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Abstract

A characteristic feature of human semantic cog-
nition is its ability to not only store and retrieve
the properties of concepts observed through
experience, but to also facilitate the inheri-
tance of properties (can breathe) from superor-
dinate concepts (ANIMAL) to their subordinates
(DOG)—i.e. demonstrate property inheritance.
In this paper, we present COMPS, a collection
of English minimal pair sentences that jointly
tests pre-trained language models (PLMs) on
their ability to attribute properties to concepts
and their ability to demonstrate property inheri-
tance behavior. Analyses of 22 different PLMs
on COMPS reveal that they can easily distin-
guish between concepts on the basis of a prop-
erty when they are trivially different, but find
it relatively difficult when concepts are related
on the basis of nuanced knowledge represen-
tations. Furthermore, we find that PLMs can
show behaviors suggesting successful property
inheritance in simple contexts, but fail in the
presence of distracting information, which de-
creases the performance of many models some-
times even below chance. This lack of robust-
ness in demonstrating simple reasoning raises
important questions about PLMs’ capacity to
make correct inferences even when they appear
to possess the prerequisite knowledge.

1 Introduction

The ability to learn, update and deploy one’s knowl-
edge about concepts (ROBIN, CHAIR) and their
properties (can fly, can be sat on), observed dur-
ing everyday experience is fundamental to human
semantic cognition (Murphy, 2002; Rogers and Mc-
Clelland, 2004; Rips et al., 2012). Knowledge of
a concept’s properties, combined with the ability
to infer the IsA relation (Sloman, 1998; Murphy,
2003) leads to an important behavior known as
property inheritance (Quillian, 1967; Smith and
Estes, 1978; Murphy, 2002), where subordinates
of a concept inherit its properties. For instance,
one is likely to infer that an entity called luna can

meow, has a tail, is a mammal, etc., even if all
they know is that it is a cat. The close connection
between a word’s meaning and its conceptual repre-
sentation makes these abilities crucial to language
understanding (Murphy, 2002; Lake and Murphy,
2021), making it critical for computational mod-
els of language processing to also exhibit behav-
ior consistent with these capacities. Indeed, mod-
ern pre-trained language models (PLMs; Devlin
et al., 2019; Brown et al., 2020, etc.) have made
impressive empirical strides in eliciting general
knowledge about real world concepts and entities
(Petroni et al., 2019; Weir et al., 2020, i.a.), as well
as in demonstrating isomorphism with real world
abstractions like direction and color (Abdou et al.,
2021; Patel and Pavlick, 2022), often times without
even having been explicitly trained to do so. At
the same time, their ability to robustly demonstrate
such capacities has recently been called to question,
owing to failures due to reporting bias (Gordon and
Van Durme, 2013; Shwartz and Choi, 2020), lack
of consistency (Elazar et al., 2021; Ravichander
et al., 2020), and sensitivity to lexical cues (Kass-
ner and Schütze, 2020; Misra et al., 2020; Pandia
and Ettinger, 2021).

In this work, we cast further light on PLMs’
ability to robustly demonstrate knowledge about
concepts and their properties. To this end, we intro-
duce Conceptual Minimal Pair Sentences (COMPS),
a collection of English minimal pair sentences,
where each pair attributes a property (can fly) to
two noun concepts: one which actually possesses
the property (ROBIN), and one which does not
(PENGUIN). Following standard practice in the
minimal pairs evaluation paradigm (Warstadt et al.,
2020, etc.), we test whether PLMs prefer sentence
stimuli expressing correct property knowledge over
those expressing incorrect ones. COMPS can be de-
composed into three subsets, each containing stim-
uli that progressively isolate deeper understanding
of the task of attributing properties to concepts,
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by adding controls for more superficial heuristics.
Our first subset—COMPS-BASE—measures the ex-
tent to which PLMs attribute properties to the right
concepts, while varying the similarity of the posi-
tive (ROBIN) and the negative concepts (PENGUIN

[high] vs. TABLE [low]). This controls for the pos-
sibility that models are relying on coarse-grained
concept distinctions. For instance, in this setup a
model should prefer (1a) over both versions of (1b).

(1) a. A robin can fly.
b. *A (penguin/table) can fly.

Next, drawing on the phenomenon of property in-
heritance, the COMPS-WUGS set introduces a novel
concept, WUG, expressed as the subordinate of the
positive and negative concepts from a subset of
the COMPS-BASE set, and tests the extent to which
PLMs successfully attribute it the given property
when it is associated with the positive concept. This
increases the complexity of the reasoning task, as
well as the distance between the associated concept
(ROBIN) and property (can fly). These manipula-
tions help to control for memorization of the literal
phrases being tested, forcing models to judge prop-
erties for a novel concept that inherits the property
from a known concept. In this task, given that a
model successfully prefers (1a) over (1b), it should
also prefer (2a) over (2b):

(2) a. A wug is a robin. Therefore, a wug can fly.
b. *A wug is a penguin. Therefore, a wug can fly.

The final subset—COMPS-WUGS-DIST, combines
the aforementioned controls by using negative con-
cepts as distracting content and inserting them into
the COMPS-WUGS stimuli. Specifically, we trans-
form the stimuli of COMPS-WUGS by creating two
subordinates for every minimal pair; one for the
positive concept (ROBIN, subordinate: WUG) and
the other for the negative concept (PENGUIN, sub-
ordinate: DAX), which acts as a distractor. This
way, we control for the possibility that models may
be relying on simple word associations between
content words—of which there are only two in the
prior tests—by introducing additional, irrelevant
but contentful words into the context. Here, we
consider models to be correct if they prefer (3a)
over (3b), given that they prefer (1a) over (1b):

(3) a. A wug is a robin. A dax is a penguin. Therefore, a
wug can fly.

b. *A wug is a robin. A dax is a penguin. Therefore,
a dax can fly.

Together, the three sets of stimuli tease apart more
superficial predictive behaviors, such as contex-
tual word associations, from more robust reasoning
behaviors based on understanding of concept prop-
erties. While we can expect superficial predictive
strategies to be brittle in the face of shallow pertur-
bations and irrelevant distractions, robust property
knowledge and reasoning behaviors should not.

We use COMPS to analyze robust property knowl-
edge and its inheritance in 22 different PLMs,
ranging from small masked language models to
billion-parameter autoregressive language models.
In our experiments with COMPS-BASE, we find
PLMs to demonstrate strong performance in at-
tributing properties to the correct concepts in our
minimal pairs. However, we observe this strong
performance largely when the concepts in the min-
imal pairs are trivially different (e.g., LION and
TEA for the property is a mammal). When the
concept pairs are similar (on the basis of differ-
ent knowledge representations), we find models’
performance to degrade substantially, by as much
as 25 points. We observe a similar trend in our
analyses on COMPS-WUGS—models first appear
to show desirable behavior, potentially indicating
proficiency in the more complex property inher-
itance reasoning. However, their overall perfor-
mance declines drastically when investigated in
the presence of distractors (i.e., on COMPS-WUGS-
DIST). This failure is particularly pronounced in
larger autoregressive PLMs, whose performance
in fact drops below chance in cases where distract-
ing information is proximal to the queried prop-
erty, indicating the presence of a proximity ef-
fect. Together, our findings highlight brittleness
of PLMs with conceptual knowledge and reason-
ing, as evidenced by failures in the face of simple
controls. We make our code and data available at:
https://github.com/kanishkamisra/comps.

2 Conceptual Minimal Pair Sentences
(COMPS)

2.1 Connections to prior work

Prior work in exploring property knowledge in
PLMs has adopted two different paradigms: one
which uses probing classifiers to test if the applica-
bility of a property can be decoded from the repre-
sentations of LMs (Forbes et al., 2019; Da and Ka-
sai, 2019; Derby et al., 2021); and the other which
uses cloze-testing, in which LMs are tasked to fill
in the blank in prompts that describe specific prop-
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erties/factual knowledge about the world (Petroni
et al., 2019; Weir et al., 2020). We argue that both
approaches—though insightful—have key limita-
tions for evaluating property knowledge, and that
minimal pair testing overcomes these limitations to
a beneficial extent.

Apart from ongoing debates surrounding the va-
lidity of probing classifiers (see Hewitt and Liang,
2019; Ravichander et al., 2021; Belinkov, 2022),
the probing setup does not allow the testing of prop-
erty knowledge in a precise manner. Specifically,
several properties are often perfectly correlated in
datasets such as the one we use here (see §2.2). For
example, the property of being an animal and being
able to breathe and grow, etc., are all perfectly cor-
related with one another. Even if the model’s true
knowledge of these properties is highly variable,
probing its representations for them would yield the
exact same result, leading to conclusions that over-
estimate the model’s capacity for some properties,
while underestimating for others. Evaluation using
minimal pair sentences overcomes this limitation
by allowing us to explicitly represent the proper-
ties of interest in language form, thereby allowing
precise testing of property knowledge.

Similarly, standard cloze-testing of PLMs
(Petroni et al., 2019; Weir et al., 2020; Jiang et al.,
2021) also faces multiple limitations. First, it does
not allow for testing of multi-word expressions,
as by definition, it involves prediction of a sin-
gle word/token. Second, it does not yield faithful
conclusions about one-to-many or many-to-many
relations: e.g. the cloze prompts “Ravens can .”
and “ can fly.” do not have a single correct
answer. This makes our conclusions about mod-
els’ knowledge contingent on choice of one correct
completion over the other. The minimal pair eval-
uation paradigm overcomes these issues by gen-
eralizing the cloze-testing method to multi-word
expressions—by focusing on entire sentences—
and at the same time, pairing every prompt with
a negative instance. This allows for a straightfor-
ward way to assess correctness: the choice between
multiple correct completions is transformed into
one between correct and incorrect, at the cost of
having several different instances (pairs) for test-
ing knowledge of the same property. Additionally,
the minimal pairs paradigm allows us also to shed
light on how the nature of negative samples affects
model behavior, which has been missing in ap-
proaches using probing and cloze-testing. The us-

age of minimal pairs is a well-established practice
in the literature, having been widely used in works
that analyze syntactic knowledge of LMs (Marvin
and Linzen, 2018; Futrell et al., 2019; Warstadt
et al., 2020). We complement this growing liter-
ature by introducing minimal-pair testing to the
study of conceptual knowledge in PLMs.

