tasks (accuracies in Appendix Table 14).
For each of the five models, we train one learned
optimizer using SLAG and one with the objective
from De Cao et al. (2021), which we list as KE in
tables below. Our model selection criterion is the
mean of: average Update Success Rate (across data
types), Retain Rate (only for Local Neutral data),
and ∆-Acc for All Data. We tune the SLAG objec-
tive terms for each task separately (see Appendix
Table 10 for final selections; results discussed in
Appendix E). Other hyperparameters are given
in Appendix B. To summarize the differences
between SLAG and KNOWLEDGEEDITOR: (1) we
use Ktrain=Ktest rather than Ktrain=1; (2) we adopt

2718

Single-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 100 (0.0) - - - 98.80 (0.2) 0.22 (0.1)
KE 99.98 (<0.1) - - - 98.28 (0.3) -0.24 (0.1)
SLAG 99.99 (<0.1) - - - 98.41 (0.2) -0.20 (0.1)

LeapOfThought
SGD 100 (0.0) - 72.48 (4.6) - 95.52 (0.4) 1.23 (0.8)
KE 99.78 (0.4) - 74.48 (4.4) - 93.50 (1.3) -1.33 (1.1)
SLAG 100 (0.0) - 75.50 (4.3) - 94.92 (1.4) -1.31 (1.2)

zsRE
SGD 99.36 (0.1) 94.44 (0.6) - - 74.73 (0.4) -0.43 (0.1)
KE 84.73 (1.4) 89.26 (1.8) - - 71.55 (2.4) -2.19 (0.4)
SLAG 94.29 (0.4) 94.71 (0.5) - - 80.48 (1.3) -0.29 (0.1)

Wikidata5m
SGD 98.05 (0.3) 68.78 (0.8) - 41.46 (1.0) 58.62 (0.6) -1.97 (0.3)
KE 74.57 (2.9) 58.05 (2.2) - 40.84 (1.8) 53.58 (2.2) -3.03 (0.5)
SLAG 87.59 (0.6) 80.70 (0.9) - 47.85 (1.0) 63.51 (1.3) -1.71 (0.3)

Table 4: Belief update metrics for off-the-shelf optimizers, KNOWLEDGEEDITOR (KE) from De Cao et al. (2021),
and SLAG, with rtest = 1. Bolded numbers are the best in their group at a statistical significance threshold of
p < .05 (or lower). Our SLAG objective improves over KE, but off-the-shelf optimizers perform surprisingly well.

training labels using real data labels rather than
alternatives from the model’s beam search; (3) our
objective terms differ following tuning; and (4) we
can optimize for updating multiple beliefs in a row.

Baselines. We use off-the-shelf optimizers as base-
lines. We tune the baseline hyperparameters sep-
arately for each dataset, selecting among several
kinds of optimizers, learning rates, and the num-
ber of update steps. The selection criterion is the
same as the criterion outlined for learned optimiz-
ers above. The resulting baselines are surprisingly
strong (see Appendix Table 12 for final selections).

Hypothesis testing. We obtain 95% confidence
intervals and perform hypothesis tests via block
bootstrap, resampling model seeds and data points
(Efron and Tibshirani, 1994). For ablation experi-
ments, we run only one model seed per condition.

5 Experiment Results

5.1 Do LMs have consistent factual beliefs?

We measure Paraphrase Consistency, Entailment
Acc, and Contrapositive Acc for finetuned task
models. Paraphrase Cons. is the fraction of para-
phrase pairs where the model produces the same
output (Elazar et al., 2021). Entailment Acc is the
model accuracy on data that is entailed by the Main
Input. For LeapOfThought (see Table 1), “Main
Input xi is true” implies “entailed input xE has
label yE ,” but the inverse (¬A ⇒ ¬B) does not
necessarily hold. Therefore, we compute Entail-
ment Acc only where the Main Input prediction is
correct. We do know that the contrapositive holds:
“Entailed input xE does not have label yE” implies

Update Success Rate ↑ ∆-Acc ↑
Desired Label Main Input Paraphrase All Data

Beam Label 97.41 (0.3) 97.03 (0.4) -0.30 (0.1)
Correct Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 5: Evaluation difficulty by desired model output,
for a learned optimizer trained with SLAG on zsRE.

that “Main Input xi is false.” So for Contrapositive
Acc, we measure how often the model follows this
rule, when the antecedent holds of its prediction.

Belief measurement results. Table 2 shows the be-
lief metrics for each dataset. We find that ∼100M
parameter models show limited evidence of having
consistent factual beliefs. Paraphrase consistency
is 69.50% (± 1.09) for zsRE and much lower for
Wikidata5m (25.84%±0.53). While entailment ac-
curacy is high for LeapOfThought (85.63%±1.08),
the model is consistent under the contrapositive
only 16.51% (± 2.71) of the time. Overall, these
results are not nearly as consistent as we would
hope for factual beliefs to be. Interestingly, the
metrics are much higher when the model predic-
tion on the Main Input is correct (Table 3).

5.2 Can we update factual beliefs in LMs?

First, we compare two evaluation procedures for
sequence prediction tasks: correcting model be-
liefs versus changing them to an alternative from
the model’s beam search. We do so for zsRE us-
ing SLAG. Next, we compare belief update per-
formance between KNOWLEDGEEDITOR, SLAG,
and off-the-shelf optimizers. We report results in
single-update (rtest = 1) and sequential-update
(rtest = 10) settings. See Appendix Fig. 5 for

2719

Sequential-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 92.81 (1.3) - - - 91.86 (1.4) 1.16 (0.6)
KE 74.13 (1.8) - - - 39.86 (0.7) -27.13 (1.3)
SLAG 91.27 (2.9) - - - 70.30 (5.8) -11.96 (4.5)

LeapOfThought
SGD 100 (0.0) - 61.34 (5.0) - 82.62 (0.8) -4.93 (1.0)
KE 96.14 (2.3) - 49.27 (6.0) - 72.45 (0.9) -15.03 (1.0)
SLAG 100 (0.0) - 50.46 (5.5) - 74.02 (1.1) -13.03 (1.3)

zsRE
SGD 82.71 (0.6) 90.81 (0.7) - - 40.49 (0.6) -2.38 (0.3)
KE 0.10 (<0.1) 36.55 (1.4) - - 0.05 (<0.1) -20.98 (0.7)
SLAG 87.57 (0.6) 92.20 (0.7) - - 47.19 (0.7) -1.74 (0.3)

Wikidata5m
SGD 56.82 (0.8) 54.49 (0.7) - 6.40 (0.4) 26.37 (0.6) -3.96 (0.4)
KE 0 (0.0) 40.84 (0.9) - 0 (0.0) 0 (0.0) -10.05 (0.6)
SLAG 58.27 (1.0) 65.51 (0.9) - 7.36 (0.5) 27.76 (0.7) -3.62 (0.4)

Table 6: Belief update results when a model is sequentially updated rtest=10 times. Here, SLAG uses rtrain=R. On
sequence prediction tasks in this setting, SLAG can outperform the off-the-shelf optimizers across metrics.

an ablation across rtest.

