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Abstract

Zero-shot text classification is a widely studied
task that deals with a lack of annotated data.
The most common approach is to reformulate
it as a textual entailment problem, enabling
classification into unseen classes. This work
explores an effective approach that trains on a
weakly supervised dataset generated from tradi-
tional classification data. We empirically study
the relation between the performance of the en-
tailment task, which is used as a proxy, and
the target zero-shot text classification task. Our
findings reveal that there is no linear correlation
between both tasks, to the extent that it can be
detrimental to lengthen the fine-tuning process
even when the model is still learning, and pro-
pose a straightforward method to stop training
on time. As a proof of concept, we introduce
a domain-specific zero-shot text classifier that
was trained on Microsoft Academic Graph data.
The model, called SCIroShot, achieves state-
of-the-art performance in the scientific domain
and competitive results in other areas. Both the
model and evaluation benchmark are publicly
available on HuggingFace1 and GitHub2.

1 Introduction

Ever since the first BERT (Devlin et al., 2019) and
GPT (Radford et al., 2018) models were introduced
to the world, the Transformer (Vaswani et al., 2017)
has become the dominant architecture in the Nat-
ural Language Processing (NLP) field. As a con-
sequence, in the years that followed, the pretrain-
then-finetune paradigm (Howard and Ruder, 2018)
has been widely adopted to progressively push the
state-of-the-art in a wide variety of downstream
tasks and languages (Nozza et al., 2020).

Even though the current training regime is far
from being environmentally friendly due to the
computational cost of pre-training (Patterson et al.,

∗Equal contribution.
1https://huggingface.co/BSC-LT/sciroshot
2https://github.com/bsc-langtech/sciroshot

2021; Strubell et al., 2019), transfer learning re-
moves the need of having to train a new model
from scratch for each application. However, the
fine-tuning of models for every single task is ex-
pensive both in terms of time and money as it is
always preceded by a labor-intensive data labelling
process (Wang et al., 2021a). In order to over-
come this issue, as well as the fact that real world
data can be scarce in many scenarios, the field
has started to shift towards techniques that require
smaller amounts of labelled examples or even none
at all (Wang et al., 2021b; Schick and Schütze,
2021; Radford et al., 2019; Brown et al., 2020).

In particular, in the scientific domain, the grow-
ing amount of publications in an ever-increasing
number of fields makes the classification task very
challenging for neural language models (Larsen
and Von Ins, 2010; Bornmann et al., 2021). The
impossibility to predict the emergence of new fields
of study and the high cost associated with the cre-
ation of new datasets (which often requires domain
experts) generate a need for systems that are capa-
ble of adapting to new situations. Furthermore, the
complexity and technicality of scientific language
makes general-domain models perform poorly in
comparison to domain-specific ones (Lee et al.,
2020; Cohan et al., 2020).

This work addresses these problems by training
an entailment-based zero-shot classifier for scien-
tific text. Instead of using a general domain dataset
such as the popular XNLI (Conneau et al., 2018)
or MNLI (Williams et al., 2018), a textual entail-
ment dataset of scientific documents was built from
scratch in a weakly supervised manner. By train-
ing a vanilla model on the entailment task, it is
then able to classify documents into unseen classes
with a high degree of success. As a by-product of
this, the study of the relation between the training
and target tasks led to intriguing questions about
the strengths and limitations of the entailment ap-
proach to Zero-Shot Text Classification (ZSTC).
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2 Related Work

Zero-Shot Learning is a widely studied problem
in Machine Learning that consists in completing
a task for which no training examples were pro-
vided. Although the term became initially popular
in computer vision (Lampert et al., 2009; Xian
et al., 2018), it soon made the leap into NLP with
an early paper (Chang et al., 2008) that presented
a classifier capable of interpreting the Explicit Se-
mantic Analysis (ESA) representations of docu-
ments and labels from a semantic point of view,
using Wikipedia as a source of world knowledge.

This highlighted the importance of capturing the
labels’ semantics in their representations, unlike
in conventional text classification where labels are
mapped to meaningless indices. This became easier
to capture with the arrival of word embeddings, and
can be enhanced by simply replacing their name
with a short description (Song and Roth, 2014).

