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Abstract

Understanding sentence semantics requires an
interpretation of the main information from a
concrete context. To investigate how individual
word contributes to sentence semantics, we pro-
pose a perturbation method for unsupervised
semantic analysis. We next re-examine SOTA
sentence embedding models’ ability to capture
the main semantics of a sentence by develop-
ing a new evaluation metric to adapt sentence
compression datasets for automatic evaluation.
Results on three datasets show that unsuper-
vised discourse relation recognition can serve
as a general inference task that can more effec-
tively aggregate information to essential con-
tents than several SOTA unsupervised sentence
embedding models. 1

1 Introduction

Humans are usually able to understand sentence
meaning based on a complex cognitive process —
composition of words (Löbner, 2013). As main car-
riers of information, words generally have different
levels of contribution to the final sentence seman-
tics. For example, underlined words in “The city of
Austin is considering extending downtown parking
meter hours to the weekends and later during the
week” convey the most important information of
this sentence. Therefore, determining the primary
semantics (or main meaning) of a sentence and
estimating how sentence semantics distributes to
individual words play critical roles in understand-
ing sentence compositionality.

Recently, with the help of large pretrained
Transformers, sentence representation learning has
achieved great success in downstream NLP tasks
(Qiu et al., 2020). However, most work either heav-
ily relies on human annotation such as Natural
Language Inference (NLI) data (Williams et al.,

1Code and data are available at https://github.com/

wenlinyao/EACL23-PrimarySemantics

2018; Bowman et al., 2015) to do fine-tuning (Con-
neau et al., 2017a; Reimers and Gurevych, 2019)
or adopt unsupervised contrastive learning to learn
sentence embeddings (Gao et al., 2021; Chuang
et al., 2022). They neglect one critical property
of an effective sentence embedding model that es-
sential contents should contribute to sentence se-
mantics more than non-essential contents when
encoding a sentence.

We observe that primary semantics can be ac-
quired by learning to predict discourse relations
because sentence primary semantics usually needs
to support the logical relations at the discourse
level. It is motivated by the distinction between
asserted and projected content in semantic theory
(Potts, 2003; Tonhauser et al., 2013; Venhuizen
et al., 2018). Asserted content is intended to be
presented for discussion and information exchange,
whereas projected content represents background
information that is not under discussion. Thus, as-
serted content should carry more weight in sentence
representations than projected content, because it
is at issue in the context by the speaker’s intention.

Based on this observation, we apply 36 explicit
discourse connectives to four big corpora and ex-
tract 9.8M sentence pairs. Acquired sentence pairs
are then used to train a universal sentence encoder.
Next, by perturbing the trained model, we directly
estimate the contributions (importance) from indi-
vidual words to the final sentence semantics. Our
assumption is that the importance of a word in
a sentence is proportional to how much the new
sentence representation drifts from the original sen-
tence representation if we mask that word. Figure
1 shows the overview of our approach.

To overcome the lack of evaluation data and
quantitatively evaluate a sentence encoder’s sensi-
tivity to key information of a sentence, we design
a new evaluation metric — important information
gain, which measures model’s ability to concen-
trate on the important words instead of randomly se-
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Figure 1: Overview of our approach.

lected words. Experiments on three datasets show
that our model outperforms previous unsupervised
and supervised sentence embedding models. Our
analysis also demonstrates our model is less biased
than the model trained with human-annotated data.

In this paper, we investigate how words, as main
carriers of information, contribute to the final sen-
tence semantics with different levels of significance.
Our main contributions are summarized as follows:
1) We propose a perturbation method to estimate
the contributions from individual words to sentence
semantics to understand sentence compositionality.
2) We design a new automatic metric, Important
Information Gain, to overcome the lack of evalu-
ation. We find discourse relation recognizer can
more effectively aggregate information to essential
contents than several SOTA unsupervised sentence
embedding models.