Correcting beliefs vs. changing factual beliefs.
Given the results in Table 5, we find that correcting
model outputs is harder than simply changing them
to a plausible alternative. Update Success rises by a
full 2.96 (±0.48; p<1e−4) points for Main Inputs
and 2.58 (±0.81; p<1e−4) for Paraphrases, while
∆-Acc is virtually unchanged. This suggests that
that past work has overestimated the efficacy of
belief update methods for actually fixing models.
Henceforth we evaluate methods according to their
ability to update model beliefs to be true.

Update method results (single update). Table 4
shows the results in a single-update setting. First,
we find that off-the-shelf optimizers are very effec-
tive across the board. The baselines show Main
Input Update Success Rates of 98%+ across tasks
with competitive or even positive ∆-Acc scores.3

When strongly tuned, these baselines outperform
learned optimizers on most metrics here.

However, SLAG surpasses the baselines in a few
places. All Data Retain Rate on zsRE rises by
5.77 points (±1.43; p<1e−4), and on Wikidata5m
Paraphrase Update Success rises by 11.92 (±1.20;
p<1e−4) and the Local Neutral Retain Rate by
6.40 (±1.41; p<1e−4). SLAG also greatly im-
proves over KE for sequence prediction tasks.

Interestingly, we observe that belief updates
greatly improve paraphrase consistency and entail-
ment accuracy (SLAG results in Table 7). Updates
improve Paraphrase consistency by 33.14±1.46 on

3Positive ∆-Acc values are possibly due to distribution
shift in the test split. In FEVER, for instance, the train and
dev data are 73% True, while test data is 50% True. On the
dev split, AdamW achieves a negative ∆-Acc, -0.18 (±0.11).

Metric Before Update After Update

Entailment Acc 58.30 (5.7) 75.50 (4.3)
Para. Cons (zsRE) 61.39 (1.3) 94.53 (0.6)
Para. Cons (Wiki) 24.69 (0.5) 84.56 (0.9)

Table 7: Entailment Acc and Paraphrase Consistency
rise greatly after model updates to incorrect points.

zsRE and 59.87±1.09 on Wikidata5m, while En-
tailment Acc rises by 17.20±7.10 points.

Update method results (sequential updates).
We give results for a sequential update setting
(rtest=10) in Table 6. Immediately we see this is a
much more difficult evaluation, as metrics are gen-
erally far lower for each dataset. Next, we observe
that learned optimizers with SLAG (rtrain=10) out-
perform baselines on sequence prediction tasks.
On zsRE, we improve Update Success for Main
Inputs by 4.86 (±0.83; p=1e−4) and for Para-
phrases by 1.39 (±0.93; p=.004), with better ∆-
Acc by 0.64 (±0.35; p=.0005). Improvements
trend in the same direction for Wikidata5m and are
all statistically significant except for the gain in ∆-
Acc. The jump on Paraphrases in particular is large
(11.02±1.17; p<1e−4). In comparison, using the
KNOWLEDGEEDITOR training objective leads to
drastic drops in performance.

Learned optimizers still struggle compared to
baselines on binary datasets. Here, AdamW and
SGD achieve high update update success with
much better ∆-Acc scores, by 13.12 (±4.51;
p=1e−4) on FEVER and 8.16 (±1.63; p=1e−4)
on LeapOfThought.

2720

Middle-earth is a real place.
[y: false]

Hot Right Now is mistakenly
attributed to DJ Fresh.

[y: false]

There are no musical or creative
works in existence that have
been created by Phillip Glass.

[y: false]

The Daily Show is incapable
of focusing on recent news

stories.
[y: false]

The Chrysler Building was
always the world's shortest

building.
[y: false]

Shane McMahon officially
retired on the first day of

2010.
[y: false]

Bessie Smith died on April
26, 1937.
[y: false]

Despicable Me 2 was written
by Cinco Paul.

[y: true]

Hot Right Now is from Nextlevelism.
[y: true]

Figure 2: A non-random subgraph of the belief graph for a model trained on FEVER. Directed edges from u to
v indicate that changing the model belief in u causes the belief in v to change. The ground-truth label is given in
brackets for each point, and node color shows the model’s accuracy before any updates (green=correct).

6 Belief Graphs

We now construct belief graphs to better under-
stand the connections between model beliefs. We
form a graph from a set of datapoints by updating
each prediction and checking what other predic-
tions change. We represent each datapoint as its
own node in a belief graph. Whenever updating
a datapoint u changes the prediction for point v,
we draw a directed edge from u to v. Following
Sec. 5.2, we use off-the-shelf optimizers to change
the model output to the opposite of its original pre-
diction for every datapoint. For FEVER we obtain
a graph of 10,444 nodes, and for LeapOfThought
we obtain a graph with 8642 nodes, which is dou-
ble the test set size because we include both Main
Inputs and Entailed Data as their own nodes.

We visualize part of a belief graph in Fig. 2. This
figure shows a non-random subgraph intended to
give a representative view of the data (we give three
random subgraphs in Appendix E). On inspection,
we do not see any clear reasons for beliefs being
connected or not connected. We come to the same
conclusion looking at other random subgraphs (see
Appendix Figures 9, 10, and 11). Whether or not
changing one belief changes another appears essen-
tially random, which is a novel negative result on
the organization of internal model beliefs. How-
ever, we do observe some aggregate trends. First,
it appears that incorrect predictions are the most
sensitive to model updates. On FEVER, incorrect
beliefs change around 4% of the time when other
beliefs are updated, while correct beliefs change
only 2.5% of the time. Second, we find that Local
Neutral beliefs are much harder to avoid changing
than simply random data. On Wikidata5m (Table
4), we observe that the Retain Rate on All Data is

Dataset

Metric FEVER LeapOfThought

Nodes 10,444 8,642
% Edgeless 0.0 0.0
Edges Total 1.88m 9.71m
In Edges (95th perc.) 1,088 5,347
Out Edges (95th perc.) 390 3,087
% Update-Transitivity 66.64 24.38*

Table 8: Belief graph summary statistics. *We compute
Update-Transitivity for LeapOfThought with n = 4000
points due to computational cost.