In subsequent research, zero-shot tasks were oc-
casionally tackled from another problem’s perspec-
tive (Levy et al., 2017; Obamuyide and Vlachos,
2018), which implies training a model on a task for
which annotated data is available and performing
inference on a different one. Recognizing Textual
Entailment (RTE) (Dagan et al., 2005) is arguably
the most versatile task because of its generality,
which is why it is commonly used to model other
downstream tasks (Wang et al., 2021b).

The most popular approach at the time of writ-
ing is to reformulate ZSTC as a textual entailment
problem as proposed by Yin et al. (2019), aiming
to imitate the way humans would address this Nat-
ural Language Understanding task. The underlying
idea is that a model trained on the entailment task
should be able to perform classification of unseen
classes by computing the entailment score between
the input text, which acts as a premise, and candi-
date labels conveniently converted into hypotheses.

Later research showed that the Next Sentence
Prediction (NSP) objective for sentence pair clas-
sification can also be used as a strong baseline for
ZSTC, since competitive results where obtained
using raw BERT models that were not fine-tuned
on any Natural Language Inference (NLI) data (Ma
et al., 2021). Even though entailment-based zero-
shot text classifiers have shown to have certain
limitations like a high instability or an excessive
reliance on spurious lexical patterns, the current
literature offers no better alternatives for a problem
that is still far from being mastered by machines.

3 Creation of weakly supervised data

This section describes the methodology followed
to transform a text classification dataset into entail-
ment data that could potentially be used to fine-tune
a domain-specific (or not) zero-shot text classifier.
This approach takes advantage of the fact that there
are plenty of publicly accessible labelled examples
for classification while there is not so much avail-
able for entailment tasks, most likely due to the
difficulty of producing this type of data.

In this work, a weakly supervised NLI dataset
was constructed using Microsoft Academic Graph3

(MAG) data as a starting point. To do so, all labels
were converted to natural language sentences that
would serve as hypotheses. Therefore, the gener-
ated training examples consist of pairs of sequences
(premise and hypothesis) that are delimited by EOS
tokens, where the first part of the text contains
the abstract section from a scientific publication
(premise) and the second part is an artificially gen-
erated sentence that somehow embeds the class
label of the scientific text (hypothesis). Table 1
shows this idea in a simplified form.

Input Sequence Label
<s>Text1</s></s>This example is X</s> 1
<s>Text1</s></s>This example is Y</s> 0
<s>Text2</s></s>This example is Z</s> 1

Table 1: Format of the training examples. The label is 1
if the premise entails the hypothesis and 0 otherwise.

Once the classification data has been turned into
the entailment format, any model can be fine-tuned
by predicting whether the premise of each input
sequence entails the corresponding hypothesis or
not. Note however that this is rather an adaptation
of the RTE task, since the second sentence does not
really "entail" the first in positive examples. It is
basically like performing a text classification task
where labels are not converted into numeric indices,
ensuring that their semantic content is preserved.

Figure 1 illustrates how a ZSTC model would op-
erate both during fine-tuning (left) and at inference
time (right), providing a full picture of the method-
ology followed in this work. We basically adopt
the approach introduced by Yin et al. (2019) but
going one step further by fine-tuning on a weakly
supervised domain-specific dataset instead of using
already existing general-domain NLI data.

3https://academic.microsoft.com/
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Figure 1: Overview of the entailment approach to ZSTC. On the left hand side it can be seen how the model is
fine-tuned on a two-class textual entailment task, by providing the input text as a premise and the label name
embedded in a natural language sentence that represents the hypothesis. On the right, the trained model classifies
documents into unseen classes by computing the entailment score between the input text and each candidate label.

4 Data

4.1 Training Dataset

As mentioned in Section 3, our training dataset
builds on top of scientific-domain annotated data
from Microsoft Academic Graph (Sinha et al.,
2015). This database consists of a heterogeneous
graph with billions of records from both scientific
publications and patents, in addition to metadata in-
formation such as the authors, institutions, journals,
conferences and their citation relationships. The
documents are organized in a hierarchical struc-
ture composed of hundreds of thousands of scien-
tific concepts, creating a six-level hierarchy with
a subsumption-based model (Shen et al., 2018),
although the two top-most levels are manually cu-
rated to guarantee accuracy. As an example, the
0-level field of study (FoS) in the MAG taxonomy
covers the following 19 scientific concepts: {Art,
Biology, Business, Chemistry, Computer Science,
Economics, Engineering, Environmental Science,
Geography, Geology, History, Materials Science,
Mathematics, Medicine, Philosophy, Physics, Polit-
ical Science, Psychology, Sociology}.