2 Related Work

DisSent (Nie et al., 2019) also uses discourse pre-
diction to train sentence embeddings, but their goal
is to achieve SOTA fine-tuning results on SentEval
tasks (Conneau and Kiela, 2018) and the PDTB
task instead of investigating primary semantics.
Our work is closely related to sentence compres-
sion (Filippova et al., 2015; Kamigaito and Oku-
mura, 2020) and extractive text summarization (Xu
and Durrett, 2019; Mendes et al., 2019) that mainly
focus on extracting the salient text spans in an end-
to-end manner. In contrast, we aim to estimate the
semantic saliency distribution to better understand
sentence compositionality. Perturbation methods
have been also used in data augmentation (Das and
Sarkar, 2019), robustness analysis (Niu et al., 2020;
Prabhakaran et al., 2019), and textual adversarial
attack (Li et al., 2021; Feng et al., 2018). We are
the first to use the perturbation method to estimate

sentence semantics distribution.

3 Discourse Relation Recognition as a
General Inference Task

3.1 Data Collection

To have a broad coverage on different types of
texts, we consider four large-scale corpora. News
Articles. We use English Gigaword 5th edition
(Napoles et al., 2012), which contains 10M news
articles. Wikipedia. We use the Wikipedia dump
of 5/20/2021 which consists of 54M web pages.
Novel Books. BookCorpus (Zhu et al., 2015) con-
tains 11,038 novel books of 16 different genres.
Blogs. We use the Blog Authorship Corpus (Schler
et al., 2006) which consists of 680K blog posts.
We applied the Stanford CoreNLP tools2 to obtain
sentence boundaries.

We next select 36 explicit connectives (corre-
sponding to 9 discourse relations)3 from the PDTB
annotation manual (Prasad et al., 2008) and summa-
rize them into extraction patterns. After applying
them to four corpora, we extract 9.8M sentence
pairs in total. Statistics of acquired sentence pairs
are summarized in Table 1.

3.2 Model Architecture

Inspired by Reimers and Gurevych (2019), our
model first uses an encoder to get two sentence
representations and then compares them to pre-
dict the discourse relations. Specifically, we ap-
ply a pretrained BERTBase (Devlin et al., 2019)
model to the two sentences and select the model
outputs at the [CLS] tokens as the corresponding
sentence representations u and v. Next, by feeding
u, v and |u − v| into a 9-class softmax layer, i.e.,

2
https://stanfordnlp.github.io/CoreNLP/.

3We only consider connectives that are less ambiguous in
relations. See Appendix for the full list of connectives.
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CT RS CJ EQ GN IN CA PR DJ

Pairs 8M 430K 800K 29K 12K 285K 188K 26K 26K

Table 1: Statistics of sentence pairs extracted from four
text corpora. 9 discourse relations are Contrast (CT),
Result (RS), Conjunction (CJ), Equivalence (EQ), Gen-
eralization (GN), Instantiation (IN), Chosen Alternative
(CA), Precedence (PR), and Disjunctive (DJ).

p = softmax(Wt[u, v, |u − v|]), our model pre-
dicts what is the discourse relation (e.g., Contrast,
Result, Equivalence, etc.) between them.

4 Estimating Sentence Semantics
Distribution via Perturbation

To estimate the semantic distribution of the input
sentence S = {wi}Ni=1, we mask each word wi indi-
vidually to construct a new sentence and apply the
sentence embedding model (Section 3.2) to calcu-
late the new representation. Next, we calculate the
cosine distance between the new and the original
representation. The distance can quantitatively tell
us how much the new sentence (after masking one
word) semantically drift from the original sentence,
which indicates the contribution of that word to the
sentence semantics.4 Finally, we normalize the dis-
tances by their summation so that the importance
scores of all words sum to 1.

5 Evaluation

5.1 Evaluation Metric
Ideally, if we know the gold standard importance
distribution in sentence semantics, we can directly
compare a model’s prediction with the gold stan-
dard. However, it is infeasible for humans to anno-
tate/assign a continuous importance score to each
word in a sentence. To address the lack of eval-
uation data, we adopt two sentence compression
datasets and one summarization dataset for evalu-
ation. The main idea is that the compressed sen-
tence, as a shorter version of the original sentence,
specifies the most important words in the original
sentence. Therefore, we can score a model by its
ability of concentrating on important words.