61.51±1.33, while for Local Neutral data it is a
full 15.66 points lower.

We highlight a few summary statistics here from
Table 8 for a broader view of the graphs. First,
% Edgeless is the proportion of nodes which have
no in or out edges. Since this is 0 for both datasets,
every belief can be changed by editing the right
belief. # In Edges is the number of in edges at the
95th percentile, meaning 5% of beliefs have more in
edges than this value, and the same holds of # Out
Edges. These values grow to a rather large fraction
of the overall datasets, suggesting that (1) some
beliefs are sensitive to changes in a large fraction
of all beliefs, and (2) some beliefs are influential
to hundreds of other beliefs when changed. Inter-
estingly, this implies that some factual beliefs are
“core” beliefs in the model, such that changing these
individual beliefs requires greatly changing the
overall distribution of factual beliefs in the model.
Lastly, % Update-Transitivity represents the an-
swer to the question: if updating belief A changes
belief B, and updating belief B changes belief C,
what proportion of the time does updating A change
C? For these datasets, a logically consistent model
should display 100% Update-Transitivity (see Ap-

2721

pendix D for a caveat on this metric). We find
that belief updates often yield intransitive results
for both datasets, another negative result for belief
consistency. It would be valuable for future work
to extend this analysis of belief graphs to explore
why language models demonstrate these surprising
connections and inconsistencies between beliefs.

7 Conclusion

We first measure the presence of consistent factual
beliefs in language models, and we propose to eval-
uate learned optimizers for whether they can make
model beliefs more truthful. Then we show that
our SLAG objective greatly improves learned op-
timizer performance, outperforming off-the-shelf
optimizers when updating multiple model beliefs
in a row. Finally, we introduce belief graphs to
visualize connections between model beliefs. We
find that model beliefs are highly interconnected,
with some “core” beliefs influencing hundreds of
other beliefs.

Ethics Statement

Belief update methods may be used to either cor-
rect undesired beliefs or induce problematic beliefs
in LMs, and it is not clear whether these capabil-
ities could be separated. We propose to evaluate
methods only on the basis of their ability to correct
mistaken model beliefs, but the malicious use case
remains. We are uncertain about how a bad belief
would influence the general behavior of a model
(e.g. answers to many questions), but it is possible
that a belief update method could instill bad beliefs
in a capable LM with far-reaching implications
for model behavior. That said, we hope that these
methods will instead be used to update undesirable
moral, social, and factual beliefs in large LMs.

Limitations

We note a few limitations of our work:
(1) Neural learned optimizers require large

amounts of training data to successfully edit even a
few model beliefs at test time.

(2) Our experiments are limited by available
datasets in terms of both metrics we can calculate
and objectives we can optimize for. There is also
some noise in each dataset which we catalogue in
Appendix C.

(3) We conduct experiments with ∼100M pa-
rameter models as in past work. While the belief-
updating problem is still clearly unsolved given

our results, it will also be valuable for future work
to scale to larger models which may exhibit more
consistent factual beliefs. That said, we believe our
contributions are still valuable since our metrics,
objectives, and belief visualization method can all
be easily applied to larger models, and hypernet-
works have already been extended to work with
larger models (Mitchell et al., 2021).

(4) Currently, models may have seemingly ran-
dom interdependencies between factual beliefs,
limiting the insights available from our belief
graphs. We believe that as models become more
consistent and more truthful, the usefulness of be-
lief graphs as a tool for understanding connections
between beliefs will increase.

(5) Lastly, we do not currently account for un-
certainty in factual beliefs. The data we use comes
in the form of declarative statements and answers
to questions which take what is called a veridi-
cal stance toward a proposition, displaying a “full
commitment” to that proposition’s truthfulness (Gi-
annakidou and Mari, 2020). It will be valuable
for future work to explore two dimensions of un-
certainty in beliefs: (1) expression of uncertainty
in language, via partial or trivial commitments
(like “X might be Y”) and (2) expression of uncer-
tainty mathematically, via probabilities assigned
by a model to utterances or True/False values. In
this paper we treat a belief as “updated” when the
model output changes, but this ignores any under-
lying change in the distribution pθ(y|x) that could
occur even if its mode does not change.

References
Emily M Bender, Timnit Gebru, Angelina McMillan-

Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language models
be too big? In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 610–623.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In
NeurIPS.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu

2722

https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://arxiv.org/abs/2005.14165

Wei. 2021. Knowledge neurons in pretrained trans-
formers. arXiv preprint arXiv:2104.08696.

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.
Editing factual knowledge in language models. In
EMNLP, pages 6491–6506. Association for Compu-
tational Linguistics.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2021. Time-aware language mod-
els as temporal knowledge bases. arXiv preprint
arXiv:2106.15110.

Bradley Efron and Robert J Tibshirani. 1994. An Intro-
duction to the Bootstrap. CRC press.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. Realtoxici-
typrompts: Evaluating neural toxic degeneration in
language models. In Findings of EMNLP.

Anastasia Giannakidou and Alda Mari. 2020. A linguis-
tic framework for knowledge, belief, and veridicality
judgement. HAL.

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-
guage models as knowledge bases: On entity repre-
sentations, storage capacity, and paraphrased queries.
In Proceedings of the 16th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Main Volume, pages 1772–1791, Online.
Association for Computational Linguistics.

Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and
Peter Clark. 2021. Beliefbank: Adding memory to a
pre-trained language model for a systematic notion
of belief. arXiv preprint arXiv:2109.14723.

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri-
bovskaya, Devang Agrawal, Adam Liska, Tayfun
Terzi, Mai Gimenez, Cyprien de Masson d’Autume,
Sebastian Ruder, Dani Yogatama, et al. 2021. Mind
the gap: Assessing temporal generalization in neural
language models. In NeurIPS.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke
Zettlemoyer. 2017. Zero-shot relation extraction via
reading comprehension. In Proceedings of the 21st
Conference on Computational Natural Language
Learning (CoNLL 2017), pages 333–342, Vancouver,
Canada. Association for Computational Linguistics.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021.
Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In ICLR.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual knowl-
edge in gpt. arXiv preprint arXiv:2202.05262.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2021. Fast model
editing at scale. arXiv preprint arXiv:2110.11309.

Albert Newen and Tobias Starzak. 2020. How to ascribe
beliefs to animals. Mind & Language.

J. Pearl. 2009. Causality. Cambridge University Press.

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick
Lewis, Majid Yazdani, Nicola De Cao, James Thorne,
Yacine Jernite, Vladimir Karpukhin, Jean Maillard,
Vassilis Plachouras, Tim Rocktäschel, and Sebastian
Riedel. 2021. KILT: a benchmark for knowledge
intensive language tasks. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2523–2544, Online.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473, Hong Kong, China. Association
for Computational Linguistics.

