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Abstract
Salient Span Masking (SSM) has shown itself
to be an effective strategy to improve closed-
book question answering performance. SSM
extends general masked language model pre-
training by creating additional unsupervised
training sentences that mask a single entity or
date span, thus oversampling factual informa-
tion. Despite the success of this paradigm,
the span types and sampling strategies are rel-
atively arbitrary and not widely studied for
other tasks. Thus, we investigate SSM from
the perspective of temporal tasks, where learn-
ing a good representation of various tempo-
ral expressions is important. To that end, we
introduce Temporal Span Masking (TSM) in-
termediate training. First, we find that SSM
alone improves the downstream performance
on three temporal tasks by an avg. +5.8 points.
Further, we are able to achieve additional im-
provements (avg. +0.29 points) by adding the
TSM task. These comprise the new best re-
ported results on the targeted tasks. Our anal-
ysis suggests that the effectiveness of SSM
stems from the sentences chosen in the train-
ing data rather than the mask choice: sentences
with entities frequently also contain temporal
expressions. Nonetheless, the additional tar-
geted spans of TSM can still improve perfor-
mance, especially in a zero-shot context.

1 Introduction

Salient Span Masking (SSM), first introduced by
Guu et al. (2020) for retrieval-based language mod-
eling, has shown performance gains for closed-
book question answering (CBQA) (Roberts et al.,
2020; Ye et al., 2020). SSM is a form of intermedi-
ate pretraining (Ye et al., 2021), where a pretrained
model such as a BERT (Devlin et al., 2019) or T5
(Raffel et al., 2020) is trained further before task-
specific finetuning, generally on more specialized
data that does not require expensive annotations.
Specifically, SSM uses the masked language mod-
eling objective but only masks named entities and

dates in sentences from English Wikipedia articles;
these “salient” spans likely contain more facts, so
the language model must memorize more facts in
order to do the task successfully (Petroni et al.,
2019). The authors use a named entity recognition
model to identify entity spans and a regular expres-
sion to identify date spans. While this works well
for knowledge intensive downstream tasks, such
as entity-centric question answering, it remains un-
clear whether it is helpful for tasks that are less
aligned with the data, such as common sense or
temporal reasoning. Moreover, is it possible to se-
lect spans that are more related to a downstream
task in order to get further performance gains?

In this work, we investigate SSM for tasks that
require understanding temporal expressions. While
SSM does include dates, the tasks we investigate
include other complex temporal expressions such
as durations and intervals. To that end, we intro-
duce Temporal Span Masking (TSM): an interme-
diate pretraining strategy for predicting spans that
are likely temporal expressions (Figure 1). Simi-
lar to SSM, TSM is automatically generated from
English Wikipedia articles. We compare models
trained on TSM and SSM on three temporal tasks,
namely MC-TACO (Zhou et al., 2019), TimeDIAL
(Qin et al., 2021) and SituatedQA (Zhang and
Choi, 2021), and for one general-purpose question
answering (QA) task of Natural Questions (NQ)
(Kwiatkowski et al., 2019). We summarize our
contributions as follows:

• We propose TSM Intermediate Training,
which automatically selects temporal spans
for masking.

• The new best reported results on the three
temporal tasks: the best average performance
is from a mixture of TSM and SSM. This
mixture also does slightly better than SSM on
Natural Questions.

• Experiments investigating the role of differ-
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Figure 1: Overview of the TSM and SSM tasks: While SSM (Guu et al., 2020) identifies named entities and dates
as salient spans, for TSM we use SUTIME parser that captures other temporal expressions such as durations and
intervals. SUTIME is first applied on raw sentences to identify any temporal expressions. Next, training data for
TSM is created from those sentences which have at least one temporal expression identified. In SSM, the masked
spans comprise of named entity or date spans. Input to each task consists of the sentence with the selected span
dropped out where the model is trained to predict the dropped tokens.

ent TSM and SSM span types, showing entity
spans alone are helpful, which implies that dif-
ficult examples help improve representations
of the unmasked spans as well.

2 Methods

Following Roberts et al. (2020), we utilize interme-
diate training to improve pretrained models’ gen-
eralization to downstream tasks. All models are
initialized from the encoder-decoder T5-1.1-XXL
language model (Raffel et al., 2020), which was
shown to have the best closed-book QA perfor-
mance in Roberts et al. (2020).