Furthermore, we propose a new evaluation met-
ric — Importance Information Gain — to score
how much a predicted distribution is superior to a

4If the target masked word is tokenized into multiple sub-
word pieces by the tokenizer, we mask each subword piece
in turn and calculate the summation score as the word impor-
tance.

uniform distribution (all words are equally impor-
tant). Specifically, given a sentence S = {wi}Ni=1

consisting of |S| = N words, suppose the com-
pressed sentence by human is S′ = {wj}j∈1∼N ,
where S′ is a subset of S. Let [v1, v2, · · · , vN ] be
the importance scores over words (normalized such
that

∑N
i=1 vi = 1). We calculate the information

gain g to be the average importance score on im-
portance words

∑
i∈S′ vi
|S′| over the score that every

word is equally important 1
|S| : g =

∑
i∈S′ vi
|S′| − 1

|S| .
We next normalize g for each test sentence in-

stance by the upper bound g∗, where g∗ is de-
fined as the information gain of a model that can
perfectly distinguish important words from non-
important words (concentrate all information on
only important words): g∗ = 1

|S′| − 1
|S| . Then, the

final Importance Information Gain = g/g∗ ∈ [0, 1].
To validate whether the proposed metric is able

to measure the quality of a semantic distribution,
we randomly sample 100 pairs from baseline mod-
els’ predictions in Table 2 and analyze our metric’s
consistency with human preferences. Specifically,
each sampled pair consists of predictions (seman-
tic distributions) of two separate baseline models
on the same sentence. Three expert annotators
are asked to judge which one better characterizes
the importance/contribution of each word to the
sentence meaning. We next compare our metric’s
preferences with the gold human preferences5. Our
metric agreed on 87/100 with human gold labels,
achieving a substantial (Cohen, 1968) kappa agree-
ment score of 0.74.

5.2 Evaluation Datasets

For evaluation, we experiment on three datasets.
Google sentence compression dataset (GGL) (Fil-
ippova and Altun, 2013) contains 10K test sentence
compression pairs and BNC written dataset (Clarke
and Lapata, 2008) contains 1.5K test compression
pairs. Additionally, we go through the Gigaword
summarization dataset (GGW) and compare the
first sentence with the title sentence in the news
article. We select (first sentence, title) pairs as our
testing data if words6 in the title sentence is a sub-
set of words in the first sentence. We collect the
first 10K sentence pairs as our test data.

5Gold labels are generated based on majority voting. The
average Cohen’s kappa inter-agreement between three annota-
tors is 0.67.

6We use lemma matching in practice.
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5.3 Baseline Systems
Rule-Based Model. We use a rule-based primary
semantics extraction system (Zhang et al., 2020),
which first parses the input sentence into a depen-
dency parsing tree and extracts the sentence skele-
ton.7 Words in the sentence skeleton are considered
equally important.
GloVe Embedding. We calculate the sentence
embeddings by averaging GloVe embeddings (Pen-
nington et al., 2014) among all words except wi.
Original BERT. We apply the original BERT-base
model8 that uses next sentence prediction as the
training objective.
BERT-CT (Carlsson et al., 2021) introduces an
unsupervised learning method called Contrastive
Tension (CT) that only requires raw sentences and
achieves SOTA performance on Semantic Textual
Similarity (STS) tasks. CT tries to maximize the
dot product between sentence representations for
identical sentences and minimize the dot product
for differing sentences. BERT-CT-STSb and BERT-
CT-NLI9 are two supervised CT models fine-tuned
on STSb and NLI, respectively.
SimCSE (Gao et al., 2021) is a contrastive sen-
tence embedding framework that achieves SOTA
performance on sentence similarity tasks. The un-
supervised model (SimCSE-unsup) takes an input
sentence and predicts itself in a contrastive objec-
tive with dropout as the data augmentation method.
The supervised model (SimCSE-sup) incorporates
sentence pairs from the NLI data (Williams et al.,
2018; Bowman et al., 2015) into a contrastive learn-
ing framework, by using entailment pairs as posi-
tives and contradiction pairs as negatives.
DiffCSE (Chuang et al., 2022) augments SimCSE
contrastive learning with the edited sentences sam-
pled from a masked language model.
SBERT (Reimers and Gurevych, 2019). Sentence-
BERT (SBERT) uses siamese and triplet network
structures to derive sentence embeddings. SBERT-
NLI is the original model introduced by Reimers
and Gurevych (2019) that is fine-tuned on NLI.
Moreover, we also consider four more recent
SBERT models that are fine-tuned with more sen-
tence pair data.10 Specifically, SBERT-MSMarco
is fine-tuned on the MSMarco Passage Ranking
Dataset containing 500K (query, relevant passage)