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
How much knowledge can you pack into the param-
eters of a language model? In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 5418–5426,
Online. Association for Computational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A primer in BERTology: What we know about
how BERT works. Transactions of the Association
for Computational Linguistics, 8:842–866.

Eric Schwitzgebel. 2019. Belief. In Edward N. Zalta,
editor, The Stanford Encyclopedia of Philosophy, Fall
2019 edition. Metaphysics Research Lab, Stanford
University.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin,
Sergei Popov, and Artem Babenko. 2020. Editable
neural networks. In ICLR.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically reason
over implicit knowledge. In NeurIPS.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:

2723

https://arxiv.org/pdf/2104.08696.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://aclanthology.org/2021.emnlp-main.522
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://halshs.archives-ouvertes.fr/halshs-03088697/document
https://halshs.archives-ouvertes.fr/halshs-03088697/document
https://halshs.archives-ouvertes.fr/halshs-03088697/document
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2202.05262.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://books.google.com/books?id=LLkhAwAAQBAJ
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.18653/v1/2020.emnlp-main.437
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349
https://plato.stanford.edu/entries/belief/
https://openreview.net/pdf?id=HJedXaEtvS
https://openreview.net/pdf?id=HJedXaEtvS
http://128.84.4.27/pdf/2006.06609
http://128.84.4.27/pdf/2006.06609
http://128.84.4.27/pdf/2006.06609
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074

Human Language Technologies, Volume 1 (Long
Papers), pages 809–819, New Orleans, Louisiana.
Association for Computational Linguistics.

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang. 2021.
Kepler: A unified model for knowledge embedding
and pre-trained language representation. Transac-
tions of the Association for Computational Linguis-
tics, 9:176–194.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv Kumar.
2020. Modifying memories in transformer models.
arXiv preprint arXiv:2012.00363.

A Learned Optimizer Details

Architecture. KNOWLEDGEEDITOR is a learned
optimizer g : X × Y × Y ×Θ → Θ that produces
new model weights by applying an adjusted gra-
dient step to a model. For reference, we give a
glossary of symbols used here in Table 9. For ad-
ditional details beyond what is presented here, we
refer readers to De Cao et al. (2021).

At a high level, gϕ first encodes an input xi and
requested prediction change into a vector h, then
processes h into two low-rank matrices A and B
that are used to transform the model gradient on xi,
∇θL(xi, y∗i). For Transformer models, the method
edits only attention and feed-forward weights, so
all model gradients match the shape of an associ-
ated weight matrix of shape d1 × d2. Formally, a
new model θ∗ is obtained using a learned optimizer
gϕ as follows:

h = LSTM([x; ŷ; y∗])

{u, v, γ, δ} = {MLPi(h)}4i=1

A = softmax(u)vT

B = softmax(γ)δT

η = σ(MLP(h))

θ∗ = θ + η(A ◦ ∇θL(xi, y∗i) +B)

where ϕ consists of all LSTM and MLP parameters.
Training Algorithm. The learned optimizer ob-
jective is optimized w.r.t. ϕ with AdamW through
a standard procedure of randomly sampling mini-
batches without replacement (Loshchilov and Hut-
ter, 2019). Within each batch, one datapoint is
randomly selected as the Main Input, and the re-
maining points are used as DR. To obtain update
labels {y∗i }ni=1, we always use the opposite class
in binary classification. For sequence-to-sequence

Symbol Glossary

fθ Language Model
gϕ Learned optimizer
xi Main Input
ŷi LM output on xi

y∗
i Desired output

∇θL(xi, y
∗
i) Gradient of LM

Update(xi, ŷi, y
∗
i , θ) Update one LM belief

L(ϕ;xi, ŷi, y
∗
i , θ) Belief update objective for xi

LSequential(ϕ;D, θt) Sequential objective (SLAG)
K # gradient steps in Update(·)
r # beliefs updated in LSequential

Table 9: Symbol descriptions for the learned optimizer.

tasks, we use the correct label when ŷi is incorrect,
and when ŷi is correct, we randomly select another
label from the training data. This choice is in con-
trast to De Cao et al. (2021) and Mitchell et al.
(2021), who use samples from the model beam
search as update labels for all points.

B Additional Training Details

B.1 Compute Costs.

Learned optimizer memory. The hypernetwork
has 92m trainable parameters for RoBERTa-base
(which is 125m parameters), and 105m param-
eters for BART-base (which is 139m parame-
ters). To increase training efficiency, we limit
how far into the task model history we backprop-
agate. As shown in Fig. 3, when backpropagat-
ing through task model parameters θt = θt−1 +
Update(xi, ŷi, y∗i , θt−1;ϕ), we continue backprop-
agating through Update(xi, ŷi, y∗i , θt−1) but not
θt−1, which is also dependent on ϕ. That is, we ap-
ply a stop-gradient function to θt−1. This way, we
compute the derivative ∇ϕUpdate(xi, ŷi, y∗i , θt;ϕ).
only once for each t, rather than recomputing these
gradients for all subsequent time steps. These
choices allow the memory use of our training algo-
rithm to remain constant in r. We make the same
choice for our K looped steps in a single applica-
tion of the Update function, so the gradient for the
update at step k depends only on gϕ(xi, ŷi, y

∗
i , θ

(k))
and not θ(k−1). See Fig. 4 for a graph of memory
use depending on r and k.
Experiment runtimes. We now give runtimes
for experiments in the paper. Building the belief
graphs takes 25 hours for FEVER (n = 10, 444)
and 17.5 hours for LeapOfThought (n = 8642)
on an NVIDIA RTX 2080 GPU. Computing sum-
mary statistics for graphs takes 3 hours on FEVER
and 3 hours for LeapOfThought for statistics be-

2724

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00360/98089/KEPLER-A-Unified-Model-for-Knowledge-Embedding-and
https://arxiv.org/pdf/2012.00363.pdf

Task Model

Optimizer Backprop

Stop Gradient

Sequential Backprop Graph

Figure 3: The backpropagation graph for sequential model updates.

sides Update-Transitivity. We compute Update-
Transitivity for LeapOfThought with a subset of
4000 points, which takes 45 hours.