Dataset Labels Examples
train 240 2,104,493
devseen 240 233,833
devunseen 52 5,200
Total 292 2,343,526

Table 2: Number of labels and examples in the train
and development sets of our dataset. Note that the 240
labels from the train and devseen set are the same, while
the 52 labels from the devunseen set were purposely kept
aside for label-fully-unseen setups.

Due to the descriptive broadness of the 0-level
MAG taxonomy, we have created our training cor-
pus focusing exclusively the 1-level MAG taxon-
omy, which is composed of 292 FoS classes. The
higher granularity of this level provides more de-
scriptive information in the form of narrower sci-
entific concepts, such as “Computational biology”,
“Transport engineering” or “Civil engineering”.

Using the relationship between scientific texts
and their matching concepts in the 1-level MAG
taxonomy we are able to generate the premise-
hypothesis pairs corresponding to the entailment
label. Conversely, we generate the pairs for the
neutral label by removing the actual relationship
between the texts and their scientific concepts and
creating a virtual relationship with those to which
they are not matched (see Table 3).

Input Sequence Label
One plus one is two. Maths
Cancer is a disease. Health
One plus one is two. This text is Maths. entails
One plus one is two. This text is Health. neutral
Cancer is a disease. This text is Maths. neutral
Cancer is a disease. This text is Health. entails

Table 3: Toy example of the initial classification dataset
(top) and the adapted entailment dataset (bottom).

For each of the 292 classes, a random sample of
scientific articles with a publication year between
2000 and 2021 was extracted with their respective
titles and abstracts in English. We have collected a
maximum of 5k and 10k positive and neutral tex-
tual entailment samples, respectively, for each of
the possible 1-level FoS classes. In total, SCIroshot
has been fine-tuned using 919k documents with a
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total of 465M words. In order to perform experi-
ments in label-fully-unseen setups, the examples
associated to 52 labels were kept aside. For com-
putational reasons, the size of the development set
was reduced considerably to the point that it be-
came a fully balanced set of 100 examples per class.
The number of labels and examples of each set are
summarized in Table 2.

4.2 Evaluation Datasets

We evaluate the performance of our models on a
collection of disciplinary-labeled textual datasets.
For the in-domain evaluation, we gathered cross-
disciplinary and domain-specific datasets of sci-
entific publications. For the out-of-domain case,
we use the three datasets from the benchmark pro-
vided by Yin et al. (2019), which study 3 aspects
of ZSTC: topic categorization (Yahoo! Answers),
emotion detection (UnifyEmotion) and situation
frame detection (Situation Typing). Table 4 pro-
vides an overview of the number of examples and
labels for each dataset.

Dataset Labels Examples
arXiv 11 3,838
SciDocs-MeSH 11 16,433
SciDocs-MAG 19 17,501
Konstanz 24 10,000
Elsevier 26 14,738
PubMed 109 5,000
Yahoo! Answers 10 60,000
UnifyEmotion 10 15,689
Situation Typing 12 3,311

Table 4: Statistics of each dataset from the scientific-
domain (top) and general-domain (bottom) benchmarks.

4.2.1 Scientific-domain datasets

arXiv (He et al., 2019). 11-label dataset of pa-
pers from the arXiv repository. The labels are a
set of sub-categories within the branches of Com-
puter Science and Mathematics. While the original
dataset contains the full publication texts, we only
gathered titles and abstracts from the 3,838 publi-
cations for which a DOI was available in the API4.
SciDocs-MeSH (Cohan et al., 2020). Over 16k
papers from the medical domain. Each paper is as-
signed one of 11 high-level disease classes derived
from the MeSH vocabulary (Lipscomb, 2000).