Our property inheritance analyses closely relate
to the ‘Leap-of-Thought’ (LoT) framework of Tal-
mor et al. (2020). In particular, LoT holds the
taxonomic relations between concepts implicit and
tests whether models can abstract over them to
make property inferences—e.g., testing the extent
to which models assign Whales have bellybuttons
the ‘True’ label, given that Mammals have belly-
buttons (with the implicit knowledge here being
Whales are mammals). With COMPS-WUGS (and
COMPS-WUGS-DIST), we instead explicitly pro-
vide the relevant taxonomic knowledge in the con-
text and target whether PLMs can behave consis-
tently with knowledge they have already demon-
strated (in the base case, COMPS-BASE) and at-
tribute the property in question to the correct subor-
dinate concept. This also relates to recent work that
measures consistency of PLMs’ word prediction
capacities in eliciting factual knowledge (Elazar
et al., 2021; Ravichander et al., 2020).

2.2 Ground-truth Property Knowledge data

For our ground-truth property knowledge resource,
we use a subset of the CSLB property norms col-
lected by Devereux et al. (2014), which was fur-
ther extended by Misra et al. (2022). The origi-
nal dataset was constructed by asking 123 human
participants to generate properties for 638 every-
day concepts. Contemporary work has used this
dataset by taking as positive instances all concepts
for which a property was generated, while taking
the rest as negative instances (Lucy and Gauthier,
2017; Da and Kasai, 2019, etc.) for each prop-
erty. While this dataset has been popularly used in
related literature, Misra et al. (2022) recently dis-
covered striking gaps in coverage among the prop-
erties included in the dataset.1 For example, the
property can breathe was only generated for 6 out
of 152 animal concepts, despite being applicable
for all of them—as a result, contemporary work can
be expected to have wrongfully penalized models
that attributed this property to animals that could

1See also Sommerauer and Fokkens (2018) and Sommer-
auer (2022), who also discuss this limitation.
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indeed breathe, and similarly for other properties.
To remedy this issue, Misra et al. (2022) manually
extended CSLB’s coverage for 521 concepts and
3,645 properties. We refer to this extended CSLB
dataset as XCSLB, and we use it as our source for
ground-truth property knowledge.

2.3 Choosing negative samples
We rely on a diverse set of knowledge represen-
tation sources to construct negative samples for
COMPS. Each source has a unique representational
structure which gives rise to different pairwise sim-
ilarity metrics, on the basis of which we pick out
negative samples for each property:

Taxonomy We consider a hierarchical organiza-
tion of our concepts, by taking a subset of WordNet
(Miller, 1995) consisting of our 521 concepts. We
use the wup similarity (Wu and Palmer, 1994) as
our choice of taxonomic similarity.

Property Norms We use the XCSLB dataset and
organize it as a matrix whose rows indicate con-
cepts and columns indicate properties that are ei-
ther present (indicated as 1) or absent (indicated
as 0) for each concept. As our similarity measure,
we consider the jaccard similarity between the row
vectors of concepts. This reflects the overlap in
properties between concepts, and is prevalent in
studies utilizing conceptual similarity in cognitive
science (Tversky, 1977; Sloman, 1993, etc.).

Co-occurrence We use the co-occurrence be-
tween concept words as an unstructured knowledge
representation. For quantifying similarity, we use
the cosine similarity of the GloVe vectors (Penning-
ton et al., 2014) of our concept words.

Sampling Strategy Each property (pi) in our
dataset splits the set of concepts into two: a set
of concepts that possess the property (Qpi), and
a set of concepts that do not (¬Qpi). We sample
min(|Qpi |, 10)—i.e., at most 10—concepts from
Qpi and take them to be our positive set. Then for
each concept in the positive set, we sample from
¬Qpi the concept that is most similar (depending
on the source) to the positive concept and take it as
a negative concept for the property. We addition-
ally include a negative concept that is randomly
sampled from ¬Qpi , leaving out the concepts sam-
pled on the basis of the three previously described
knowledge sources. Examples of the four types of
negative samples for the concept ZEBRA and the
property has striped patterns are shown in Table 1.

Knowledge Rep. Negative Concept Similarity

Taxonomy HORSE 0.88
Property Norms DEER 0.63
Co-occurrence GIRAFFE 0.75
Random BAT -

Table 1: Negatively sampled concepts selected on the ba-
sis of various knowledge representational mechanisms,
where the property is has striped patterns, and the posi-
tive concept is ZEBRA.

2.4 Minimal Pair Construction

Following our negative sample generation process,
we end up with total of 49,280 pairs of positive and
negative concepts that span across 3,645 properties
(14 pairs per property, on average). Every prop-
erty is associated with a property phrase—a verb
phrase which expresses the property in English, as
provided in XCSLB. Using these materials, we con-
struct our three datasets of minimal pair sentence
stimuli, examples of which are shown in Figure 1.

COMPS-BASE The COMPS-BASE dataset con-
tains minimal pair sentences that follow the tem-
plate: “[DET] [CONCEPT] [property-phrase].”
where [DET] is an optional determiner, and
[CONCEPT] is the noun concept. Applying this
template to our generated pairs results in 49,280
instances. See Figure 1a for an example.

COMPS-WUGS We test property inheritance in
PLMs using only the animal kingdom subset of
COMPS-BASE (152 concepts, 944 properties, and
13,888 pairs), keeping the same negative samples.
We convert the original minimal pair sentences in
COMPS-BASE, in which the positive concept is an
animal, into pairs of two-sentence stimuli by first
introducing a new concept (WUG) to be the sub-
ordinate of the concepts in the original minimal
pair. We then express its property inheritance in
a separate sentence. Our two sentence stimuli fol-
low the template: “A wug is a [CONCEPT]. There-
fore, a wug [property-phrase].” Although we
use wug as our running example for the subordi-
nate concept, we use four different nonsense words
{wug, dax, blicket, fep} equal numbers of times,
to avoid making spurious conclusions based on a
single nonsense word.2 Introducing an intervening
novel concept allows us to robustly control for sim-
ple word-level associations between concepts and
properties that models might have picked up during

2As we describe in §4, we also tried a different set of nonce
words, to address concerns about possible impacts of using
nonce words from existing literature (e.g., wug).
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Property: can fly
Positive: ROBIN
Negative: PENGUIN
Subordinate: WUG
COMPS-BASE: A (robin/penguin) can fly.
COMPS-WUGS: A wug is a (robin/penguin).
Therefore, a wug can fly.

(a) Instances of COMPS-BASE and COMPS-WUGS.

A dax is a penguin.

         A wug is a robin.         Therefore, a (wug/dax) can fly.

in-betweenbefore

(b) Distraction scheme for stimuli in COMPS-WUGS-DIST, where
the distractor is inserted either before or in between each COMPS-
WUGS stimulus.

Figure 1: Examples of materials used in our experiments. In this example, ROBIN is the positive concept.

training. Figure 1a shows an example.

COMPS-WUGS-DIST To add distracting infor-
mation, we follow Pandia and Ettinger (2021)
and convert the COMPS-WUGS stimuli by associ-
ating a different subordinate concept (DAX) with
the negative concept ([NEG-CONCEPT]), and insert-
ing it before or in-between the sentence contain-
ing the positive concept and its subordinate, sepa-
rately. This results in two subsets (before and in-
between) of three-sentence minimal pair stimuli,
which differ in the subordinate to which the prop-
erty is attributed. We use the following template
to create our stimuli: “A wug is a [CONCEPT]. A
dax is a [NEG-CONCEPT]. Therefore, a (wug/dax)
[property-phrase].” That is, we have stimuli
that resemble COMPS-WUGS but instead deal with
a pair of competing subordinate concepts in con-
text.3 See Figure 1b for an example.

3 Methodology

3.1 Models Investigated

We investigate property knowledge and property
inheritance capacities of 22 different PLMs, be-
longing to six different families. We evaluate four
widely used masked language modeling (MLM)
families: (1) ALBERT (Lan et al., 2020), (2) BERT
(Devlin et al., 2019), (3) ELECTRA (Clark et al.,
2020), and (4) RoBERTa (Liu et al., 2019); as well
as two auto-regressive language modeling families:
(1) GPT2 (Radford et al., 2019), and (2) the GPT-
Neo (Black et al., 2021) and GPT-J models (Wang
and Komatsuzaki, 2021) from EleutherAI. We also
use distilled versions of BERT-base, RoBERTa-
base, and GPT2, trained using the method de-
scribed by Sanh et al. (2019). We list each model’s
parameters, vocabulary size, and training corpora
in Table 3 (Appendix A).

3We again choose from our list of four nonsense words
(wug, dax, blicket, and fep), which amounts to 12 unique
ordered pairs, after accounting for counterbalancing.