All other experiments are run on a NVIDIA
V100 32GB GPU. Training the task models takes
7 minutes for LeapOfThought, 45 minutes for
FEVER, 4 hours for zsRE, and 10 hours for Wiki-
data5m. Training the learned optimizer with r = 1
takes 2.3 hours for LeapOfThought, 5 hours for
FEVER, 9.5 hours for zsRE, and 16 hours for
Wikidata5m. Training the learned optimizer with
r = 10 takes 53 minutes for LeapOfThought, 2.9
hours for FEVER, 7 hours for zsRE, and 12.5 hours
for Wikidata5m. Computing update statistics with
the off-the-shelf optimizers with r = 1 takes 4 min-
utes for LeapOfThought, 30 minutes for FEVER,
2.3 hours for zsRE, and 3.9 hours for Wikidata5m.
With r = 10, the baselines require 1 minute for
LeapOfThought, 15 minutes for FEVER, 54 min-
utes for zsRE, and 1.8 hours for Wikidata5m. Total
runtimes for each experiment should take into ac-
count multiple conditions and multiple seeds of
each model being run.

B.2 Hyperparameters and Objective Terms.

Training hyperparameters. We fit our RoBERTa-
base and BART-base task models to their respec-
tive datasets with the following hyperparameters:
We train for 10 epochs on the binary tasks, and
20 for the sequence-to-sequence tasks. When pre-
dicting with BART-base, we use a beam search
with width 5. In each case, we use AdamW from
torch.optim with a LR of 1e-5 and weight de-
cay of 1e-4. We select the best model according
to the best dev set accuracy, checkpointing after
each training epoch. The learned optimizers are
optimized with AdamW, using a learning rate of
3e-4 and weight decay of 0. We train the learned
optimizer for 5 epochs on each dataset except for

Dataset rtest K Objective

FEVER 1 5 Main
10 1 Main

LeapOfThought 1 5 Main
10 1 Main

zsRE 1 5 Main
10 5 Main

Wikidata5m 1 5 Main+Para
10 5 Main+Para

Table 10: Final hyperparameters and objective terms of
the learned optimizer for each task.

LeapOfThought, which we train for 10 epochs
given its smaller size. The learned optimizers are
also selected based on dev set performance, with
checkpointing after each training epoch. Their se-
lection criterion is a raw average of Update Success
Rate (averaged over each kind of data), Retain Rate
(Local Neutral) and ∆-Acc, with terms dropped
when they cannot be computed given the available
data. Note that dev epochs with zsRE and Wiki-
data5m are fairly slow, so in order to speed up our
experiments we compute dev epochs with a subset
of 4000 dev points.

Learned optimizer. We give the final hyperparam-
eter and objective terms used in each experiment in
Table 10. Our objective ablation is given in 17, and
we select the best performing condition for each
dataset according to dev set performance, using the
same selection criterion outlined previously. We
keep all weight coefficients λi equal rather than
tuning them. Main refers to the first term in Eq.
1, plus the KL term with random data. We use
Ktrain ≤ 5 for all experiments. For results across
K values on zsRE, see Fig. 8.

Baseline update method. We tune a baseline off-
the-shelf optimizer separately for each dataset, us-
ing rtest = 1. Our performance criterion is the

2725

Relation % Test Data

Place of Birth 11.00
Award Received 11.00
Cause of Death 5.66
Place of Death 11.00
Place of Burial 8.33
Educated At 11.00
Child 11.00
Occupation 11.00
Spouse 11.00
Sibling 9.01

Table 11: Wikidata relations and their proportion of the
test data.

Dataset Optimizer LR Num. Steps

FEVER AdamW 1e-6 100
LeapOfThought SGD 1e-2 100
zsRE SGD 1e-1 10
Wikidata5m SGD 1e-1 10

Table 12: Final hyperparameters of the baseline update
method for each task.

same as with learned optimizers, a raw average of
Update Success Rate (averaged over each kind of
data), Retain Rate (Local Neutral) and ∆-Acc. The
grid search is over the following parameters: The
off-the-shelf optimizers are from torch.optim
and include {AdamW, SGD, and RMSProp} with
default arguments (except for the learning rate).
We consider a number of maximum steps in {5,
10, 100}. The learning rates we consider depend
on the optimizer: {1e-4, 1e-5, 1e-6} for AdamW,
{1e-4, 1e-5, 1e-6} for RMSProp, and {1e-1, 1e-2,
1e-3} for SGD. The LR ranges were selected af-
ter some initial manual exploration of the space.
Our final hyperparameter values are shown in Ta-
ble 12 for each dataset. For comparison, De Cao
et al. (2021) use RMSProp with 100 update steps.
The LR for zsRE and Wikidata5m may seem quite
high, but this is the condition that actually does the
least damage to the model’s accuracy on other data,
∆-Acc. The baseline optimizes all of the train-
able parameters in the language model, unlike the
learned optimizer which optimizes only attention
and feedforward weights for purposes of parameter
efficiency.

B.3 Wikidata5m Additional Details.

We construct four paraphrases per Main Input by
selecting from a set of alternative phrasings for the
entity and relation in the Main Input. The syntax
for each paraphrase follows the same simple tem-
plate as the Main Input, in contrast to zsRE where
syntax differs between paraphrases. A couple de-

tails remain. Some relations are one-to-many, and
therefore we accumulate valid completing entities
from the data as possible answers; later we com-
pute accuracy as an exact match with any possible
answer. All 10 relations appear in each split of the
data. Only 33.80% and 37.18% of the entities in
the dev and test splits are seen in the training data,
though we do not find that models perform better
on entities seen in training.

B.4 LeapOfThought Additional Details
The LeapOfThought dataset consists of a fact and a
claim for each datapoint, where the truth of the fact
implies that the claim has label yi (True/False). All
of the facts in the data are true, while half of the
claims are true and half are false. When training
the learned optimizer, we treat the the facts as the
Main Input when training the learned optimizer
and claims as entailed data. When training the
True/False classifier, we fit to the claims, for which
test accuracy is 83.65 (± 1.05). This seems to
generalize well to the facts, as test accuracy here is
93.66 (±0.87), although as the low contrapositive
accuracy suggests (Table 3), the model seems to be
too prone to predicting true for this data.

Since very few of the Main Inputs are predicted
as false, we run into a small dilemma when fit-
ting the learned optimizer with the use of the en-
tailed data objective term. The entailment between
fact and claim only holds when the fact is true, so
we can only compute the objective when updat-
ing a point from false to true. This ends up being
less than 10% of the training data. We ultimately
choose to oversample points that fit this descrip-
tion during training of the learned optimizer, which
allows the learned optimizer to fully fit to the en-
tailed data. Also note that during learned optimizer
training, we include Entailed Data from other data
points besides the Main Input in the KL term in Eq.
1, and we measure ∆-Acc using both Main Inputs
and Entailed Data.