4https://arxiv.org/help/api/

SciDocs-MAG (Cohan et al., 2020). More than
17k cross-disciplinary publications labelled using
the 0-level MAG taxonomy (Wang et al., 2020).
None of the labels are included in our training data.
Konstanz5. 10k journal articles produced by re-
searchers at the University of Konstanz, extracted
from the Konstanz Online Publication System
(KOPS). Publications from this open-access reposi-
tory are manually labelled by the research staff with
a category taken from the DDC taxonomy (Dewey,
1876), which unfolds into more than 30 classes
describing different scientific domains. We only
consider English journal articles labelled within a
reduced set of 24 categories.
Elsevier (Kershaw and Koeling, 2020). Cross-
disciplinary corpus of 14.7k open access articles
from Elsevier’s journals. The document labels are
given by their ASJC Subject Classification scheme,
which links publication venues (and, transitively,
each single publication) to 27 scientific subject do-
mains. We removed all publications labelled with
more than 1 subject area. Publications annotated
with the non-informative “Multidisciplinary” label
were removed as well.
PubMed6. We collected 5k publications labelled
with a manually-selected subset of 109 MeSH
terms within the Disciplines and Occupations and
Technology, Industry, and Agriculture branches of
the MeSH taxonomy. The chosen categories are
general-domain and well-known concepts out of
specific medical terminology, as most MeSH terms.

4.2.2 Out-of-domain datasets
Yahoo! Answers (Zhang et al., 2015). Topic
categorisation dataset with questions and their cor-
responding best answer in Yahoo! Answers. We
only use the test set, which consists of 60k exam-
ples that belong to exactly one of the 10 largest
main categories in the website.
UnifyEmotion (Oberländer and Klinger, 2018).
Emotion detection dataset with texts from a variety
of sources (tweets, emotional events, tales, and
artificial sentences) classified into 9 emotions and
"none" when no emotion fits the case. We use
the modified version from Yin et al. (2019), which
removes all multi-label instances.
Situation Typing (Mayhew et al., 2019). Multi-
label event-type classification dataset of 11 classes,
designed for low-resource situation detection.

5https://kops.uni-konstanz.de/
6https://pubmed.ncbi.nlm.nih.gov/
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5 Experiments

5.1 Design choice
The newly-created scientific dataset from Sec-
tion 4.1 was used to fine-tune a 355M parameters
RoBERTa (Liu et al., 2020) and a 400M parameters
BART (Lewis et al., 2020) models, in an attempt
to determine which architecture (i.e. encoder or
encoder-decoder) is best suited for the task at hand.
As already noted in section 4.1, 52 labels from the
training data were kept apart so that they could be
used as a development set of fully-unseen classes.
For a given input text, the entailment score with
each candidate label has to be computed by the
model. The final prediction will be the highest
scoring class in a single-label classification setup,
or the N classes above a certain threshold in a multi-
label scenario. Table 5 shows the accuracy score of
the last checkpoints evaluated in RTE’s devseen set
as well as the ZSTC devunseen set.

Model RTE ZSTC
RoBERTa-large 98.00 48.78
BART-large 98.30 45.69

Table 5: Accuracy scores of our two models in the
Recognizing Textual Entailment (RTE) and Zero-Shot
Text Classification (ZSTC) tasks.

Even though both models achieved a similar ac-
curacy in the entailment task, we could not help
noticing that the best performing model on RTE
(even if only by a small margin) was doing worse
on ZSTC by three full points. This raised a concern
as to whether our fine-tuning task, which at the end
is no more than an adaptation of the real RTE, was
positively correlated with the target task of ZSTC
or not.

5.2 Correlation between the RTE-ZSTC tasks
In order to verify the correlation between both
tasks, we conducted an exhaustive evaluation of
all checkpoints using the 52-labels devunseen set.

As it can be observed in Figure 2, after a certain
point the performance in the ZSTC task begins to
gradually worsen while on RTE it is still getting
better at a slow but steady pace. This means that
somehow, as the training progresses, the model
forgets the meaning of the unseen labels, with the
exception of the initial checkpoints where an ex-
ponential growth is experienced simultaneously in
both tasks. We can observe a peak ZSTC perfor-
mance when the model has an evaluation RTE score

Figure 2: Accuracy scores obtained by the RoBERTa-
large checkpoints. Each y-axis represents a different
range of accuracies for better visualization.

of roughly 0.96. Despite the high variability, it is
clear that from that point onwards the zero-shot
capacities of the model decrease. To mitigate this
effect we propose an early stopping technique.