3.2 Measuring Performance
To evaluate models on COMPS, we compare
their log-probabilities for the property phrase—
conditioned on contexts (to the left) containing the
positive and negative noun concepts. That is, we
hold the property phrase constant, and compare
across minimally differing conditions to evaluate
the probability with which a property is attributed
to each concept. For example, we score stimuli in
COMPS-BASE, e.g., “A dog can bark.” as:

log p(can bark. | A dog),

its corresponding stimulus in COMPS-WUGS, “A
wug is a dog. Therefore, a wug can bark.” as:

log p(can bark. | A wug is a dog. Therefore, a wug),

and similarly—assuming CAT as the negative
concept—the corresponding stimuli in our COMPS-
WUGS-DIST subset, “A wug is a dog. A dax is a cat.
Therefore, a wug can bark.” as:4

log p(can bark. | A wug is a dog. A dax is a cat. There-

fore, a wug).

This approach to eliciting conditional LM judg-
ments is equivalent to the “scoring by premise”
method (Holtzman et al., 2021), which has been
shown to result in stable comparisons across items.
Additionally, this also takes into account the poten-
tial noise due to frequency effects or tokenization
differences (Misra et al., 2021). Estimating these
conditional log-probabilities using auto-regressive
PLMs can be directly computed in a left-to-right
manner. For MLMs, we use their conditional
pseudo-loglikelihoods (Salazar et al., 2020) as a
proxy for conditional log-probabilities.

Based on this simple method of eliciting relative
acceptability measures from PLMs, we evaluate

4Here we show an example where the distractor is added
in-between the context specifying the positive concept, and
the queried property knowledge.
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Figure 2: Accuracies of PLMs on COMPS-BASE under various negative sampling schemes. Chance performance for
all rows is 50%, except for ‘Overall,’ where it is 6.25%. Refer to Table 3 for unabbreviated model names.

a model’s accuracy on all COMPS stimuli as the
percentage of times its log-probability for a prop-
erty is greater when conditioned on the context
that attributes the property to the positive—as op-
posed to the negative—concept. Since all cases are
forced-choice tasks between two instances, chance
performance is set to 50%. Table 4 (Appendix B)
shows examples of all COMPS stimuli and GPT-J’s
conditional log-probabilities for them.

4 Experiments and Analyses

4.1 Base property knowledge of PLMs and
their sensitivity to similarity effects

We begin by evaluating the 22 PLMs on COMPS-
BASE. Here we focus on the extent to which models
robustly associate properties to the correct concepts
across stimuli with varying kinds of similarity be-
tween the positive and negative concepts. We re-
port accuracies of the 22 PLMs on COMPS-BASE

across the four different negative sampling schemes
that we specified in §2.3. We additionally report a
more stringent accuracy measure that we refer to
as ‘Overall accuracy,’ which is calculated for every
property and its positive concept, as the percentage
of times a model correctly attributes the property
to the positive concept in all four types of nega-
tive sampling schemes. Chance performance for
only the ‘Overall’ case is then 6.25% (0.54 × 100).
Figure 2 shows these results.

From Figure 2, we see that models strongly dis-
tinguish between positive and negative concepts
in cases where they are dramatically different—
i.e., where negative concepts were sampled ran-
domly (e.g., BEAR [positive] vs BOTTLE [negative]
for the property can breathe). However perfor-
mance drops substantially when there are subtler

differences between the two concepts—e.g, the
concepts WALRUS (positive) and SHARK (negative)
for the property is a mammal. For instance, the
best performing model in any similarity-based neg-
ative sampling scheme (GPT-J, 76%, ‘Co-oc’) only
slightly outperforms the worst model in the random
negative sampling scheme (Neo-125M, 71%). The
performance of PLMs is not substantially different
across the three similarity-based negative sampling
schemes, suggesting that the dynamics of model
sensitivity in attributing properties to concepts are
largely harmonized across various types of similari-
ties. As a result of models’ insensitivity in presence
of similar negative concepts, the overall accuracies
are very modest in value, with the overall accu-
racy of the best performing model (GPT-J) being
only 53%. This overall performance is, however,
significantly above chance (6.25%). We discuss ad-
ditional findings, such as performance by property
type and model size, in Appendix C, since they are
incidental to the main conclusions of this analysis.

4.2 Property inheritance in PLMs

Having established the base property knowledge
of PLMs, we now investigate the extent to which
they can show behavior that is consistent with
reasoning required to handle property inheritance.
We first investigate their performance on COMPS-
WUGS, created using the subset of COMPS-BASE

containing only animal concepts (see §2.4 for stim-
ulus construction). Table 2 shows average accu-
racies obtained by PLMs on our property inheri-
tance stimuli, and compares them to average ac-
curacies on COMPS-BASE—aggregating across all
negative sampling schemes. Recall that the stim-
uli in COMPS-WUGS present a more challenging
property attribution task than in COMPS-BASE, by
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COMPS subset Size Acc.

BASE 49.3K 68.41.7
BASE (animal kingdom only) 13.8K 67.12.0

WUGS 13.8K 68.92.3
WUGS-DIST (before) 13.8K 59.23.9
WUGS-DIST (in-between) 13.8K 47.24.5

Table 2: Average accuracy (and standard error of the
mean) of PLMs (N = 22) on each of our COMPS sub-
sets. Chance performance is 50% throughout.

not only controlling for coarse-grained similarity
effects, but also introducing an intervening novel
concept that is expected to inherit the properties of
the positive concept. By measuring attribution of
properties more indirectly, these stimuli increase
the complexity of the reasoning and control for
memorization of the literal phrase initially tested
with COMPS-BASE.

Table 2 shows the average accuracy of the PLMs
on each subset of COMPS. Despite the increase
in complexity, we see that PLMs actually show
slightly stronger performance on COMPS-WUGS

(68.9%) than on COMPS-BASE (67.1%). This
means that there are instances in which models
prefer the property in the positive context over the
negative context (4a > 4b), but show the opposite
behavior in COMPS-BASE (4d > 4c).

(4) a. A wug is a robin. Therefore, a wug can fly.
b. A wug is a penguin. Therefore, a wug can fly.
c. A robin can fly.
d. A penguin can fly.

This pattern of performance could lead to spurious
conclusions that models are successfully execut-
ing property inheritance, when in fact they show a
lack of the pre-requisite property knowledge based
on their failure on COMPS-BASE. We will discuss
these inconsistencies in more detail below. Over-
all, however, the relatively strong performance on
COMPS-WUGS suggests that models are largely un-
affected when we control for simple memorization
of tested phrases—e.g., robin can fly—by linking
known concepts to properties through an interven-
ing subordinate concept (wug). This suggests that
models are not relying on simple memorization, but
does not control for the possibility of simple asso-
ciation between content words (robin and fly)—for
this we turn to COMPS-WUGS-DIST.

The COMPS-WUGS-DIST test assesses whether
models retain strong property attribution perfor-
mance when content words in the context are not
all relevant for the property prediction. The stimuli
thus include irrelevant distractor concepts and their
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Figure 3: Distribution of model performance on COMPS-
WUGS and COMPS-WUGS-DIST (both subsets) across
possible outcomes (correct = ✓, incorrect = ✗) of the
models on corresponding minimal pairs in COMPS-
BASE. Error bars indicate 95% CI, while dashed line
indicates chance performance (50%).

subordinates—which, in a robust model, should
not affect attribution of the property to the correct
concept (see §2.4 for stimulus construction).

From Table 2, the average accuracies of PLMs
on both subsets of COMPS-WUGS-DIST (before
and in-between) indicate that overall, models now
show clear degradation in property inheritance per-
formance as a result of the distracting informa-
tion. Specifically, the PLMs’ performance drops
by 9.7 points on instances when the distracting in-
formation is added before the relevant context and
queried property, and by 21.7 points on instances
where it is added in-between the two, relative to the
undistracted property inheritance stimuli (COMPS-
WUGS). Notably, the latter drop in performance
brings models level with chance accuracy (we fail
to reject the null hypothesis that avg. accuracy of
models is 50%; p = .62, Wilcoxon signed rank
exact text), highlighting a pronounced lack of ro-
bustness in PLMs’ capacity to attribute properties
to the correct concepts in their input context.

Accounting for spurious performance The
COMPS-WUGS results above raise the concern that
models are often showing spurious performance:
accurately demonstrating property inheritance be-
havior without actually possessing the right prop-
erty knowledge. To shed more light on this poten-
tial issue, we plot the distribution of model accura-
cies on our property inheritance stimuli (COMPS-
WUGS and COMPS-WUGS-DIST) divided based on
their outcomes on the corresponding stimuli in
COMPS-BASE. Figure 3 shows these distributions.
In COMPS-WUGS and both subsets of COMPS-
WUGS-DIST, models show this spurious correct
behavior on 41.3%, 55.6%, and 42.8% of instances
in which they produce incorrect judgments on the
corresponding COMPS-BASE stimuli (yellow bars
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Figure 4: Accuracies of individual models (grouped by family, in increasing order based on number of parameters)
on COMPS-WUGS and COMPS-WUGS-DIST. Black dashed line indicates chance performance (50%). Refer to
Table 3 for unabbreviated model names. Error bands indicate 95% Bootstrap CIs.

in Figure 3). This non-trivial proportion of cases
with spurious performance further reinforces the
idea that PLMs’ successful predictions on these
tests are likely relying on heuristics rather than ro-
bust inferences about property knowledge. We can
remove the effects of these spurious instances by
filtering to items in which models give the correct
answer on COMPS-BASE (blue bars in Figure 3)—
though we see that the overall conclusions remain
the same after this filtering.

