
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2752–2760
May 2-6, 2023 ©2023 Association for Computational Linguistics

LINGMESS: Linguistically Informed Multi Expert Scorers
for Coreference Resolution

Shon Otmazgin1 Arie Cattan1 Yoav Goldberg1,2

1Computer Science Department, Bar Ilan University
2Allen Institute for Artificial Intelligence

{shon711,arie.cattan,yoav.goldberg}@gmail.com

Abstract

Current state-of-the-art coreference systems
are based on a single pairwise scoring com-
ponent, which assigns to each pair of mention
spans a score reflecting their tendency to core-
fer to each other. We observe that different
kinds of mention pairs require different infor-
mation sources to assess their score. We present
LINGMESS, a linguistically motivated catego-
rization of mention-pairs into 6 types of coref-
erence decisions and learn a dedicated trainable
scoring function for each category. This signif-
icantly improves the accuracy of the pairwise
scorer as well as of the overall coreference per-
formance on the English Ontonotes coreference
corpus and 5 additional datasets.1

1 Introduction

Coreference resolution is the task of clustering tex-
tual mentions that refer to the same discourse entity.
This fundamental task requires many decisions. In
this work, we argue that different kinds of decisions
involve different challenges. To illustrate that, con-
sider the following text:

“Lionel Messi has won a record seven Ballon
d’Or awards. He signed for Paris Saint-Germain
in August 2021. “I would like to thank my family”,
said the Argentinian footballer. Messi holds the
records for most goals in La Liga”

To correctly identify that the pronoun “He”
refers to “Lionel Messi”, models need to model
the discourse, while linking “my” to “I” may rely
more heavily on morphological agreement. Like-
wise, linking “the Argentinian footballer” to “Li-
onel Messi” requires world knowledge, while link-
ing “Messi” to “Lionel Messi” may be achieved by
simple lexical heuristics.

1The codebase to train and run LINGMESS is avail-
able in https://github.com/shon-otmazgin/
lingmess-coref. Also, our recent F-COREF Python
package (Otmazgin et al., 2022) includes a simple and
efficient implementation of LINGMESS in https:
//github.com/shon-otmazgin/fastcoref.

Figure 1: Architecture of our multi expert model.
Given two spans “Lionel Messi” and “He”,
we sum four scores: individual mention scores
(black), fm(“Lionel Messi”), fm(“He”), and
pairwise scores, shared antecedent score (white)
fa(“Lionel Messi”,“He”) and the relevant “expert”
score (blue) f PRON-ENT

a (“Lionel Messi”,“He”).

Indeed, pre-neural coreference resolution works
often considered the types of a mention-pair, either
by incorporating this information as model features,
or by tailoring specific rules or specific models for
each mention pair (see related work section).

However, neural-network based coreference
models are all based on a single pairwise scorer
that is shared for all mention pairs, regardless of
the different challenges that needs to be addressed
by each pair type (Lee et al., 2017, 2018; Joshi
et al., 2019; Kantor and Globerson, 2019; Joshi
et al., 2020; Xu and Choi, 2020; Xia et al., 2020;
Toshniwal et al., 2020; Thirukovalluru et al., 2021;
Kirstain et al., 2021; Dobrovolskii, 2021).

In this work, we suggest that modeling different
mention pairs by different sub-models (in our case,
different learned scoring functions) depending on
their types is beneficial also for neural models. We
identify a set of decisions: (a) linking compatible
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Category Co-referring example Non Co-referring example

PRON-PRON-C A couple of my law clerks were going to ... and I
was afraid I was going to...

The Lord God said to my Lord: “Sit by me at my
right side , and I will put your enemies ... ”

PRON-PRON-NC “I made a similar line and I produced it cheaper” ,
he says.

She is my Goddess ...

ENT-PRON Spain, Argentina, Thailand and Indonesia were
doing too little to prevent ... across their borders.