C Dataset Sources and Noise

Here we give sources and licenses for each dataset,
and we document some shortcomings of each
dataset, with reference to examples in Table 15.
Dataset sources and licenses. FEVER and zsRE
are available through the KILT4 resource and are

4https://github.com/
facebookresearch/KILT/?fbclid=
IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_
PcsKA881vpuXaELKBz0

2726

https://github.com/facebookresearch/KILT/?fbclid=IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_PcsKA881vpuXaELKBz0
https://github.com/facebookresearch/KILT/?fbclid=IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_PcsKA881vpuXaELKBz0
https://github.com/facebookresearch/KILT/?fbclid=IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_PcsKA881vpuXaELKBz0
https://github.com/facebookresearch/KILT/?fbclid=IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_PcsKA881vpuXaELKBz0

K

K

0

10

20

30

1 2 4 6 8 10
r

M
em

or
y

U
se

d
(G

B
)

Memory Usage by r

Figure 4: Training memory usage in terms of K and r hyperparameters in our implementation, for a learned
optimizer trained for a BART-base model on zsRE, using a batch size of 16. For comparison, the orange dashed
line shows the memory use of training the BART-base model on zsRE, using the same batch size. Our use of the
stop-gradient function limits the growth of runtime and memory w.r.t. both K and r. By accumulating gradients
across points, memory w.r.t. r is kept constant. The same trick could be applied to the K looped gradient steps
inside the Update function, at the trade-off of backpropagating K times per point rather than one time.

Ours De Cao et al. (2021) Mitchell et al. (2021)

Update Success Rate (Main Input) Success rate Edit success
Update Success Rate (Paraphrase) Equivalence accuracy Edit success
Update Success Rate (Entailed Data) - -
Retain Rate (Local Neutral) - -
Retain Rate (All Data) Retain accuracy -
∆-Acc (All Data) Performance deterioration Drawdown

Table 13: A glossary of terms used in work on model update methods. Note metrics are not always calculated
in exactly the same way. For instance, Performance deterioration is a ratio in accuracies rather than difference in
accuracies, and edit success from Mitchell et al. (2021) combines two metrics in our case. The performance metric
in Zhu et al. (2020) is an average of Update Success Rate (Main Input) and ∆-Acc.

available under the MIT license (Petroni et al.,
2021). LeapOfThought data can be constructed
through their available code5 and is also available
under the MIT license. The source data for Wiki-
data5m data can be downloaded through the KE-
PLER6 code repository (Wang et al., 2021) and
is available under the MIT license. Use of each
dataset is in accordance with their intended licensed
uses. The zsRE and Wikidata5m datasets do refer
to people by name as they reference public figures
on Wikipedia. All datasets are in English.
FEVER. Some claims are slightly vague or am-
biguous when taken on their own. For instance
“Doug Ducey was the CEO of Cold Stone Cream-
ery and offered many opportunities to new hires”
is rated True, though this will depend heavily on
what one thinks “many opportunities” means. Sim-
ilar whether or not “L.A. Guns is a tattoo shop”
depends on which “L.A. Guns” one is referring to,
the tattoo shop or metal band. Of course, this is a
generic issue of language, and not unique to this
dataset. Some inputs seem to be a matter of person
opinion: “Los Angeles is known for its food” is
rated False.

5https://github.com/alontalmor/
LeapOfThought

6https://github.com/THU-KEG/KEPLER

LeapOfThought. Many examples use an “is a”
relation, producing sentences like “A sunlight is a
good health.” This could be more false than true,
but it’s a fairly nonsensical statement to begin with.
There are also other nonsensical or vague examples
in the data: ”A friar is the opposite of mineral” is
labeled False. “A detective desires equal opportu-
nity.” is labeled True. It is not immediately clear
what conditions would make these statements true
or false.

zsRE. Some questions invoke potentially one-to-
many or temporally dependent relations, though
there is only one ground-truth answer per ques-
tion in this dataset. For instance, a paraphrase of
the question about Gifford Pinchot in Table 15 is:
”What disease did Gifford Pinchot have?” A per-
son might have had many diseases over their life
which could all be valid responses. The answer is
especially ambiguous for spatial relations, where a
valid answer might refer to a city, region, country,
province, or continent.

Wikidata. Aliases sometimes vary greatly even
as they refer to the same person, or they are sim-
ply noisy. For example, as shown in Table 15,
“SusunW” appears in an entity name, but this is
actually a username of someone who contributed

2727

https://github.com/alontalmor/LeapOfThought
https://github.com/alontalmor/LeapOfThought
https://github.com/THU-KEG/KEPLER

Dataset Model Acc Paraphrase Cons ↑ Entailment Acc ↑ Contrapositive Acc ↑
FEVER RoBERTa-base 78.29 (0.86) - - -
LeapOfThought RoBERTa-base 93.66 (0.87) - 85.63 (1.08) 16.51 (2.71)
zsRE BART-base 21.01 (0.64) 69.50 (1.09) - -
Wikidata5m BART-base 10.21 (0.59) 25.84 (0.53) - -

Table 14: Model accuracy and belief metric results and for four datasets.

Dataset Data Type Input Label(s)

zsRE

Main Input What did Gifford Pinchot die of? {Leukemia}Paraphrase How did Gifford Pinchot die?

Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Margarita Nolasco Armas has relation ‘place
of birth’ to {Orizaba, Veracruz; Orizaba;

etc.}Paraphrase SusunW/Margarita Nolasco Armas has rela-
tion ‘born at’ to

Local Neutral Margarita Nolasco Armas has relation ‘place
of death’ to

Mexico City; Ciudad de Mexico;
etc.

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought

Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Main Input A amaranth is a herb. True
Entailed Data A amaranth has a nose. False

Table 15: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

to the Wikipedia article for Margarita Nolasco Ar-
mas. Meanwhile, other aliases for J.R.R Tolkien
include “Tolkienian” and “Mabel Suffield,” his
mother. Rephrasings of relations might also create
confusing inputs, e.g. switching “child” with “has
kids,” “daughter”, or “son.” Similar to zsRE, some
relations are also one-to-many and temporally de-
pendent (like occupation), though we hope that
by using many valid answers we circumvent this
issue to some extent when calculating prediction
correctness.

D Metric Computation and Bootstrap
Details

Metric computation. The only computationally
difficult metric to calculate is ∆-Acc, which re-
quires computing the updated language model’s
accuracy on other data after every single belief up-
date. We randomly sample other data after every
update for this purpose, using n = 30 points for
zsRE and Wikidata5m and n = 200 points for
FEVER and LeapOfThought. We ensure that all
evaluation data is used at some point during this

sampling by preferentially selecting data that has
been infrequently selected before. We note that
paraphrase consistency is easy to evaluate for a
small number of paraphrases per datapoint, as we
have for both zsRE and Wikidata5m. Additionally,
on LeapOfThought, we compute ∆-Acc using both
Main Inputs and Entailed Data.