On the pronounced effect of proximity in autore-
gressive PLMs Our previous discussion summa-
rized the aggregate property inheritance behavior
of the 22 PLMs we considered—we now zoom in
for a model-wise analysis. Figure 4 shows models’
relative accuracies on COMPS-WUGS and COMPS-
WUGS-DIST, filtering to items with correct COMPS-
BASE performance, as in the blue bars of Figure 3.
Consistent with our overall findings, we observe
distracting content to substantially degrade model
performance across the board.5 A particularly note-
worthy pattern is that the degradation in autore-
gressive PLM families—GPT2 and EleutherAI—
shows a stark sensitivity to proximity effects. While
these classes of model seem to suffer less when
distracting content is added before the context con-
taining the positive concept (thus placing the dis-
traction farther from the queried property), they
show substantially worse performance when the
opposite is the case (i.e., when distraction is added
in-between, and is therefore closer to the queried
property). This degradation due to proximity of
the distracting content becomes catastrophically
worse as models grow larger in the number of

5See also Pandia and Ettinger (2021) for a similar degrada-
tion of performance on cloze-tasks involving factual retrieval.

pre-trained parameters—in fact bringing their
performance down to as much as 26.2 points be-
low chance (in GPT-J, which has 6B parameters).
While MLMs also show similar levels of degraded
performance in presence of distraction, they do not
seem to show any systematic sensitivity to proxim-
ity effects, likely due to their bidirectional nature.

Results on GPT-3 In addition to our main ex-
periments, we also evaluate GPT-3 (Brown et al.,
2020) models on a small subset of COMPS stimuli
(denoted as miniCOMPS). Results from this anal-
ysis (shown in Appendix C.1) are largely aligned
with our main conclusions, with all GPT-3 models—
including the largest one (175B parameters)—
performing worse than chance on the in-between
subset of miniCOMPS-WUGS-DIST, while perform-
ing substantially better on miniCOMPS-WUGS and
miniCOMPS-WUGS-DIST (before). Together with
our main results, this indicates that scaling alone
may be insufficient to elicit robust inferences about
concepts and their properties.

Choice of nonce words Nonce words constitute
an important design decision for our stimuli—we
followed precedents in language acquisition re-
search (Berko, 1958; Gopnik and Sobel, 2000, i.a.)
and used previously existing nonce words (such
as wug and blicket) to represent novel concepts in
context. While these are expected to be novel for
humans, they may appear in pre-training corpora
on which PLMs are usually trained.6 This raises
a potential concern that PLMs could already be
biased toward certain properties for these words
(e.g., wug is commonly depicted as a bird), and

6e.g., wug appears in wikipedia: https://en.wikipedia.
org/wiki/Jean_Berko_Gleason (accessed on Jan 23)
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may struggle to associate them with different prop-
erties.7 To explore this empirically, we conducted
experiments with alternative nonce words (gener-
ated synthetically, similar to Kim et al. (2022); see
Appendix C.2). Figure 7 (Appendix C.2) shows
results on COMPS-WUGS and COMPS-WUGS-DIST

with randomly sampled nonce words. We see that
the new results are comparable to those in Figure 4,
with models showing the same preference on both
stimulus versions 80% of the time on average. This
suggests that the choice of nonce words is not pro-
ducing any noteworthy bias.

Framing of novel taxonomic information An-
other relevant stimulus design decision is the phras-
ing for introducing novel concepts in context.
While we used “A wug is a [CONCEPT]” for our
main experiments, we additionally tested with an
alternate framing: “A wug is a type of [CONCEPT].”
From Figure 9 (Appendix C.3), we again see that
the overall patterns of results are comparable to
the original results, with models showing the same
preference across both versions of the stimuli on
COMPS-WUGS and COMPS-WUGS-DIST 90% of
the time, on average.

5 General Discussion and Conclusion

The overall goal of COMPS is to shed light on the ex-
tent to which PLMs can robustly (1) attribute to real
world concepts (e.g., HORSE, WHALE) their correct
properties (e.g., is a mammal); and (2) demonstrate
behavior consistent with property inheritance: a
reasoning process in which concepts are endowed
with the properties of their superordinates (Smith
and Estes, 1978; Sloman, 1998; Murphy, 2002).
Testing PLMs for these abilities allows us to ask
key questions about how they encode and trans-
fer knowledge. To target these capabilities more
precisely, and mitigate potential inflation of per-
formance by superficial heuristics such as coarse-
grained similarity and word association, we pro-
pose incrementally increasing levels of controls
in constructing our minimal pair stimuli, progres-
sively making the task of attributing properties to
concepts more challenging.

Findings from our initial experiment on COMPS-
BASE established that the basic capacity of mod-
els to attribute properties to everyday concepts is
largely coarse grained. PLMs were more success-
ful in making correct property attributions when

7We thank Reviewers 1 and 3, Najoung Kim and Kyle
Mahowald for raising this concern.

the candidate concepts were radically different,
and struggled when the concepts shared seman-
tic relations or had high co-occurrence. On testing
for ‘property inheritance’ behavior (via COMPS-
WUGS), PLMs initially appeared to demonstrate
reasonable success, but they also showed spurious
behavior in achieving correct performance on a
non-trivial number of instances for which they did
not succeed in the prerequisite base condition. Fur-
thermore, this performance declined substantially
in the presence of distracting information (COMPS-
WUGS-DIST), providing further evidence that what
property knowledge and reasoning we appear to see
in these PLMs is more reliant on superficial heuris-
tics than on ideal reasoning behavior. Of particular
note is our finding of catastrophic distraction in
large autoregressive PLMs, whose sensitivity to
proximity effects brings their overall performance
well under chance, especially when scaled up to
billions of parameters.

Contemporary work has highlighted the promise
of PLMs on high-level tasks requiring—among
other things—access to proper relational knowl-
edge between concepts (see Petroni et al., 2019;
Safavi and Koutra, 2021; Piantadosi and Hill,
2022). By drawing on the concept of property
inheritance, our experiments target reasoning abil-
ity based on perhaps the most well-established of
relations—the taxonomic or the IsA relation (Mur-
phy, 2003). Recent work has also alluded to the
proficiency of PLMs in capturing taxonomic infor-
mation about everyday objects and entities (Weir
et al., 2020; Chen et al., 2021, though see Ravichan-
der et al. (2020)). Findings from our controlled ex-
periments suggest that PLMs’ approximation of the
consequences of the taxonomic relation is at best
noisy, in light of clear failures especially in pres-
ence of similarity-governed competition. We con-
clude from our analyses that instead of robustly ex-
tracting relational information and reasoning about
properties of concepts, it is likely that the PLMs
tested here are optimized to prefer superficial cues
in making word predictions, leading to mistakes
and inaccuracies in presence of irrelevant and dis-
tracting information. Since robust natural language
understanding will be critically reliant on under-
standing of property knowledge and implications
of property transfer, we hope that these findings
will motivate adoption of rigorous assessment meth-
ods as well as work toward more robust property
knowledge and reasoning in PLMs.
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Limitations

Zero-shot setup Using a zero-shot setup to test
PLMs for human-like capacities such as prop-
erty inheritance (as we have done in this work)
has recently come under scrutiny. In particular,
Lampinen (2022) argues that such a setup could
be problematic because PLMs are trained to imi-
tate the language produced by countless individuals
with different beliefs, cultures, and behaviors. As a
result, PLMs are likely to be handicapped in assign-
ing sufficient probability mass to the desired fam-
ily of continuations, given minimal prompts with-
out any particular task-specific context. Instead,
Lampinen (2022) suggests the need for PLMs

“[...] to be guided into an experiment-
appropriate behavioral context, analo-
gously to the way cognitive researchers
place humans in an experimental context,
and orient them toward the task with in-
structions and examples.”

This criticism is valid, and it is possible that models
could overcome their lack of robustness to distrac-
tion effects by observing examples of our stimuli
in context, though this has largely been shown in
PLMs that are significantly larger than the ones
we have tested in this work (Brown et al., 2020;
Chowdhery et al., 2022; Wei et al., 2022a).8 Indeed,
recent work has demonstrated these larger PLMs
to achieve strong performance on other types of
reasoning—such as those required for solving math
problems, reversing sequences, etc.—by priming
models to produce additional textual content that
represents intermediate reasoning steps and ex-
planations (Nye et al., 2021; Wei et al., 2022b;
Lampinen et al., 2022), in a few-shot setting.9 At
the same time, a few-shot version of COMPS stimuli
could expose models to the possibility of leveraging
heuristics that are naturally absent in the zero-shot
setup, and therefore such a setup would critically
require the design of additional controls, which we
leave for future work.

8though see recent work by Shi et al. (2023), who show
distraction effects in such large PLMs in solving arith-
metic reasoning problems, even after using sophisticated in-
context prompting methods such as Chain-of-Thought (Wei
et al., 2022b), Least-to-Most (Zhou et al., 2022), and Self-
Consistency (Wang et al., 2022).

9See also Sinha et al. (2022), who analyze PLMs com-
parable in size to those studied in this work in a few-shot
minimal-pair setting.

Ideal reasoning behavior Another limitation of
our work is that it takes ideal and robust property in-
heritance behavior as the monolithic gold-standard
for human cognition, something that recent work
has cautioned against (Pavlick and Kwiatkowski,
2019; Dasgupta et al., 2022; Webson et al., 2023).
Although we relied on a database of concept-
property pairs that were largely generated by hu-
man participants, whether or not humans will be
robust to the types of distraction that were observed
in PLMs is an open question and requires further
investigation. However, notably we are not mak-
ing direct comparisons between models and hu-
mans here—we argue that our primary contribu-
tion of controlled stimuli that tease apart shallow
processing from robust conceptual reasoning in
PLMs bears substantial merit that is independent
from any comparisons between humans and com-
putational systems. Furthermore, we emphasize
that we are setting a reasonable—and to a certain
extent, human-independent—desideratum in this
work, which is that models should robustly capture
ground-truth knowledge about everyday concepts
and their properties and reflect this knowledge in
their inferences about newly introduced concepts.