Tonight, to kick off the effort, CNN will premiere
its first prime - time newscast in years.

MATCH ... says Paul Amos, CNN executive vice president
for programming. Accordingly, CNN is ...

Hertz and Avis can not benefit Budget’s programs,
” said Bob Wilson, Budget’s vice president ...

CONTAINS He reportedly showed DeLay a videotape that
made him weep. Tom DeLay then ...

Give SEC authority to halt securities trading,
(also opposed by new SEC chairman) ...

OTHER They also saw the two men who were standing
with him. When Moses and Elijah were leaving ...

The company is already working on its own
programming ... the newspaper said.

Table 1: Example of each category, taken from Ontonotes development set. We define the categories of mention
pairs as follows. PRON-PRON-C: compatible pronouns based on their attributes such as gender, number and animacy
(see Appendix C for more details), PRON-PRON-NC: incompatible pronouns, ENT-PRON: a pronoun and another
span, MATCH: non-pronoun spans with the same content words, CONTAINS: one contains the content words of the
other, OTHER: all other pairs. Content words exclude stop words, see Appendix C for the full list of stop words.

pronouns (PRON-PRON-C); (b) linking incompati-
ble pronouns (PRON-PRON-NC); (c) linking pro-
nouns to entities (ENT-PRON); (d) linking entities
which share the exact lexical form (MATCH); (e)
linking entities where the lexical form of one con-
tains the lexical form of the other (CONTAINS); (f)
other cases (OTHER). Each of these classes is easy
to identify deterministically, each contains both
positive and negative instances, and each could
benefit from a somewhat different decision process.
Table 1 demonstrates the classes.2

We present Linguistically Informed Multi
Expert Scorers (LINGMESS), a coreference model
which categorizes each pairwise decision into one
of these classes, and learns, in addition to a shared
scoring function, also a separate scoring function
for each pair type. At inference time, for each
pair of mentions being scored, we deterministically
identify the pair’s type, and use the corresponding
scoring function.3

Specifically, we extend the recent s2e’s
model (Kirstain et al., 2021) by adding per-category
scoring, but the method is general and may work
with other coreference models as well. As illus-
trated in Figure 1, the final coreference score be-
tween two spans is composed—in addition to the
individual mention scores—of two pairwise scores:
a shared antecedent-compatibility score and an “ex-

2More fine-grained distinctions are of course also possible,
but we leave exploration of them to future work.

3For computational efficiency on the GPU, we find it bene-
ficial to compute all the scoring functions and mask away the
not needed values.

pert” antecedent compatibility score which depends
on the linguistic-type of the pair.

We show that this significantly improves the
coreference performance on Ontonotes (Pradhan
et al., 2012) and 5 additional datasets. We also
inspect the performance of the model for each cate-
gory separately, showing that some classes improve
more than others. This analysis provides a finer-
grained understanding of the models and points out
directions for future research.

2 Background: the s2e Model

The s2e model (Kirstain et al., 2021) achieves the
current best coreference scores among all practical
neural models.4

Given a sequence of tokens x1, . . . , xn, each
mention pair (c, q) is scored using a scoring func-
tion FS(c, q)

5 described below, where c is a “candi-
date span” and q is a “query span” which appears
before c in the sentence. The span encodings are
based on contextualized word embeddings obtained
by a Longformer encoder, see Kirstain et al. (2021)
for details. These pairwise scores are then used to
form coreference chains (see “inference” below).

4We define “practical models” as those that require a con-
stant number transformer-based document encodings per pas-
sage, as opposed to a constant number of document encodings
per mention. The CorefQA model (Wu et al., 2020) achieves a
substantially higher score, but requires to run a separate BERT
inference for each mention, making it highly impractical.

5S state for SHARED
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The scoring function FS is further decomposed:

FS(c, q) =

{
fm(c) + fm(q) + fa(c, q) c ̸= ε

0 c = ε

where ε is the null antecedent, and fm and fa are
parameterized functions, scoring each individual
span (fm) and the pairwise interaction (fa).