Update-Transitivity caveat. The % Update-
Transitivity metric represents the answer to the
question: if updating belief A changes belief B,
and updating belief B changes belief C, what pro-
portion of the time does updating A change C?
We would treat this as a normative metric that we
hope to maximize, except we do not know in gen-
eral whether there is a confounding belief D that
determines the relationship between B and C. If
changing A also changed a confounding belief D,
then we might not be able to expect that C should
change too. That said, when we have no reason to
think there are such confounding beliefs, we would
expect a logically consistent model to display 100%
Update-Transitivity of their beliefs. In Fig. 2, for
instance, we see no reason to suspect there are con-

2728

FEVER ZSRE

1 2 4 6 8 10 1 2 4 6 8 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

r test

U
pd

at
e

S
uc

ce
ss

 R
at

e

Method by r train

Baseline
r=1
r matches test

Ablation by r

Figure 5: Ablation across values of r for training and testing. On zsRE, our method outperforms the baseline when
rtest = 10, and the gap is likely to increase as rtest rises further. When using a non-sequential objective from past
work, performance declines drastically as rtest rises.

founding beliefs for the relationship between the
date Bessie Smith died and the writer of Despicable
Me 2, and therefore we would expect that updat-
ing the belief about what album Hot Right Now is
on would change the belief in Despicable Me 2’s
authorship (which it does).

Bootstrap computation. We account for sample
and seed variance by block bootstrap (Efron and
Tibshirani, 1994). When there is a single statistic
per data point, like Main Input Update Success, we
form a matrix of shape n× s for n data points and
s model seeds (where the seed was used for both
task model training and learned optimizer train-
ing). We then resample rows and columns of this
matrix 10,000 times, which was sufficient for con-
vergence. When we perform hypothesis tests for
the difference in statistics between conditions, we
pair the data points by using the same rows of this
matrix at each step of the bootstrap (i.e. we conduct
paired tests). For metrics involving multiple data
points per Main Input, like paraphrases or other
random data, we make a simplifying assumption
where we do not resample the multiple data points
but just compute the average metric for those data
points and treat that as the ground-truth statistics
for the Main Input. We explored using a full 3-
dimensional bootstrap, where we resample among
these extra datapoints by constructing a matrix of
shape n × s × n, but it was quite slow and gave
similar results to the block bootstrap.

E Additional Results

Ablation across num. sequential steps. Fig.
5 shows the results for an ablation across rtest
using two kinds of learned optimizers: SLAG1,

Update Success Rate ∆-Acc

Desired Label Main Input Paraphrases All Data

Beam Label 91.19 (0.5) 92.07 (0.8) -0.39 (0.1)
Hard Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 16: Update metrics by optimizer training labels.

where rtrain = 1, and a SLAG condition where
rtrain = rtest. It is critical to the success of learned
optimizers to train them to update points sequen-
tially when this is a desired application. Further,
sequential updating with sequence prediction tasks
is the only setting where we see learned optimizers
outperform baselines across all relevant metrics.

Choosing training labels for learned optimizers.
In early experiments, we found that it is beneficial
to use all data points (including correctly predicted
points) as Main Inputs during training, rather than
restricting training to only incorrectly predicted
points. We still focus on correcting wrong outputs
at test time. But so we must select what label to
use during optimizer training. To get a Hard Label,
we use the correct label for incorrectly predicted
points, and for correctly predicted points, we sim-
ply draw a label randomly from the labels in the
training data. The alternative Beam Label condi-
tion uses a sample from the model’s beam search
for a data point, as done in past work (De Cao
et al., 2021; Mitchell et al., 2021). We show up-
date metrics for zsRE split by the desired label in
Table 16. If one’s goal is to fix wrong model out-
puts, then it is much better to use either the correct
label or a random label as the desired model out-
put during training rather than a sample from the
model’s beam search. Update success improves by

2729

Objective Term Ablation Update Success Rate Retain Predictions ∆ Acc

Dataset Objective Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER Main 100 (0.0) - - - 98.27 (0.1) -0.15 (0.1)
(no KL) 100 (0.0) - - - 40.42 (0.6) -27.19 (1.2)

LeapOfThought Main 100 (0.0) - 76.43 (5.3) - 96.84 (0.3) -1.22 (0.8)
+Ent 100 (0.0) - 71.87 (5.3) - 96.52 (0.3) -0.40 (0.8)

zsRE Main 94.46 (0.4) 94.44 (0.7) - - 81.96 (0.4) -0.24 (0.1)
+Para 93.75 (0.4) 94.41 (0.7) - - 75.24 (0.5) -0.42 (0.2)

Wikidata5m

Main 88.67 (0.7) 64.12 (0.7) - 49.78 (1.0) 71.04 (0.5) -1.54 (0.3)
+Para 87.46 (0.7) 81.06 (0.7) - 47.15 (1.0) 63.02 (0.6) -1.55 (0.3)
+LN 87.73 (0.7) 59.75 (0.7) - 60.49 (1.0) 72.69 (0.6) -1.57 (0.3)
+Para+LN 87.02 (0.7) 81.18 (0.7) - 56.86 (1.0) 68.42 (0.6) -1.65 (0.3)

Table 17: Belief update results by the objective terms used for the learned optimizer. We do not bold any numbers
based on statistical significance. For tuning purposes we select whichever condition achieves the higher selection
criterion without testing for statistical significance.

3.27 (±0.65; p<1e−4) points for the Main Input
and 2.38 (±1.05; p<1e−4) for Paraphrases, while
∆-Acc rises by 0.15 (±0.18; p=.09).

Which beliefs are hard to update? We hypothe-
size that beliefs will be easier to update when they
are more belief-like to begin with. We principally
measure this via the correlation between update suc-
cess rate and a belief’s consistency on paraphrases
before the update, for our learned optimizer in a
single-update setting (r = 1). Surprisingly, we ob-
serve no relationship between update success and
the belief consistency. The correlation between
consistency and update success is near 0 for both
zsRE (ρ = −.027) and Wikidata5m (ρ = .013);
see Fig. 6 for a plot of the relationship. So it ap-
pears that the learned optimizer can update model
beliefs independently of how belief-like they are to
begin with. We would also be interested in consid-
ering consistency under entailment, but the update
success rate on LeapOfThought is already 100%,
so there is no variance to explain.