Behavioral evaluation This work tests and anal-
yses PLMs on property knowledge and property in-
heritance only from a behavioral perspective, which
at its core is a correlational endeavor. Potential fu-
ture work could complement our results by provid-
ing evidence from representational analyses, or by
devising causal interventions, similar to those re-
cently explored in the realm of syntactic agreement
(Finlayson et al., 2021), or in testing of negation
and hypernymy in NLI models (Geiger et al., 2020),
among others. Importantly, this would require the
development of new methods that shed light on
how new information—such as the ones we use in
COMPS-WUGS and COMPS-WUGS-DIST—is inte-
grated into the model (see Misra et al. (2022) for an
example of such an analysis for novel properties).

Targeted language Finally, COMPS only consists
of sentences in English, thereby biasing our results
only for PLMs trained in that language.

Acknowledgments

For helpful comments we thank Najoung Kim, Tal
Linzen, Brenden Lake, Kyle Mahowald, Andrew
Lampinen, the anonymous reviewers, and audi-
ences at the Computation and Psycholinguistics

2937



Lab (NYU), the Human and Machine Learning
Lab (NYU), the UChicago CompLing Lab, UT
Austin Linguistics Grad Student Seminar , and the
MIT Department of Brain and Cognitive Sciences.
Any errors are our own. Our experiments were
conducted with resources provided by the Rosen
Center for Advanced Computing at Purdue Univer-
sity (McCartney et al., 2014). We are also grateful
to Sam Huang for helping out with experiments
conducted on GPT-3/3.5 models.

References
Mostafa Abdou, Artur Kulmizev, Daniel Hershcovich,

Stella Frank, Ellie Pavlick, and Anders Søgaard.
2021. Can language models encode perceptual struc-
ture without grounding? a case study in color. In
Proceedings of the 25th Conference on Computa-
tional Natural Language Learning, pages 109–132,
Online. Association for Computational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Jean Berko. 1958. The child’s learning of english mor-
phology. Word, 14(2-3):150–177.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao.
2009. Clueweb09 data set.

Catherine Chen, Kevin Lin, and Dan Klein. 2021. Con-
structing taxonomies from pretrained language mod-
els. In Proceedings of the 2021 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, pages 4687–4700, Online. Association for Com-
putational Linguistics.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, et al. 2022. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. ELECTRA: Pre-
training Text Encoders as Discriminators Rather
Than Generators. In International Conference on
Learning Representations.

Jeff Da and Jungo Kasai. 2019. Cracking the contex-
tual commonsense code: Understanding common-
sense reasoning aptitude of deep contextual repre-
sentations. In Proceedings of the First Workshop on
Commonsense Inference in Natural Language Pro-
cessing, pages 1–12, Hong Kong, China. Association
for Computational Linguistics.

Ishita Dasgupta, Andrew K Lampinen, Stephanie CY
Chan, Antonia Creswell, Dharshan Kumaran,
James L McClelland, and Felix Hill. 2022. Lan-
guage models show human-like content effects on
reasoning. arXiv preprint arXiv:2207.07051.

Steven Derby, Paul Miller, and Barry Devereux. 2021.
Representation and pre-activation of lexical-semantic
knowledge in neural language models. In Proceed-
ings of the Workshop on Cognitive Modeling and
Computational Linguistics, pages 211–221, Online.
Association for Computational Linguistics.

Barry J Devereux, Lorraine K Tyler, Jeroen Geertzen,
and Billi Randall. 2014. The Centre for Speech,
Language and the Brain (CSLB) concept property
norms. Behavior Research Methods, 46(4):1119–
1127.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-
lasha Ravichander, Eduard Hovy, Hinrich Schütze,
and Yoav Goldberg. 2021. Measuring and improving
consistency in pretrained language models. Transac-
tions of the Association for Computational Linguis-
tics, 9:1012–1031.

Matthew Finlayson, Aaron Mueller, Sebastian
Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
Belinkov. 2021. Causal analysis of syntactic
agreement mechanisms in neural language models.
In Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics
and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long
Papers), pages 1828–1843, Online. Association for
Computational Linguistics.

Maxwell Forbes, Ari Holtzman, and Yejin Choi. 2019.
Do Neural Language Representations Learn Physical
Commonsense? In Proceedings of the 41st Annual
Meeting of the Cognitive Science Society.

Richard Futrell, Ethan Wilcox, Takashi Morita, Peng
Qian, Miguel Ballesteros, and Roger Levy. 2019.
Neural language models as psycholinguistic subjects:
Representations of syntactic state. In Proceedings of
NAACL-HLT 2019, pages 32–42, Minneapolis, Min-
nesota. Association for Computational Linguistics.

2938

https://doi.org/10.18653/v1/2021.conll-1.9
https://doi.org/10.18653/v1/2021.conll-1.9
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://lemurproject.org/clueweb12/
https://doi.org/10.18653/v1/2021.naacl-main.373
https://doi.org/10.18653/v1/2021.naacl-main.373
https://doi.org/10.18653/v1/2021.naacl-main.373
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://openreview.net/forum?id=r1xMH1BtvB
https://doi.org/10.18653/v1/D19-6001
https://doi.org/10.18653/v1/D19-6001
https://doi.org/10.18653/v1/D19-6001
https://doi.org/10.18653/v1/D19-6001
https://doi.org/10.18653/v1/2021.cmcl-1.25
https://doi.org/10.18653/v1/2021.cmcl-1.25
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.1162/tacl_a_00410
https://doi.org/10.18653/v1/2021.acl-long.144
https://doi.org/10.18653/v1/2021.acl-long.144


Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Atticus Geiger, Kyle Richardson, and Christopher Potts.
2020. Neural natural language inference models
partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion007.github.io/
OpenWebTextCorpus.

Alison Gopnik and David M Sobel. 2000. Detecting
blickets: How young children use information about
novel causal powers in categorization and induction.
Child development, 71(5):1205–1222.

Jonathan Gordon and Benjamin Van Durme. 2013. Re-
porting bias and knowledge acquisition. In Proceed-
ings of the 2013 workshop on Automated knowledge
base construction, pages 25–30.

David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda.
2003. English gigaword. Linguistic Data Consor-
tium, Philadelphia, 4(1):34.

John Hewitt and Percy Liang. 2019. Designing and in-
terpreting probes with control tasks. In Proceedings
of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 2733–2743.

Ari Holtzman, Peter West, Vered Shwartz, Yejin Choi,
and Luke Zettlemoyer. 2021. Surface form com-
petition: Why the highest probability answer isn’t
always right. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 7038–7051, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering. Transactions of the Associa-
tion for Computational Linguistics, 9:962–977.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Najoung Kim, Tal Linzen, and Paul Smolensky. 2022.
Uncontrolled lexical exposure leads to overestima-
tion of compositional generalization in pretrained
models. arXiv preprint arXiv:2212.10769.

Brenden M Lake and Gregory L Murphy. 2021. Word
meaning in minds and machines. Psychological Re-
view.

Andrew K Lampinen, Ishita Dasgupta, Stephanie CY
Chan, Kory Matthewson, Michael Henry Tessler,
Antonia Creswell, James L McClelland, Jane X
Wang, and Felix Hill. 2022. Can language models
learn from explanations in context? arXiv preprint
arXiv:2204.02329.

Andrew Kyle Lampinen. 2022. Can language models
handle recursively nested grammatical structures? a
case study on comparing models and humans. arXiv
preprint arXiv:2210.15303.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. In Interna-
tional Conference on Learning Representations.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. arXiv preprint arXiv:1907.11692.

Li Lucy and Jon Gauthier. 2017. Are distributional
representations ready for the real world? evaluat-
ing word vectors for grounded perceptual meaning.
In Proceedings of the First Workshop on Language
Grounding for Robotics, pages 76–85, Vancouver,
Canada. Association for Computational Linguistics.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing, pages 1192–1202.

Gerry McCartney, Thomas Hacker, and Baijian Yang.
2014. Empowering Faculty: A Campus Cyberinfras-
tructure Strategy for Research Communities. Edu-
cause Review.

George A Miller. 1995. WordNet: a lexical database
for English. Communications of the ACM, 38(11):39–
41.

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. arXiv preprint arXiv:2203.13112.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2020.
Exploring BERT’s sensitivity to lexical cues using
tests from semantic priming. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4625–4635, Online. Association for Computa-
tional Linguistics.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2021.
Do language models learn typicality judgments from
text? In Proceedings of the 43rd Annual Conference
of the Cognitive Science Society.

2939

https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://dl.acm.org/doi/abs/10.1145/2509558.2509563?casa_token=mE3LH0NgZXYAAAAA:jV9pdGKqpOSLdftVM3UudHk0sa9nhH_xUspKq9oeBYEnQ9FK-yDUCenVi9ofiqGHqSL0eNnqVIgKvA
https://dl.acm.org/doi/abs/10.1145/2509558.2509563?casa_token=mE3LH0NgZXYAAAAA:jV9pdGKqpOSLdftVM3UudHk0sa9nhH_xUspKq9oeBYEnQ9FK-yDUCenVi9ofiqGHqSL0eNnqVIgKvA
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2021.emnlp-main.564
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/W17-2810
https://doi.org/10.18653/v1/W17-2810
https://doi.org/10.18653/v1/W17-2810
https://er.educause.edu/articles/2014/7/empowering-faculty-a-campus-cyberinfrastructure-strategy-for-research-communities
https://er.educause.edu/articles/2014/7/empowering-faculty-a-campus-cyberinfrastructure-strategy-for-research-communities
https://doi.org/10.18653/v1/2020.findings-emnlp.415
https://doi.org/10.18653/v1/2020.findings-emnlp.415


Kanishka Misra, Julia Taylor Rayz, and Allyson Et-
tinger. 2022. A property induction framework for
neural language models. In Proceedings of the 44th
Annual Conference of the Cognitive Science Society.