For each possible mention q, the learning objec-
tive optimizes the sum of probabilities over the true
antecedent ĉ of q:

LS(q) = log
∑

ĉ∈C(q)∩GOLD(q)

PS(ĉ | q)

where C(q) is the set of all candidate antecedents6

with a null antecedent ε. GOLD(q) is the set of the
true antecedents of q. PS(c | q) is computed as a
softmax over FS(c, q) scores for c values in C(q):

PS(ĉ | q) =
expFS(ĉ, q)∑

c′∈C(q)
expFS(c′, q)

3 LINGMESS

Clustering coreferring entities typically involves
many different phenomena, which we argue should
be addressed in a different manner. Therefore, our
core contribution is proposing to allocate a dedi-
cated scorer f t

a(c, q) for each phenomenon type t,
in addition to the shared pairwise scorer fa(c, q).
The overall architecture of our model is shown in
Figure 1.

Concretely, we extend the s2e model with
six additional antecedent scorers f t

a where t ∈
{PRON-PRON-C, PRON-PRON-NC, ENT-PRON,
MATCH, CONTAINS, OTHER}, the six categories
we list in Table 1.

The pairwise scoring function now becomes:

F (c, q) =

{
fm(c) + fm(q) + f(c, q) c ̸= ε

0 c = ε

f(c, q) =fa(c, q) + fT (c,q)
a (c, q)

where T (c, q) is a deterministic, rule-based func-
tion to determine the category t of the pair (c, q).
The pairwise scoring function f(c, q) scoring c as
the antecedent of q, is now composed of a shared
scorer fa(c, q) and an “expert” scorer f t

a(c, q)
which differs based on the type of the pair c, q.
Each of the seven pairwise scoring functions (fa

6All spans before q that passed some pruning threshold.

and the six f t
a) is parameterized separately using

its own set of matrices. The transformer-based
encoder and the mention scorer fm are shared be-
tween all the antecedent scorers. See Appendix A.2
for full model architecture.

Training For each span q, our model optimizes
the objective function LCOREF over the sum of prob-
abilities of all true antecedents of q:

LCOREF(q) = log
∑

ĉ∈C(q)∩GOLD(q)

P (ĉ | q)

Here, P (ĉ | q) is a softmax over F (ĉ, q) scores,
that is our new score function described in Figure 1.

P (ĉ | q) = expF (ĉ, q)∑
c′∈C(q)

expF (c′, q)

This scorer is also the one used in inference.
However, this objective does not explicitly push
each category (“expert”) to specialize. For example,
for the PRON-PRON-C cases, it would be useful to
explicitly train the model to distinguish between
the possible antecedents of that type only (without
regarding other antecedents), as well as to explicitly
distinguish between a pronoun antecedent and a
null antecedent. To this end, we extend the training
objective by also training each “expert” separately:

Lt(q) = log
∑

ĉ∈Ct(q)∩GOLD(q)

Pt(ĉ | q)

Pt(ĉ | q) =
expFt(ĉ, q)∑

c′∈Ct(q)
expFt(c′, q)

Ft(c, q) =

{
fm(c) + fm(q) + f t

a(c, q) c ̸= ε

0 c = ε

Note that for Lt(q) we replace C(q) with Ct(q),
considering only the potential antecedents that are
compatible with the span q for the given type. For
example, for LMATCH and a span q, we will only
consider candidates c which appear before q with
the exact same content words as q. Our final objec-
tive for each mention span q is thus:

L(q) = LCOREF(q) + LEXPERTS(q)

LEXPERTS(q) =
∑

t

Lt(q) + LS(q)
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MUC B3 CEAFϕ4 LEA