5.3 Early stopping

We concluded that, at training time, the validation
of the model should be done on the target task
rather than the training task. This way the training
process can be interrupted as soon as the model
stops improving on ZSTC, something that we ex-
pect to happen at an earlier stage. We propose to
evaluate each checkpoint on the subset of 52 un-
seen classes described in Section 4.1 and use early
stopping with a patience of 10.

Model RTE ZSTC
RoBERTa-largelast 98.00 48.78
RoBERTa-largeselected 96.07 53.90
BART-largelast 98.30 45.69
BART-largeselected 96.59 52.76

Table 6: Accuracies in the RTE and ZSTC tasks. The
last subscript indicates that it was the last checkpoint
stored during fine-tuning, while the selected subscipt
refers to the checkpoint selected with early stopping.

In Table 6 it is clear that the early stopping tech-
nique improves the results in the ZSTC evaluation
task, since both architectures obtain a substantial
boost when early stopping is applied. Overall, the
RoBERTa-large model performs better than BART-
large, what we hypothesize that might be caused
by a loss of generality from models that achieve
higher scores in the RTE task.
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Model arXiv SciDocs-MesH SciDocs-MAG Konstanz Elsevier PubMed
fb/bart-large-mnli 33.28 66.18 51.77 54.62 28.41 31.59
bart-large-rteselected 36.71 56.57 63.98 63.57 48.48 27.46
bart-large-rtelast 28.58 44.21 57.75 62.25 42.51 21.72
SCIroShotselected 42.22 59.34 69.86 66.07 54.42 27.93
SCIroShotlast 35.44 52.27 65.27 60.74 50.92 22.85

Table 7: Label wise weighted F1 score of different models in our scientific benchmark. For simplicity, the hypothesis
template was set to "This example is {}." in all cases.

6 Results

This section assesses the performance of our zero-
shot classifiers, which were trained on a weakly
supervised entailment dataset of scientific text. In
an effort to obtain a more complete picture, we per-
form both an in-domain and out-of-domain study.

6.1 Scientific domain

For an in-domain evaluation, the in-house gener-
ated scientific benchmark from Section 4.2.1 was
used. We compare our SCIroShot with the strong
baseline set by Facebook’s bart-large-mnli model7.
This NLI-based model is the most downloaded
zero-shot classifier in the HuggingFace Hub (over
1M monthly downloads) and the one used by de-
fault in the zero-shot-classification pipeline from
their transformers library (Wolf et al., 2020). For
an apples-to-apples comparison, we also consider
a BART-large model that was trained following the
same methodology employed for SciroShot, as it
has the same architecture as the Facebook model.

The results presented in Table 7 prove the im-
portance of domain-specific training, something
that has been repeatedly seen in traditional text
classification. The models trained on MAG data
obtain the best results in four out of six datasets, by
large margins in all cases, and interestingly enough
the Facebook model only wins in the two medical
datasets: PubMed and SciDocs-MeSH. The num-
bers also support our theory that too much training
can be detrimental, as the models selected with
early stopping score higher than their "last" coun-
terpart in all cases.

6.2 General domain

For the out-of-domain study, we include ourselves
in the benchmark proposed by Yin et al. (2019).
This amounts to a total of three datasets that cover

7https://huggingface.co/facebook/
bart-large-mnli

(Yin et al., 2019)
Topic this text is about {}
Emotion this text expresses {}
Situation The people there need {}

(Ma et al., 2021)
Topic It is related with {} .
Emotion This person feels {} .
Situation The people there need {} .

SCIroShot (ours)
Topic

This example is {}Emotion
Situation

Table 8: Hypothesis templates used for each dataset.
The {braces} indicate the label name location.

a variety of topics, with classes ranging from news
article topics to human emotions.

The results reported in Table 9 show that our
SCIroShot model is competitive in other domains
as well. Actually, it is quite impressive that it was
able to outperform the rest in two tasks and obtain
the second highest score in the third one.