Gregory L Murphy. 2002. The Big Book of Concepts.
MIT press.

M Lynne Murphy. 2003. Semantic relations and the
lexicon: Antonymy, synonymy and other paradigms.
Cambridge University Press.

Sebastian Nagel. 2016. CC-News.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, et al. 2021. Show your work: Scratch-
pads for intermediate computation with language
models. arXiv preprint arXiv:2112.00114.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow in-
structions with human feedback. arXiv preprint
arXiv:2203.02155.

Lalchand Pandia and Allyson Ettinger. 2021. Sorting
through the noise: Testing robustness of information
processing in pre-trained language models. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1583–
1596, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Roma Patel and Ellie Pavlick. 2022. Mapping language
models to grounded conceptual spaces. In Interna-
tional Conference on Learning Representations.

Ellie Pavlick and Tom Kwiatkowski. 2019. Inherent
disagreements in human textual inferences. Transac-
tions of the Association for Computational Linguis-
tics, 7:677–694.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of EMNLP 2014, pages
1532–1543.

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 2463–2473.

Steven T Piantadosi and Felix Hill. 2022. Meaning
without reference in large language models. arXiv
preprint arXiv:2208.02957.

M Ross Quillian. 1967. Word concepts: A theory and
simulation of some basic semantic capabilities. Be-
havioral science, 12(5):410–430.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI.

Abhilasha Ravichander, Yonatan Belinkov, and Eduard
Hovy. 2021. Probing the probing paradigm: Does
probing accuracy entail task relevance? In Proceed-
ings of the 16th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Main Volume, pages 3363–3377, Online. Association
for Computational Linguistics.

Abhilasha Ravichander, Eduard Hovy, Kaheer Suleman,
Adam Trischler, and Jackie Chi Kit Cheung. 2020.
On the systematicity of probing contextualized word
representations: The case of hypernymy in BERT. In
Proceedings of the Ninth Joint Conference on Lex-
ical and Computational Semantics, pages 88–102,
Barcelona, Spain (Online). Association for Computa-
tional Linguistics.

Lance J Rips, Edward E Smith, and Douglas L Medin.
2012. Concepts and categories: Memory, meaning,
and metaphysics. Oxford University Press.

Timothy T Rogers and James L McClelland. 2004. Se-
mantic cognition: A parallel distributed processing
approach. MIT press.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari Rap-
poport. 2015. How well do distributional models
capture different types of semantic knowledge? In
Proceedings of the 53rd Annual Meeting of the As-
sociation for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 726–
730, Beijing, China. Association for Computational
Linguistics.

Tara Safavi and Danai Koutra. 2021. Relational World
Knowledge Representation in Contextual Language
Models: A Review. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1053–1067, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108.

Thibault Sellam, Steve Yadlowsky, Jason Wei, Naomi
Saphra, Alexander D’Amour, Tal Linzen, Jasmijn
Bastings, Iulia Turc, Jacob Eisenstein, Dipanjan Das,
et al. 2021. The multiberts: Bert reproductions for ro-
bustness analysis. arXiv preprint arXiv:2106.16163.

2940

http://web.archive.org/save/http://commoncrawl.org/2016/10/newsdataset-available.
https://doi.org/10.18653/v1/2021.emnlp-main.119
https://doi.org/10.18653/v1/2021.emnlp-main.119
https://doi.org/10.18653/v1/2021.emnlp-main.119
https://openreview.net/forum?id=gJcEM8sxHK
https://openreview.net/forum?id=gJcEM8sxHK
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/2021.eacl-main.295
https://aclanthology.org/2020.starsem-1.10
https://aclanthology.org/2020.starsem-1.10
https://doi.org/10.3115/v1/P15-2119
https://doi.org/10.3115/v1/P15-2119
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2021.emnlp-main.81
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240


Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. arXiv preprint
arXiv:2302.00093.

Vered Shwartz and Yejin Choi. 2020. Do neural lan-
guage models overcome reporting bias? In Proceed-
ings of the 28th International Conference on Com-
putational Linguistics, pages 6863–6870, Barcelona,
Spain (Online). International Committee on Compu-
tational Linguistics.

Koustuv Sinha, Jon Gauthier, Aaron Mueller, Kan-
ishka Misra, Keren Fuentes, Roger Levy, and Ad-
ina Williams. 2022. Language model acceptability
judgements are not always robust to context. arXiv
preprint arXiv:2212.08979.

Steven A Sloman. 1993. Feature-based induction. Cog-
nitive psychology, 25(2):231–280.

Steven A Sloman. 1998. Categorical inference is not a
tree: The myth of inheritance hierarchies. Cognitive
Psychology, 35(1):1–33.

Edward E Smith and William K Estes. 1978. Theories
of semantic memory. Handbook of learning and
cognitive processes, 6:1–56.

Pia Sommerauer and Antske Fokkens. 2018. Firearms
and tigers are dangerous, kitchen knives and zebras
are not: Testing whether word embeddings can tell.
In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 276–286, Brussels, Belgium.
Association for Computational Linguistics.

Pia Johanna Maria Sommerauer. 2022. Diagnosing
semantic properties in distributional representations
of word meaning.

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-
berg, and Jonathan Berant. 2020. Leap-of-thought:
Teaching pre-trained models to systematically rea-
son over implicit knowledge. Advances in Neural
Information Processing Systems, 33:20227–20237.

Trieu H Trinh and Quoc V Le. 2018. A simple
method for commonsense reasoning. arXiv preprint
arXiv:1806.02847.

Amos Tversky. 1977. Features of similarity. Psycholog-
ical review, 84(4):327.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Lan-
guage Model. https://github.com/kingoflolz/
mesh-transformer-jax.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, and Denny Zhou. 2022. Self-consistency im-
proves chain of thought reasoning in language mod-
els. arXiv preprint arXiv:2203.11171.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Albert Webson, Alyssa Marie Loo, Qinan Yu, and Ellie
Pavlick. 2023. Are language models worse than hu-
mans at following prompts? it’s complicated. arXiv
preprint arXiv:2301.07085.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel,
Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al.
2022a. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Chi, Quoc Le, and Denny Zhou. 2022b.
Chain of thought prompting elicits reasoning in large
language models. arXiv preprint arXiv:2201.11903.

Nathaniel Weir, Adam Poliak, and Benjamin
Van Durme. 2020. Probing neural language models
for human tacit assumptions. In CogSci 2020, pages
377–383. Cognitive Science Society.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven
Le Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander Rush. 2020. Transformers:
State-of-the-art natural language processing. In Pro-
ceedings of EMNLP 2020: Demos, pages 38–45,
Online. Association for Computational Linguistics.

Zhibiao Wu and Martha Palmer. 1994. Verb Semantics
and Lexical Selection. In 32nd Annual Meeting of
the Association for Computational Linguistics, pages
133–138, Las Cruces, New Mexico, USA. Associa-
tion for Computational Linguistics.

Yian Zhang, Alex Warstadt, Xiaocheng Li, and
Samuel R. Bowman. 2021. When do you need bil-
lions of words of pretraining data? In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 1112–1125, Online.
Association for Computational Linguistics.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies

2941

https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://doi.org/10.18653/v1/2020.coling-main.605
https://doi.org/10.18653/v1/2020.coling-main.605
https://doi.org/10.18653/v1/W18-5430
https://doi.org/10.18653/v1/W18-5430
https://doi.org/10.18653/v1/W18-5430
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.3115/981732.981751
https://doi.org/10.3115/981732.981751
https://doi.org/10.18653/v1/2021.acl-long.90
https://doi.org/10.18653/v1/2021.acl-long.90


and reading books. In 2015 IEEE International Con-
ference on Computer Vision (ICCV), pages 19–27.
IEEE.

A Model Metadata

Table 3 shows the different models used in our
experiments, along with their abbreviation, tok-
enization scheme, total parameters, vocabulary size,
number of tokens encountered during training, and
corpora on which they are pre-trained. All mod-
els were accessed using minicons (Misra, 2022),10

a python library that serves as a wrapper around
Huggingface’s transformers (Wolf et al., 2020),
and provides a unified mechanism for eliciting log-
probabilities in batch-wise manner for any autore-
gressive or masked LM that is accessible through
the huggingface hub, or is trained using the trans-
formers library. Experiments were performed using
an NVIDIA V100 GPU (32 GB RAM) and took
about 6 hours to run, discounting the time it took to
download the models from the Huggingface Hub.11

B Preview of COMPS stimuli

We show examples of stimuli from our COMPS-
BASE, COMPS-WUGS, and COMPS-WUGS-DIST

datasets in Listing 1 and Listing 2, respectively.
Stimuli with distraction—i.e., in COMPS-WUGS-
DIST—are similar to that in Listing 1, but with the
distraction_type value set to either ‘before’
or ‘in-between’.

{
"id": 12706,
"property": "can fly",
"acceptable_concept": "owl",
"unacceptable_concept": "squirrel",
"prefix_acceptable": "an owl",
"property_phrase": "can fly.",
"prefix_unacceptable": "a squirrel",
"condition": "co-occurrence",
"similarity": 0.62

}

Listing 1: An instance of COMPS-BASE. “condition”
represents the negative sampling scheme, and
“similarity” represents the similarity between the
acceptable concept and the unacceptable concept on
the basis of the condition (either Taxonomic, Property
Norm, Co-occurence, or Random).