R P F1 R P F1 R P F1 R P F1 Avg. F1

s2e 85.2 86.6 85.9 77.9 80.3 79.1 75.4 76.8 76.1 75.8 78.3 77.0 80.3
LINGMESS 85.1 88.1 86.6 78.3 82.7 80.5 76.1 78.5 77.3 76.3 80.9 78.5 81.4

Table 2: Performance on the test set of the English OntoNotes 5.0 dataset. The averaged F1 of MUC, B3, CEAFϕ is
the main evaluation metric. Our model outperforms the s2e model (Kirstain et al., 2021) by 1.1 CoNLL F1. The
performance gain is statistically significant according to a non-parametric permutation test (p < 0.05).

s2e LINGMESS

WikiCoref (Ghaddar and Langlais, 2016) 59.7 62.6
GAP (Webster et al., 2018) 88.3 89.6
WinoGender (Rudinger et al., 2018) 70.5 77.3
WinoBias (Zhao et al., 2018) 84.3 85.1
BUG (Levy et al., 2021) 72.2 74.6

Table 3: Performance on the test set of various corefer-
ence datasets. The reported metrics are CoNLL F1 for
WikiCoref, F1 for GAP and Accuracy for WinoGender,
WinoBias and BUG.

s2e LINGMESS

P R F1 P R F1

PRON-PRON-C 88.8 71.3 79.1 88.0 85.1 86.5
PRON-PRON-NC 84.2 55.8 67.1 88.3 68.7 77.3
ENT-PRON 78.8 68.7 73.4 80.4 69.8 74.7
MATCH 85.6 90.2 87.8 85.3 93.7 89.3
CONTAINS 72.4 80.9 76.4 77.4 78.9 78.1
OTHER 60.1 70.2 64.7 71.7 64.2 67.7

Table 4: Pairwise performance by category, on the test
set of the English OntoNotes 5.0 dataset. LINGMESS
surpasses the s2e model (Kirstain et al., 2021) for most
categories by a substantial margin.

Inference At inference time, we compute the
score of each mention based on the shared scorer
as well as the per-type scorer matching the mention
type. We then form the coreference chains by link-
ing each mention q to its most likely antecedent c
according to F (c, q). We do not use higher-order
inference as it has been shown to have a marginal
impact (Xu and Choi, 2020).

4 Experiments

Our baseline is the s2e model trained on the English
OntoNotes 5.0 dataset by its authors (Kirstain et al.,
2021). We train LINGMESS also on OntoNotes,
and evaluate both models on OntoNotes, Wiki-
Coref, GAP, WinoGender, WinoBias and BUG. Im-
plementation details are described in Appendix B.

Performance Table 2 presents the performance
of LINGMESS on the test set of Ontonotes.
LINGMESS achieves 81.4 F1 on Ontonotes, while

the s2e baseline achieves 80.3. Our performance
gain is statistically significant according to a non-
parametric permutation test (p < 0.05). Addition-
ally, Table 3 shows that LINGMESS outperforms
the s2e model on WikiCoref (+2.9) GAP (+1.3),
WinoGender (+6.8), WinoBias (+0.8) and BUG
(+2.4), indicating a better out-of-domain general-
ization.

Importance of per-category scoring. To assess
that the improvement of LINGMESS is due to the
decomposition into our set of categories and not
to the added parameters, we do two experiments.
First, we train a random baseline, which randomly
assigns a category for each pair7 and obtain similar
results as the baseline. Second, we train our model
by optimizing only the overall loss LCOREF and
not LEXPERTS. This achieves lower results than the
baseline, due to low mention recall.

In addition to the standard coreference evalua-
tion, we report pairwise performance for each cat-
egory. Given a mention-pair (c, q), if F (c, q) is
higher than 0, we treat it as a positive prediction,
otherwise negative. We then measure precision,
recall and F1 based on gold clusters labels. Table 4
shows the pairwise performance of the s2e model
and LINGMESS. LINGMESS outperforms s2e by a
significant margin for all categories (e.g +7.4 F1 for
PRON-PRON-C, +10.2 F1 for PRON-PRON-NC,
etc.).8 The performance varies across the different
categories, suggesting aspects of the coreference
problem where future work can attempt to improve.