7We select the whole sentence as the prediction when the
system fails on complex sentences.

8Select the output at the [CLS] token.
9
https://github.com/FreddeFrallan/Contrastive-Tension.

10
https://www.sbert.net/docs/pretrained_models.html.

Models GGL BNC GGW Avg.

Supervised

1 BERT-CT-STSb 7.4 19.3 8.3 11.7
2 BERT-CT-NLI 7.5 10.0 6.5 8.0
3 SimCSE-sup 15.8 25.1 10.2 17.0
4 SBERT-NLI 14.3 23.2 14.2 17.2
5 SBERT-Paraphrase 23.7 15.4 31.8 23.6
6 SBERT-MultiQA 33.0 28.6 35.6 32.4
7 SBERT-MSMarco 31.7 28.3 32.7 30.9
8 MPNet-All 52.6 33.3 58.2 48.0

Unsupervised

9 Parsing Tree 18.7 19.8 7.2 15.2
10 GloVe Embedding 10.2 25.3 12.1 15.9
11 Original BERT 2.0 0.3 0.8 1.0
12 BERT-CT 12.0 16.3 12.4 13.5
13 SimCSE-unsup 13.9 14.9 10.1 13.0
14 DiffCSE 21.6 28.7 20.8 23.7
15 Our Model-disc. 36.9 27.2 36.6 33.6

Table 2: Importance Information Gain (%) on three
evaluation datasets. We group models based on whether
it requires human-labeled data in training or not.

pairs from Bing search. SBERT-Paraphrase is fine-
tuned on NLI and 11 paraphrase datasets. SBERT-
MultiQA is fine-tuned on 214M (question, answer)
pairs from 17 QA datasets. MPNet-All is fine-
tuned on all available sentence pair tasks including
32 tasks with 1,170M sentence pairs.

Table 2 shows the results of all models. We
group models based on whether they use human-
labeled data or not. Line 15 is our model trained on
9.8M sentence pairs that are extracted by discourse
connectives. Our unsupervised discourse recogni-
tion model achieves the highest overall information
gain among all unsupervised approaches, which
is even higher than several supervised models that
are trained using millions of human-annotated data
(Lines 3-7). Surprisingly, even SimCSE and Dif-
fCSE report better performance than MPNet-All on
STS tasks, they are much worse than MPNet-All
on capturing sentence primary semantics.

5.4 Visualization and Analysis

While previous studies (Conneau et al., 2017b) em-
pirically show that fine-tuning towards NLI data
yields good sentence embedding models, we visual-
ize and compare the model trained on the NLI data
with the model trained on discourse pairs. We find
the NLI data model sometimes is biased to specific
numbers, time expressions, etc (Figure 2). It may
be mainly due to the bias introduced during the
NLI data construction process when human anno-
tators sometimes just replace the numbers or time

3004

https://github.com/FreddeFrallan/Contrastive-Tension
https://www.sbert.net/docs/pretrained_models.html


[CL
S] the

so
uth

da
ko

ta
leg

isla
tur

e is
loo

kin
g for 22

co
lle

ge
stu

de
nts to

se
rve as

leg
isla

tiv
e

int
ern ##

s for the 20
13

leg
isla

tiv
e

se
ssi

on .
[SE

P]

0

5

10

15

20

25

30

35

%
Visualisation of words importance

[CL
S] the

so
uth

da
ko

ta
leg

isla
tur

e is
loo

kin
g for 22

co
lle

ge
stu

de
nts to

se
rve as

leg
isla

tiv
e

int
ern ##

s for the 20
13

leg
isla

tiv
e

se
ssi

on .
[SE

P]

0

5

10

15

20

25

30

35

40

%

Visualisation of words importance

Figure 2: Semantic distribution of the model trained
on NLI (upper) v.s. discourse data (lower) on the same
sentence (important words are underlined). “The South
Dakota legislature is looking for 22 college students
to serve as legislative interns for the 2013 legislative
session.” The red line indicates 1/|S|.

expressions to produce a contradictory sentence. In
contrast, the discourse relation recognizer is less
sensitive to those specific expressions. Appendix
II contains more examples.