Learning curve. In Fig. 7 we show the learning
curve of a learned optimizer trained with SLAG
on zsRE. The Main Input Update Success Rate
steadily rises as a function of the training set size.‘

Ablation by objective term. We give objective
ablation results in Table 17. Surprisingly, we do
not always see that the objective terms help for the
data they are intended to help with. First, we ob-
tain mixed results for the paraphrase objective. On
zsRE, the objective term seems to hinder perfor-
mance, with update success dropping on Main In-
puts by 0.71 (±0.60; p=.021) and ∆-Acc dropping
by 0.18 (±0.19; p=.069), while the paraphrase Up-
date Success Rate itself is unaffected. With Wiki-

ZSRE

Wikidata5m

0.00 0.25 0.50 0.75 1.00

0.85

0.90

0.95

1.00

0.85

0.90

0.95

1.00

Pre−Update Consistency

U
pd

at
e

S
uc

ce
ss

 R
at

e

Which Beliefs Are Hard to Update?

Figure 6: Beliefs are neither easier nor harder to update
depending on their consistency beforehand.

85

90

95

100

103 103.5 104 104.5 105

n

M
ai

n
In

pu
t U

pd
at

e
S

uc
ce

ss

Learning Curve for zsRE

Figure 7: Main Input Update Success Rate across train-
ing set sizes, using SLAG on zsRE.

data5m, however, the paraphrase term improves
paraphrase update success by a large margin of
16.94 (±1.03; p<1e−4) points. Adding the Local
Neutral (LN) term with the paraphrase term greatly
improves the LN Retain Rate for Wikidata5m, by
9.71 points (±1.44; p<1e−4), though both of these
terms come at a cost to Main Input Update Success,
similar to zsRE. Lastly, we do not find that the en-
tailment objective improves Entailed Data Update
Success; in fact, this metric falls by 4.56 (±7.22;

2730

0.90

0.92

0.94

0.96

1 2 4 6 8 10
K test

U
pd

at
e

S
uc

ce
ss

 R
at

e

Training Obj. (K train)

1
Matches Test

Ablation by K

Figure 8: Ablation across values of K for training and
testing, using SLAG on zsRE. It is useful to train the
optimizer using the value of K it will use at test time.

Asylum Records is an English
 record label.

[y: false]

The New Orleans Pelicans
 play in the Eastern Conference

 of the NBA.
[y: false]

Telemundo is a English-language
 television network.

[y: false]

New Orleans Pelicans compete
 in the NBA.

[y: true]

John Deighton worked in California.
[y: true]

Victoria (Dance Exponents
 song) was released in the

 Southern Hemisphere in 1982.
[y: true]

Carlos Santana is a US president.
[y: false]

Richard Dawkins has yet to
 appear on the internet.

[y: false]

Bermuda Triangle is in the
 western part of the Himalayas.

[y: false]

Emma Watson was born.
[y: true]

Harold Macmillan was born
 on February 20, 1894.

[y: false]
Filming for Boyhood was stopped

 between 2002 and 2013.
[y: false]

CHiPs is an American comedy
 film.

[y: true]

Starrcade was eventually
 broadcast via pay-per-view

 umbrella.
[y: false]

Croatia has a king.
[y: false]

Saturn Corporation is also
 known as Toyota LLC.

[y: false]

Basildon is far away from
 England.
[y: false]

The Cincinnati Kid is a boy.
[y: false]

Paramore formed in 2007.
[y: false]

XHamster produces online
 content.
[y: true]

Figure 9: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at least
one another node.

p=.213) points with the objective.
Ablation by num. update steps. Fig. 8 shows the
results of an ablation across values of K using a
learned optimizer trained using SLAG with r = 1
on zsRE. Main Input Update Success rises by over
three points by increasing Ktest from 1 to at least
5. Using a value of Ktrain that matches Ktest gives
a further increase of about 0.5 points.

Humphrey Bogart was ranked
 greatest male star of Classic

 American cinema.
[y: true]

Rachel Green appeared in
 every episode of Friends
 until the final episode in

 2002.
[y: false]

Angela Bassett is alive.
[y: true]

Colin Kaepernick became
 a starter in the National

 Football League.
[y: true]

1978 is Ian Brennan's year
 of birth.
[y: true]

A Floppy disk is composed
 of a thin and flexible magnetic

 transmission medium.
[y: true]

Saturn is only an asteroid.
[y: false]

Dan O'Bannon died on December
 17th, 2009.

[y: true]

Beaverton, Oregon's city
 center is in decline.

[y: false]

Margaret Thatcher was the
 most senior politician within

 the Conservative Party in
 the UK in 1975.

[y: true]

Starrcade was originally
 broadcast via television.

[y: true]

Taylor Lautner appeared
 in The Bernie Mac Show in 2001.

[y: false]

I Kissed a Girl was only recorded
 by Donald Trump.

[y: false]

Julianne Moore created the
 television series As the

 World Turns.
[y: false]

Highway to Heaven is an American
 television series.

[y: true]

Dan O'Bannon work was primarily
 science fiction and horror,
 serving as a screenwriter

 and director.
[y: true]

Sidse Babett Knudsen graduated
 on November 22nd, 1968.

[y: false]

Aleister Crowley was an English
 citizen.
[y: true]

Magic Johnson was a tap dancer.
[y: false]

Queen (band) is a Canadian
 rock band.
[y: false]

Figure 10: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at least
one another node.

On February 2, 2013, Chris
 Kyle died.
[y: true]

The Mirny (sloop-of-war)
 was a ship without allegiance.

[y: false]

St. Anger was released by
 Sub Pop Records.

[y: false]
Knocked Up is a work of art.

[y: true]

Mel B had a career.
[y: true]

Australia (2008 film) production
 took place in Bowen.

[y: true]

Daag is a home.
[y: false]

Harold Macmillan was born
 on February 20, 1894.

[y: false]

The Chrysler Building has
 yet to be surpassed in height.

[y: false]

Heavy Metal music was developed
 in the early 1970's.

[y: true]

Kuching is a city in Singapore.
[y: false]

James VI and I was a major advocate
 of a single parliament for

 Scotland and England.
[y: true]

Camden, New Jersey is a large
 human settlement.

[y: true]

Derek Hough barely starred
 in Make Your Move.

[y: false]

Chile is a country.
[y: true]

A River Runs Through It has
 lost every Academy Award.

[y: false]

Natural Born Killers was
 based upon Tarantino's original

 screenplay without revision.
[y: false]

The Lincoln-Douglas debates
 happened in Quincy, Illinois.

[y: true]

Carlos Santana is a musician.
[y: true]

Despicable Me 2 was produced
 by a company.

[y: true]

Figure 11: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at least
one another node.

2731