It is important to note that the Situation dataset
has the added difficulty of being multi-label, mean-
ing that a piece of text can be linked to an arbitrary
number of labels. In a single-label setting, softmax
is applied over all the labels logits (so that they sum
up to one) and the highest scoring class is chosen
as the final prediction. On the other hand, when
performing multi-label classification, the softmax
function is applied to each label separately (so they
are independent variables that do not add up to
one) and all labels with a probability above a cer-
tain threshold are selected. We did not tune such
threshold, so the model’s predictions included all
labels with a score higher than 0.5.

7 Analysis

7.1 RTE vs ZSTC in the scientific benchmark

This section analyses the relation between the train-
ing task and the ZSTC task to assess the effective-
ness of the early stopping technique presented in
Section 5.3. We evaluate every checkpoint in our
ZSTC Scientific Benchmark in the same way that
several models were evaluated in Section 5.2.
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Model Topic Emotion Situation
RTE (Yin et al., 2019) 43.8 12.6 37.2
FEVER (Yin et al., 2019) 40.1 24.7 21.0
MNLI (Yin et al., 2019) 37.9 22.3 15.4
NSP (Ma et al., 2021) 50.6 16.5 25.8
NSP (Reverse) (Ma et al., 2021) 53.1 16.1 19.9
SCIroShotlast 51.51 22.63 23.70
SCIroShotselected 59.08 24.94 27.42

Table 9: Results obtained in the general benchmark. Accuracy is used for Topic classification and label-wise
weighted F1 for the rest. For simplicity, the hypothesis template was set to "This example is ." in all cases.

Figures 3 and 4 corroborate our hypothesis that
the performance in the ZSTC task does not neces-
sarily improve hand-by-hand with the performance
on RTE. Taking a closer look to the plots we can
appreciate how the ZSTC accuracy drops after the
model reaches an accuracy of 96% on RTE. The
checkpoints selected using the early stopping tech-
nique based on the ZSTC task achieve 96.07% RTE
accuracy in the case of RoBERTa-large and 96.60%
for BART-large. We argue that, although the se-
lected checkpoints are not the best possible option
for all the datasets in the benchmark, our technique
has stopped training before the overall ZSTC per-
formance diminishes, and it has done so using a
subset of unseen labels from the training dataset.
This implies obvious savings in time and computa-
tion that would otherwise have been wasted for no
good reason.

Figure 3: Evaluation of all RoBERTa-large checkpoints
in the training (RTE) and testing (ZSTC) tasks.

7.2 Robustness to hypothesis templates

This section is an attempt to measure the impor-
tance of the hypothesis template and its impact on
the final performance of a zero-shot model. With

Figure 4: Evaluation of all BART-large checkpoints in
the training (RTE) and testing (ZSTC) tasks.

this goal in mind, we evaluate our SCIroShot and
Facebook’s bart-large-mnli with two hypothesis
templates that are virtually the same: "This exam-
ple is {LABEL}" and "This example is {LABEL}.".
Note that their semantic content is exactly the same,
being the only difference that the first template does
not contain a punctuation mark at the end.

Figure 5 shows that SCIroShot is quite robust
against changes in the hypothesis template. On
the other hand, as it can be seen in Figure 6,
bart-large-mnli can experience severe performance
drops caused by an apparently insignificant change
in the template. We hypothesize that this might
happen because the model was trained with high-
quality NLI data where dots were always present
at the end of the hypothesis, and thus it is not used
to the absence of these type of anchor tokens. It
can also be inferred that our training task is quite
robust to different hypothesis templates.

We would like to point out that the high sen-
sitivity of the Facebook model was accidentally
detected during our experiments. We noticed that
using our default template the model obtained sur-
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Figure 5: SCIroShot performances when using slightly
different hypothesis templates.

Figure 6: Facebook’s bart-large-mnli performances
when using slightly different hypothesis templates.

prisingly low results in several tests, something
highly unexpected considering its great capabili-
ties. In pursue of intelectual honesty, we decided
to report the results obtained with the template that
best suited the model’s interests. The exact same
template was given to our models so that there was
one less thing to take into account when comparing
performances, even though it might not be the one
providing the best results.