6 Conclusion

In this paper, we have introduced a perturbation
method for estimating sentence semantic distribu-
tion and designed a new metric to achieve auto-
matic evaluation. We find discourse relation recog-
nition can serve as a general inference task to train
an unsupervised sentence embedding model that es-
timates such distribution meaningfully than several
SOTA sentence embedding models.

7 Limitations

To benefit from large-scale training data, we train
the discourse relation recognizer on data that are
automatically generated by matching explicit con-
nectives. Even we only select explicit connectives
that have one dominant discourse relation, some of
them may still reflect a different relation in some
contexts. For example, connective in other words
indicates a “Equivalence” relation most of the time,
but sometimes it can also indicate a “Generaliza-
tion” relation. In this regard, our method shares
the same limitations as the broad class of weakly
supervised methods where training data are auto-
matically generated. Considering discourse parser
is not the main focus of this paper, we leave how to
generate cleaner discourse relation data and train a

better discourse relation recognizer for future work.
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Appendix I

Experiment details. We generally follow the hyper-
parameter setting of previous work to train our
model. In experiments, we train our model us-
ing cross-entropy loss and Adam (Kingma and
Ba, 2015) optimizer with initial learning rate 5e-5,
dropout rate 0.5, and batch size 256 for 5 training
epochs. The training of the discourse relation rec-
ognizer was run on one machine with 8 NVIDIA
P40 GPUs, taking about 6 hours per epoch and
three epochs in total. We simply use the standard
hyper-parameters to train our model without any
hyper-parameter search.

Appendix II

Here is the full list of explicit discourse connectives
for extracting sentence pairs (Section 3.1).

Contrast (CT): although, but, by comparison,
by contrast, however, in contrast, nevertheless,
nonetheless, on the contrary, on the other hand,
though
Result (RS): accordingly, as a result, because, con-
sequently, hence, therefore, thus
Conjunction (CJ): additionally, besides, further-
more, in addition, in fact, indeed, moreover, overall,
similarly
Equivalence (EQ): in other words
Generalization (GN): in short, in sum
Instantiation (IN): for example, for instance
Chosen Alternative (CA): instead
Precedence (PR): ultimately
Disjunctive (DJ): otherwise, unless
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Appendix III

More examples of semantic distribution of the model trained on NLI (upper) v.s. general inference
knowledge (lower) on the same sentence.

[CLS]
micha

el cra
b

##tree has a
stre

ss
frac

ture in his left foo
t

tha
t

cou
ld side ##line him for 10

week
s , nfl .

com and esp
n

rep
ort .

[SE
P]

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

%

Visualisation of words importance
[CLS]

micha
el cra
b

##tree has a
stre

ss
frac

ture in his left foo
t

tha
t

cou
ld side ##line him for 10

week
s , nfl .

com and esp
n

rep
ort .

[SE
P]

0

2

4

6

8

10

12

14

%

Visualisation of words importance

Figure 3: Michael Crabtree has a stress fracture in his left foot that could sideline him for 10 weeks , NFL.com and
ESPN report .
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Figure 4: Goldcorp is preparing to sell its 49 % stake in Silver Wheaton Corp. , a transaction that could raise at
least $ 1.8 billion , according to sources close to the deal .
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Figure 5: Charlottesville - based WorldStrides has opened a new office in Shanghai , China .
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Figure 6: Urban will undergo throat surgery later this month , to remove a polyp which has developed on his vocal
chords .
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Figure 7: The Holy Family Catholic Schools Little Eagles program will offer 16 summer camps for students in
preschool to eighth grade .
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