The importance of the shared scorer. To in-
vestigate the role of the shared scorer, we trained
the LINGMESS model with only the per-type pair-
wise scorers, excluding the shared pairwise scorer
FS(c, q) and its accompanying loss term LS(q).

7For each pair of mentions (c, q), we take the modulo of
the sum of the ASCII code of the last character of the last
token of c and q.

8These gains in this pairwise metric are higher than the
CoNLL metrics reported in Table 2, because the CoNLL met-
rics are based on the final clusters, after aggregation of indi-
vidual pairwise decisions.
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This resulted in a significant decrease in perfor-
mance (-0.9), specifically in the recall of the men-
tion detection component. However, adding the
shared scorer was able to mitigate this degrada-
tion by balancing the different “experts” pairwise
scorers.

5 Related Work

Many pre-neural works consider the various lin-
guistic phenomena involved in coreference reso-
lution as a different challenge. The early corefer-
ence system by Zhou and Su (2004) divided the
antecedents candidates into distinct coreference
categories (e.g., Name Alias, Apposition, Definite
Noun, and a few more) and defined tailored rules
for each category. Later, Lee et al. (2013) proposed
the multi-sieves deterministic model, where each
sieve adds coreference links between mention pairs
from a specific linguistic category (e.g string match,
compatible pronoun, etc.). Haghighi and Klein
(2009) performed an error analysis of their coref-
erence model according to different types of an-
tecedent decisions, such as Proper Noun-Pronoun,
Pronoun-Pronoun, etc. Based on this analysis, they
focus on fixing the pronoun antecedent choices by
adding syntactic features. More recently, Lu and
Ng (2020) analyze empirically the performance
of neural coreference resolvers on various fine-
grained resolution categories of mentions (e.g gen-
dered pronoun vs. 1st and 2nd pronoun). They
find that while models perform well on name and
nominal mention pairs with some shared content
words, they still struggle with resolving pronouns,
particularly relative pronouns.

Early supervised statistical models train a
feature-based classifier that incorporates the type
of antecedent decision (e.g. pronoun-entity, string
match) as features at the mention-pair level (Soon
et al., 2001; Bengtson and Roth, 2008; Clark and
Manning, 2015, 2016). Subsequently, Denis and
Baldridge (2008) demonstrate that training sepa-
rate classifiers that specialize in particular types of
mentions (e.g third person pronouns, speech pro-
nouns, proper names, definite descriptions, and all
other) provides significant performance improve-
ments. Lassalle and Denis (2013) took that obser-
vation a step further and proposed a more advanced
method for model specialization by learning to sep-
arate types of mention into optimal classes and
their proper feature space.

In our work, we make progress in coreference

systems specialization direction, and show that the
incorporation of linguistic information is helpful
also in the context of end-to-end neural models.

6 Conclusion

We present LINGMESS, a coreference model that
significantly improves accuracy by splitting the
scoring function into different categories, and rout-
ing each scoring decision to its own category based
on a deterministic, linguistically informed heuris-
tic. This indicates that while end-to-end training is
very effective, linguistic knowledge and symbolic
computation can still be used to improve results.

Limitations

In this paper, we consider a set of 6 linguistic cate-
gories of mention pairs, as listed in Table 1. These
categories might not be optimal for the task, while
a different set of finer-grained categories may re-
sult to a higher performance gain. Another aspect
that can be considered as a limitation is the com-
putation of the categories for every possible pairs.
Although the model considers only the top-scoring
spans, this additional computation layer increases
training and inference time over the baseline (see
Appendix B.3 for the exact time). Our linguistic
heuristics could be improved by, e.g., running a
parser and considering head words. However, we
chose not to do so in this work as this will further
increase runtime.
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A Model Architecture

Given a sequence of tokens x1, ..., xn from an in-
put document, a transformer-based (BERT-like) en-
coder first forms contextualized representation vec-
tors, x1, ...,xn for each token in the sequence.