10https://github.com/kanishkamisra/minicons
11https://huggingface.co/models.

{
"item": 8343,
"comps_id": 28798,
"property": "has hooves",
"acceptable_concept": "horse",
"unacceptable_concept": "dog",
"prefix_acceptable": "A dax is a

horse. Therefore, a dax",↪→

"prefix_unacceptable": "A dax is a
dog. Therefore, a dax",↪→

"property_phrase": "has hooves.",
"negative_sample_type":

"co-occurrence",↪→

"similarity": 0.62,
"distraction_type": "undistracted"

}

Listing 2: An instance of COMPS-WUGS. “condition”
and “similarity” are the same as in Listing 1.
“distraction_type” denotes the type of distraction
used (undistracted, before, in-between).

Table 4 shows examples from each subset of
COMPS, and the conditional log-probability scores
as computed by GPT-J (Wang and Komatsuzaki,
2021), the largest LM tested on the full set of stim-
uli.

C Additional findings and analyses

C.1 Testing GPT-3/3.5

Recent work in scaling PLMs to hundred billion pa-
rameters has led to models such as GPT-3 (Brown
et al., 2020), which are significantly larger than the
largest model tested in the results discussed above
(i.e., GPT-J, with 6B parameters). Testing them
on the entire set of COMPS stimuli (49K + 3 ×
13.8K pairs of sentences) is prohibitively expensive
since they are only accessible through paid APIs.
Nonetheless, we sampled a small set of COMPS

stimuli—which we term as miniCOMPS—in order
to get a glimpse of how well substantially larger
PLMs elicit property knowledge and demonstrate
reasoning behavior compatible with property in-
heritance. Specifically, we created miniCOMPS

by sampling 1200 minimal pairs from each of our
original COMPS subsets (matched in terms of real
world concepts and properties across the subsets),
such that all pairs of nonce words in the resulting
miniCOMPS-WUGS-DIST end up being sampled
equal number of times (100 times each).
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Family Model (Abbrev.) Parameters Vocab Size Tokenization Corpora Tokens

ALBERT

albert-base-v2 (A-b) 11M

30,000 SentencePiece WIKI and BC 3.3B
albert-large-v2 (A-l) 17M
albert-xlarge-v2 (A-xl) 59M
albert-xxlarge-v2 (A-xxl) 206M

BERT
distilbertbase-uncased (dB-b) 67M

30,522 WordPiece WIKI and BC 3.3Bbert-base-uncased (B-b) 110M
bert-large-uncased (B-l) 345M

ELECTRA
electra-small (E-s) 13M

30,522 WordPiece
WIKI and BC 3.3B

electra-base (E-b) 34M

electra-large (E-l) 51M
WIKI, BC, CW,
CC, and GIGA

33B

RoBERTa
distilroberta-base (dR-b) 82M

50,265 Byte-pair encoding
OWTC 2B

roberta-base (R-b) 124M BC, CC-NEWS,
OWTC, and STORIES

30B
roberta-large (R-l) 355M

GPT2

distilgpt2 (dGPT2) 82M 50,257

Byte-pair encoding

OWTC 2B
gpt2 (GPT2) 124M

50,257 WEBTEXT 8B∗gpt2-medium (GPT2-m) 355M
gpt2-large (GPT2-l) 774M
gpt2-xl (GPT2-xl) 1.5B

EleutherAI

gpt-neo-125M (Neo-125M) 125M

50,257 Byte-pair encoding PILE

300B
gpt-neo-1.3B (Neo-1.3B) 1.3B 380B
gpt-neo-2.7B (Neo-2.7B) 2.7B 420B
gpt-j-6B (GPT-J) 6B 402B

Table 3: Summary of the 22 models that we evaluate in this paper. Legend for Corpora: WIKI: Wikipedia; BC:
BookCorpus (Zhu et al., 2015); CW: ClueWeb (Callan et al., 2009); CC: CommonCrawl GIGA: Gigaword (Graff
et al., 2003); OWTC: OpenWebTextCorpus (Gokaslan and Cohen, 2019); CC-NEWS: CommonCrawl News (Nagel,
2016); STORIES: Stories corpus (Trinh and Le, 2018); WEBTEXT: WebText corpus (Radford et al., 2019); PILE:
The Pile (Gao et al., 2020).
∗As estimated by Warstadt et al. (2020).

COMPS subset Stimulus Score

BASE
A horse has hooves. -3.829
A dog has hooves. -4.963

WUGS
A fep is a horse. Therefore, a fep has hooves. -2.153
A fep is a dog. Therefore, a fep has hooves. -3.392

WUGS-DIST (before)
A wug is a dog. A fep is a horse. Therefore, a fep has hooves. -2.919
A wug is a dog. A fep is a horse. Therefore, a wug has hooves. -2.895

WUGS-DIST (in-between)
A fep is a horse. A wug is a dog. Therefore, a fep has hooves. -3.616
A fep is a horse. A wug is a dog. Therefore, a wug has hooves. -3.092

Table 4: An example of matched stimuli across different COMPS subsets, as well as conditional log-probabilities
elicited by GPT-J. Here, the property of interest is has hooves, the positive concept is HORSE, and the negative
concept is DOG. The negative concept in this case was sampled using the co-occurrence knowledge representation
method (see §2.3). Emboldened words indicate items that are different in the minimal pair. Refer to §3.2 for
discussion on how ‘Score’ is computed.

Models As test subjects, we chose four GPT-
3 models (Brown et al., 2020): ada, babbage,
curie, davinci, with the last one being the
largest (at 175B parameters), and an additional fifth
davinci-based model called text-davinci-001,

which fine-tunes davinci on human-written
demonstrations. We also test the recently pro-
posed GPT-3.5 models, text-davinci-002 and
text-davinci-003, which improve over davinci
by additionally fine-tuning it on code and human-
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Figure 5: Accuracies of GPT-3 models (arranged in
increasing order of the number of trained parameters)
on miniCOMPS-WUGS and miniCOMPS-WUGS-DIST.
Black dashed line indicates chance performance (50%).
Error bands indicate 95% Bootstrap CIs.

written demonstrations (Ouyang et al., 2022).12

All these models are autoregressive in nature, so
we use the same scoring and evaluation method
as described in §3.2. Since the four original
GPT-3 models (ada, babbage, curie, davinci)
are trained using the same LM objective on
the same corpora, we analyze them separately
from text-davinci-001, text-davinci-002,
and text-davinci-003, which we only compare
to davinci. We do this to remain consistent with
the way we displayed results in §4—ordering mod-
els based on their number of trained parameters—
and also because models in the text-davinci-XXX
series use the same underlying davinci model aug-
mented with additional training mechanisms (e.g.,
reinforcement learning and fine-tuning on human-
feedback) and data (e.g., code) instead of increas-
ing its size, to our knowledge.

Results Figure 5 shows the performance of the
four GPT-3 models on miniCOMPS-WUGS and
miniCOMPS-WUGS-DIST, while Figure 6 compares
GPT-3 davinci to its code and human-feedback
adapted counterparts. From Figure 5, we see ro-
bustness issues to persist even for GPT-3 models,
similar to our main results. Models perform re-
markably well in the absence of distraction (i.e., on
miniCOMPS-WUGS), but struggle in its presence,
especially when it is closer to the queried prop-

12These models are also known as InstructGPT, as
discussed in https://platform.openai.com/docs/
model-index-for-researchers.
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Figure 6: Accuracies of davinci models (GPT-3
and GPT-3.5) on miniCOMPS-WUGS and miniCOMPS-
WUGS-DIST. Black dashed line indicates chance perfor-
mance (50%). Error bars indicate 95% Bootstrap CIs.
davinci and text-davinci-001 are GPT-3 (Brown
et al., 2020) models, while text-davinci-002 and
text-davinci-003 are GPT-3.5 models.

erty. In particular, performance on miniCOMPS-
WUGS-DIST (before) increases with an increase
in parameters until the largest model (davinci),
where the performance drops closer to chance. On
miniCOMPS-WUGS-DIST (in-between), all models
perform catastrophically worse than chance. This
noteworthy pattern of proximity-based degradation
in performance mimics the results shown in Fig-
ure 4, though we do not see a systematic decline in
performance with an increase in parameters as ob-
served in the GPT2 and EleutherAI models—with
the 175B parameter model (davinci) demonstrat-
ing an increase in performance over the relatively
smaller curie model.

While the above results demonstrate that sim-
ply scaling autoregressive PLMs is unlikely to
overcome the lack of robustness against distract-
ing content, we now test whether augmenting
these large PLMs by additionally training on code
(GPT-3.5 models) and aligning them with human-
provided demonstrations (text-davinci-001 and
both GPT-3.5 models) could lead to any improve-
ments. For instance, training on code could pro-
vide training signals to PLMs that encourage en-
tity tracking, which could potentially enable them,
in our case, to resolve which subordinate concept
(e.g., wug vs. dax) the target property is more likely
to be associated with. Similarly, aligning with
human-written demonstrations could potentially
improve their truthfulness, which in our case, could
lead to them to prefer correct property assignments.
However, from Figure 6, we see no noteworthy
improvements demonstrated by these augmented
models. All augmented models achieved similar ac-
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curacies on COMPS-WUGS as the davinci model
(within 90.5% and 91%), suggesting that their aug-
mentations preserved the general associations be-
tween the lexical items that denote everyday con-
cepts and properties. On stimuli containing dis-
traction (i.e., both subsets of COMPS-WUGS-DIST),
either the models performed systematically worse
as compared to davinci (with text-davinci-002
showing below-chance performance on both sub-
sets), or they showed mixed results, where an im-
provement on COMPS-WUGS-DIST (before) was
accompanied by a decline on COMPS-WUGS-DIST

(in-between).
Together, these results suggest that neither an in-

crease in scale nor additional training methods such
as alignment with human instructions/feedback or
training on code prevents models from being dis-
tracted in associating properties to novel subordi-
nate concepts introduced in the input context. In
fact, the catastrophic effects of proximity-based
distraction persists even for the most recent state
of the art GPT-3/3.5 models.