Conclusion

The benefits offered by a zero-shot text classifier
are four-pronged: (i) it removes the need for time-
consuming annotation processes carried out by do-
main experts, (ii) reduces the computational cost
of having to fine-tune a model for each application,
(iii) allows the classification of documents in real-
world scenarios where there is a scarcity of data,
and (iv) is able to handle new classes that might
not even have existed at the time of training.

This work proposes the usage of readily avail-
able classification datasets for effortless generation
of entailment data, which can be used to train ZSTC

models. By not using conventional RTE datasets
of generic nature, the resulting model exhibits su-
perior performance in the domain for which it has
been trained. We show that this is the case for the
scientific domain, but the idea could certainly be
extrapolated to other fields (e.g. a model trained on
news articles should excel at topic classification of
this kind of documents). As a proof of concept, we
present a scientific-domain zero-shot text classifier
that achieves state-of-the-art performance in the
scientific domain and competitive results in other
areas.

Furthermore, our experiments and analysis
suggest that entailment-based classifiers are no
panacea: they are very sensitive to the input se-
quences and do not exhibit the linear correlation
that one would expect between the performance
on the training (RTE) and testing (ZSTC) tasks.
We have empirically proven that the model can be-
come worse at ZSTC as it improves in RTE, which
is counter-intuitive and goes against the idea of
entailment being a unified method to model other
downstream tasks. Our analysis also show that our
technique does not suffer from the instability ob-
served in models trained with conventional RTE
datasets, which can occasionally experience severe
performance drops with minor changes such as re-
moving a punctuation mark from the hypothesis
template.

Future Work

In future work, we will further investigate the cor-
relation between different tasks as this could only
be the tip of the iceberg. It might also be interest-
ing to increase the difficulty of the fine-tuning task
by working with thousands of fine-grained labels
from deeper levels of the MAG taxonomy, aiming
to delay the point at which the model performance
starts worsening in the ZSTC task.

Our findings also motivate an interesting re-
search direction that we would like to explore: em-
ploying novel prompt tuning techniques to find
the ideal hypothesis template. Having seen that
zero-shot text classifiers experience dramatic per-
formance drops caused by apparently insignificant
modifications in the hypothesis text, it is clear to
us that there is a need to find a suitable text in an
automatic manner. We consider this to be a major
pitfall of zero-shot models, and thus we are willing
to study the feasibility of applying prompt tuning
to this particular case as future work.
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Limitations

Our main limitations had to do with time and com-
putational constraints. Given the low efficiency
of entailment-based classifiers, which need to ex-
ecute a forward pass per class, the time required
to traverse certain datasets was simply too high.
Specially when the number of candidate labels is
large, because every sequence-label pair has to be
fed through the model to compute the logits of all
possible combinations. This low ability to scale
is certainly a drawback with respect to traditional
classifiers, and the reason that forced us to discard
datasets with over 500 labels as well as a few ex-
periments that we intend to leave for future work.

Ethics Statement

We believe that this work meets the ACL Code of
Ethics as it provides an already trained zero-shot
text classifier that can be used in an endless number
of situations that would otherwise require a task-
specific fine-tuning. Moreover, one of the main
findings of this work is that entailment-based text
classifiers should not be over-trained as it nega-
tively affects their final performance. This should
encourage fellow NLP practitioners to shorten the
training time of their ZSTCs thus minimizing their
carbon footprint, which is in line with the idea of
moving towards more sustainable language models.
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A Fine-tuning hyperparameters

Hyper-parameter Value
Learning Rate 8e-6
Learning Rate Decay Linear
Weight Decay 0.0
Warmup Steps 0
Batch Size 256
Max. Training Epochs 10
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Gradient Clipping 1.0

Table 10: Hyper-parameter values.

B Computing infrastructure

The fine-tuning of each model took around 2 days
on 16 HPC nodes8 equipped with an AMD EPYC
7742 (@ 2.250GHz) processor with 128 threads
and 2 AMD MI50 GPUs each.

8https://www.bsc.es/innovation-and-services/
technical-information-cte-amd

C Proportion of Entailment and Neutral
samples in the training data

Figure 7: Proportion of entailment and neutral samples
in the training data. For space limitations it is not pos-
sible to display all 292 labels, so the bar plot has been
purposely limited to the top 75 classes.
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