A.1 The s2e Model
Mention scorer Given a span q = (xi,xj), rep-
resented by its start and end tokens, the score for q
being a mention is defined as follow:

ms(x) = GeLU(Wmsx) me(x) = GeLU(Wmex)

fm(q) = ms(xi) · vs +ms(xj) · ve

+ms(xi) ·Bm ·ms(xj)

where ms(x) and me(x) are two non-linear func-
tions to obtain start and end representations for
each token x, and fm(q) is a biaffine product over
these representations.

Antecedent scorer Given two spans, c =
(xi,xj) and q = (xk,xl), represented by their start
and end tokens, the score for c being an antecedent
of q is computed as follow:

as(x) = GeLU(Wasx) ae(x) = GeLU(Waex)

fa(c, q) = as(xi) ·Bss · as(xk)

+ ae(xj) ·Bes · as(xk)

+ as(xi) ·Bse · ae(xl)

+ ae(xj) ·Bee · ae(xl)

Similar to the mention scorer, as(x) and ae(x)
are two non-linear functions to obtain start/end
representations for each token, and fa(c, q) is a
sum of four bilinear functions over the start and
end representations of c and q.

A.2 LINGMESS

Mention scorer Our mention scorer is the same
as s2e mention scorer implementation.

Antecedent scorer As mentioned in the pa-
per (§3), in addition to the shared antecedent
scorer fa(c, q), LINGMESS includes a dedicated
antecedent scorer f t

a(c, q) for each category t ∈
{PRON-PRON-C, PRON-PRON-NC, ENT-PRON,
MATCH, CONTAINS, OTHER}. The overall
score for c = (xi,xj) being an antecedent of
q = (xk,xl) becomes the sum of the shared scorer
and the relevant category “expert” scorer:

f(c, q) = fa(c, q) + fT (c,q)
a (c, q)

where T (c, q) is a deterministic function to deter-
mine the category t of the pair (c, q).

For each category t, we define two specific non-
linear functions to obtain start and end represen-
tations (ats(x) and ate(x)) as well as an “expert”
antecedent scoring function f t

a(c, q):

ats(x) = GeLU(Wt
as
x) ate(x) = GeLU(Wt

ae
x)

f t
a(c, q) = ats(xi) ·Bt

ss · ats(xk)

+ ate(xj) ·Bt
es · ats(xk)

+ ats(xi) ·Bt
se · ate(xl)

+ ate(xj) ·Bt
ee · ate(xl)

Overall, our model introduces 6 learnable ma-
trices for each category (Wt

as
, Wt

ae
, Bt

ss, B
t
es,

Bt
se, Bt

ee). The transformer-based encoder and the
mention scorer are shared between all the different
pairwise scorers.

B Implementation Details

B.1 Hyperparameteres
We extend the s2e’s implementation based on Py-
Torch (Paszke et al., 2019) and Transformers (Wolf
et al., 2020). We used the same hyperparameters
(e.g learning rate, warmup, etc.) as the s2e model
except the hidden size of all matrices W and B.
As our method introduces a dedicated antecedent
scoring function f t

a function for each category t,
we reduce the size of these matrices from 3072 to
2048 to fit training into memory in our hardware.
Similar to the baseline our head method is on top
of Longformer-Large (Beltagy et al., 2020), result-
ing in a total of 590M learnable parameters (the
s2e model contains 494M learnable parameters).
We used dynamic batching both for training and
inference, specifically 5K tokens in a single batch
during training and 10K tokens at inference.
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Kirstain et al. (2021) LINGMESS

P R F1 P R F1

PRON-PRON-C 91.7 77.5 84.0 91.7 90.2 91.0
PRON-PRON-NC 88.9 66.2 75.9 90.2 81.3 85.5
ENT-PRON 82.0 74.1 77.9 81.4 74.7 77.9
MATCH 88.3 87.5 87.9 88.4 92.0 90.2
CONTAINS 69.1 77.2 72.9 76.1 73.5 74.8
OTHER 56.8 67.5 61.7 70.8 64.4 67.5

Table 5: Pairwise performance by category, on the dev
set of the English OntoNotes 5.0 dataset.