C.2 Results with alternate nonce words
Here we report results on COMPS-WUGS and
COMPS-WUGS-DIST using an alternate set of nonce
words, which we constructed by sampling (with
replacement) from 26 lower-case ASCII alphabet
characters. Specifically, we constructed novel char-
acter sequences—each assigned as a replacement
for our original four nonce words—of lengths rang-
ing from 4-8 by sampling in an alternate fashion
from consonants (odd positions) and vowels (even
positions).13 A replication of Figure 4 using the
stimuli with these newly sampled nonce words is
shown in Figure 7. On comparing figures 4 and
7, we observe largely similar patterns of results
on stimuli containing nonce words constructed us-
ing randomly sampled characters. That is, models
generally performed well on COMPS-WUGS, while
they struggled on COMPS-WUGS-DIST. There were
some exceptions: (1) GPT-Neo 1.3B and 2.7B
showed improvements (relative to the original stim-
uli) in cases where distraction is added closer to the
queried property (i.e., in-between), though they
still hover around chance performance, and addi-
tionally the performance of GPT-J, like in the orig-
inal results is still substantially below chance; and
(2) there were non-trivial improvements demon-

13the resulting set of words is: {ruhisin, kifosa, rosibif,
lepuvu}, still amounting to 12 unique ordered pairs in the
COMPS-WUGS-DIST stimuli.

Stimuli Avg. Agreement

COMPS-WUGS 93.10.8

COMPS-WUGS-DIST (before) 73.94.6

COMPS-WUGS-DIST (in-between) 73.04.6

Overall 80.02.9

Table 5: Average agreement (× 100) in PLMs’ pref-
erence on stimuli containing original and synthetically
constructed nonce words.

strated by ALBERT models (large and xl) on the
before subset of COMPS-WUGS-DIST, and BERT-
large on the in-between subset of COMPS-WUGS-
DIST.

To precisely quantify the difference between the
two sets of results, we measured the agreement
between the predictions of the PLMs for both sets
of stimuli, taken as the proportion of minimal pairs
in which the models’ relative preference agree.

Figure 8 shows individual model agreement on
COMPS-WUGS and COMPS-WUGS-DIST, while Ta-
ble 5 shows agreement percentages averaged across
all models. From these results we observe mod-
els to show greater robustness to the variability
introduced by the choice of nonce words in stim-
uli with one novel concept (COMPS-WUGS) than
in stimuli with multiple novel concepts (COMPS-
WUGS-DIST). Despite this discrepancy, there is
generally a high average agreement (80%) between
a given model’s set of decisions on stimuli with
original and alternative nonce words.

C.3 Results with alternate templates

Here we report results on an alternate phrasing of
our stimuli, where instead of using the original
template for introducing novel concepts in context
(a wug is a [CONCEPT]), we use: A wug is a type of
[CONCEPT], where wug indicates the novel concept.
In all cases, we simply alter the template, keeping
everything else constant, including the choice of
nonce words.

Figure 9 shows accuracies of the models on stim-
uli with this alternate phrasing, while Figure 10
and Table 6 show individual and averaged overall
agreement between models’ preference on origi-
nal and the alternatively-phrased stimuli, respec-
tively. The agreement percentages between models’
preferences are quite high (average agreement be-
ing 90%)—in fact even greater than the agreement
observed as a result of altering the nonce words
(Table 5), further cementing the robustness of our
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Figure 7: Accuracies of individual models (grouped by family, in increasing order based on number of parameters)
on COMPS-WUGS and COMPS-WUGS-DIST with synthetically constructed nonce words. Black dashed line
indicates chance performance (50%). Refer to Table 3 for unabbreviated model names.
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Figure 8: Proportion of cases (in COMPS-WUGS and both subsets of COMPS-WUGS-DIST) where each listed
model’s preference on the original stimuli matches that in stimuli with synthetically constructed nonce words,
measured as the ‘Agreement’. An agreement of 1.0 suggests that a given model’s preferences are perfectly matched
across both sets of stimuli.

Stimuli Avg. Agreement

COMPS-WUGS 93.41.2

COMPS-WUGS-DIST (before) 88.53.1

COMPS-WUGS-DIST (in-between) 88.03.6

Overall 90.02.6

Table 6: Average agreement (× 100) in PLMs’ pref-
erence on stimuli containing original (A wug is a
[CONCEPT].) and alternate framing of novel taxonomic
information (A wug is a type of [CONCEPT].).

results.

C.4 How does performance on COMPS-BASE
vary by property type?

Devereux et al. (2014) have categorized the proper-
ties that we use in our experiments to lie in 5 differ-
ent categories: (1) Taxonomic, e.g., is a mammal,
is a vehicle, etc.; (2) Functional, e.g., can keep
the body warm, is used to hit nails, etc.; (3) Ency-
clopedic, e.g., uses electricity, is warm blooded,

etc.; (4) Visual Perceptual, e.g., has webbed feet,
has thick fur, etc.; and (5) Other Perceptual, e.g.,
makes grunting sounds and is sharp, etc. We re-
port results of the 22 PLMs on the COMPS-BASE

stimuli across the five different property types, in
Figure 11.

From Figure 11, we observe that PLMs are sub-
stantially stronger in eliciting taxonomic properties
of concepts as compared to other types, with high-
est overall accuracy being 70%, as compared to
48% on encyclopedic properties, 50% on visual per-
ceptual properties, 57% on functional properties,
and 43% on non-visual perceptual properties. Re-
call that chance accuracy for the ‘Overall‘ scenario
is just 6.25%, so these scores are fairly high. This
corroborates evidence from previous work in ana-
lyzing property knowledge of distributional seman-
tic models as well as LM representations to lack
perceptual knowledge (Lucy and Gauthier, 2017;
Da and Kasai, 2019; Rubinstein et al., 2015; Weir
et al., 2020), likely due to reporting bias (Gordon
and Van Durme, 2013; Shwartz and Choi, 2020).
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Figure 9: Accuracies of individual models (grouped by family, in increasing order based on number of parameters)
on COMPS-WUGS and COMPS-WUGS-DIST with alternate framing of novel taxonomic information. Black dashed
line indicates chance performance (50%). Refer to Table 3 for unabbreviated model names.

0.90

0.90

0.87

0.87

0.92

0.92

0.86

0.89

0.91

0.91

0.82

0.83

0.79

0.79

0.84

0.86

0.87

0.87

0.86

0.86

0.89

0.89

0.92

0.92

0.91

0.91

0.90

0.90

0.92

0.92

0.89

0.89

0.88

0.89

0.88

0.89

0.87

0.89

0.94

0.92

0.86

0.87

0.85

0.87

0.940.940.95 0.930.93 0.91 0.92 0.92 0.92 0.920.94 0.950.950.95 0.950.94 0.930.94 0.930.940.93 0.92

WUGS-DIST
(in-between)

WUGS-DIST
(before)

WUGS

A-b A-l A-x
l
A-x

xl dB-
b B-b B-l E-s E-b E-l dR-

b R-b R-l dGP
T2
GPT

2
GPT

2-m
GPT

2-l
GPT

2-xl

Neo
-125

M
Neo

-1.3
b
Neo

-2.7
B
GPT

-J

0.6 0.7 0.8 0.9 1.0
Agreement

Figure 10: Proportion of cases (in COMPS-WUGS and both subsets of COMPS-WUGS-DIST) where each listed
model’s preference on the original stimuli matches that in stimuli with alternate framing of novel taxonomic
information, measured as the ‘Agreement’. An agreement of 1.0 suggests that a given model’s preferences are
perfectly matched across both sets of stimuli.

However, different to most of these works, the gap
between performance on perceptual properties and
non-perceptual properties is small. We conjecture
that this could be primarily due to the extension
of the CSLB by Misra et al. (2022), which lead to
an increase in coverage of property knowledge for
several properties. For instance, the property has
teeth was mentioned only for 45 out of 67 potential
concepts, having been left out for concepts such as
CALF,14 BUFFALO, KANGAROO, etc. So it could be
the case that previous research has underestimated
the extent to which property knowledge is encoded
by PLMs and other distributional semantic models
of language.

C.5 Does performance on COMPS-BASE
depend on scale?

We plot the accuracies of PLMs on COMPS-BASE

per model family (in order to control for differences
in training corpora and tokenization) in Figure 12.

14the young one of a cow, and not the muscles in the verte-
brate body

In all families except BERT, we see that accuracy
increases with the model size, following standard
scaling laws. We notice that distilBERT-base (Sanh
et al., 2019) is able to outperform even BERT-large
on stimuli with ‘Random’ negative samples, sug-
gesting that pruning BERT might sometimes unin-
tentionally improve the model’s ability to associate
properties and concepts. We do however caution
against interpreting these results as robust conclu-
sion for scaling laws on COMPS-BASE. Such an
endeavor would require comparing performance of
models across multiple checkpoints with varying
number of parameters, paired with rigorous statis-
tical inference (Sellam et al., 2021; Zhang et al.,
2021).
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Figure 11: COMPS-BASE performance across five property types annotated in CSLB (Devereux et al., 2014).
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Figure 12: Accuracy vs. parameters across various negative sampling strategies. Models are shaded based on
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