Masc Fem Bias Overall

Kirstain et al. (2021) 90.6 85.8 0.95 88.3
LINGMESS 91.3 87.8 0.96 89.6

Table 6: Performance on the test set of the GAP corefer-
ence dataset. The reported metrics are F1 scores.

B.2 Evaluation

As mentioned in the paper (§4), we conduct our ex-
periments on the English portion of the OntoNotes
corpus (Pradhan et al., 2012). This dataset contains
2802 documents for training, 343 for development,
and 348 for test.

We evaluate our model according to the stan-
dard coreference metric: MUC (Vilain et al., 1995),
B3 (Bagga and Baldwin, 1998), CEAFϕ4 (Luo,
2005), and LEA (Moosavi and Strube, 2016)
using the official CoNLL coreference scorer.9

LINGMESS achieves 81.6 CoNLL F1 on the devel-
opment set of Ontonotes. Also, Table 5 presents the
pairwise performance on the development set for
each category. We compute statistical significance
with a non-parametric permutation test using Ul-
mer et al. (2022)’s implementation. Table 6 shows
that LINGMESS consistenly outperforms the s2e
model on GAP.

B.3 Runtime and Memory

Our model was trained for 129 epochs on a sin-
gle 32GB NVIDIA Tesla V100 SXM2 GPU. The
training took 23 hours. At shown in Table 7, the
run-time at inference time in LINGMESS is longer
than in the s2e model because of the category se-
lection for every possible pair of mentions. The
memory consumption remains quite similar to the
baseline.

9https://github.com/conll/
reference-coreference-scorers.

Runtime Memory

Kirstain et al. (2021) 28 5.4
LINGMESS 43 5.9

Table 7: Inference time(Seconds) and memory(GiB)
on 343 docs of OntoNotes development set. Using Dy-
namic batching, 10K tokens in a single batch. Hardware,
NVIDIA Tesla V100 SXM2

ID Pronouns

1 I, me, my, mine, myself

2 you, your, yours, yourself, yourselves

3 he, him, his, himself

4 she, her, hers, herself

5 it, its, itself

6 we, us, our, ours, ourselves

7 they, them, their, themselves

8 that, this

Table 8: List of groups of compatible pronouns, pro-
nouns with the same ID are considered as compatible.

C Determining pair types

Our method routes each pair of spans to their cor-
responding category scorer. This decision is based
on the linguistic properties of the spans. Given a
mention-pair (c, q), we defined a rule based func-
tion T (c, q) that determines the category of that
pair. If c and q are both pronouns, if they are
compatible according to gender, number and ani-
macy (see Table 8 for the full list), the metnion pair
will be routed to PRON-PRON-C, otherwise PRON-
PRON-NC. If c is pronoun and q is a non-pronoun
span (or vise-versa) we route the mention-pair to
PRON-ENT. We route the remaining pairs to their
corresponding categories (MATCH, CONTAINS or
OTHER) by considering only content words, ex-
cluding the following stop words: {’s, a, all, an,
and, at, for, from, in, into, more, of, on, or, some,
the, these, those}. Accordingly, the mentions “the
U.S. and Japan” and “Japan and the U.S.” are con-
sidered MATCH, “This lake of fire” and “the lake of
fire” are considered CONTAINS and “Bill Clinton”
and “The President” are considered OTHER.
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