2.1 Background: Salient Span Masking

Salient Span Masking (SSM) was first introduced
by Guu et al. (2020) and is designed to specif-
ically mask named entities and dates or salient
spans. These salient spans are automatically iden-
tified from English Wikipedia using a Named En-
tity Recognition model to find entities as well as
a regular expression to find dates. The authors
mask one such span per sentence during training:
the model must maximize the probability of the
masked entity or date given the corrupted input
sentence. Guu et al. (2020) designed the task to im-
prove downstream performance on tasks requiring
world knowledge in order to improve their retrieval-
augmented model’s ability to use retrieved texts.
Roberts et al. (2020) then adapted this task for
closed book encoder-decoder models.

2.2 Proposed: Temporal Span Masking

Inspired from the success of SSM, TSM is designed
to address problems requiring temporal knowledge.
To create training examples for TSM, we automati-
cally identify temporal expressions in a large cor-
pus using SUTIME (Chang and Manning, 2012),

a rule-based temporal parser, that identifies tem-
poral expressions from raw text. Given an input
sentence, SUTIME is built to identify expressions
of the following four types: Time which indicates
a particular point in time such as next Monday, Du-
ration such as 3 days, Set which indicates periodic
set of time that occur with some frequency such as
every 4 years and Date such as January 1.

We run SUTIME on all of English Wikipedia1.
Specifically, we divide the articles into sentences,
and apply SUTIME2 on each sentence. For our TSM
training data, we ensure that exactly one temporal
span is masked per example. So, if a sentence con-
tains four temporal spans, we create four training
examples with exactly one temporal span masked
per example. Details of the temporal distribution
are in Table 4. Each example is created by masking
the tokens belonging to the temporal expression, as
shown in Figure 1, corrupting the input sentence
by replacing the span with (_X_) and having the
model predict the masked tokens. The training ob-
jective is to maximize the probability of the target
span given the corrupted input sentence, similar
to T5’s span corruption training objective (Raf-
fel et al., 2020) and the SSM training objective
(Roberts et al., 2020).

2.3 Model Variants

All newly reported results are based on T5-1.1-
XXL models. Proposed models are named for their
intermediate training objective: TSM is trained
solely on the masked temporal spans described
above; SSM is trained solely on the training objec-

1We use the 2020 snapshot of English Wikipedia (TFDS
datadump wikipedia20201201en)

2https://github.com/FraBle/
python-sutime
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tive described in Roberts et al. (2020).3

We also investigate a version of the SSM pre-
training data that only uses the named entity spans
identified by the NER model; in other words, all of
the date spans identified by the regular expression
are removed, but the task is otherwise the same.
We call this objective ENTITIES. Finally, we com-
pare against models that are trained proportional
mixtures of both TSM+SSM and TSM+ENTITIES.

For baseline models, we use the same pretrained
model (T5-1.1-XXL) with no intermediate training
(T5), as well as a T5-1.1-XXL model which has
been trained for an additional 100K steps on the
prefix LM task (T5-LM; Lester et al. 2021).

2.4 Downstream Temporal Tasks
We evaluate on three downstream temporal tasks
for evaluation, finetuning a model on each task
separately. Below, we briefly describe the tasks
and datasets, with additional training details in Ap-
pendix A.

MC-TACO Zhou et al. (2019) release a human-
annotated dataset to measure temporal common-
sense understanding. It consists of 13k tuples of
(sentence, question, candidate answer) covering
five types of common sense problems such as event
frequency, event duration, event ordering, stationar-
ity and event typical time. Given a sentence context,
a temporal question about that context, and a possi-
ble commonsense answer, the task is to determine
whether the provided answer is reasonable for the
given context. For instance, for the event of taking
a shower with four possible answer choices five
minutes, fifteen minutes, fifteen hours, and fifteen
years, the first two are plausible and will have the
yes label while the latter two choices would be no.
There is no training data released for this task, so
we finetune the model on the provided validation
set and evaluate on the test set.

TimeDIAL Qin et al. (2021) release a human-
annotated multi-turn dialog dataset for measuring
temporal commonsense understanding in a dialog
setting. The dataset comprises of challenge test set
with 1.1k dialog instances derived from the Daily
Dialog dataset described in Qin et al. (2021). Time-
DIAL dialogs mostly comprise of common sense
instances where the answers generally consist of
one temporal span. For instance, in the following

3We note that the SSM-spans are derived from the 2018
snapshot of English Wikipedia (same as Guu et al. (2020))
while TSM-spans from the 2020 snapshot.

dialog “I’ll just be a minute’., the span “a minute”
may be masked out and the model is required to
predict the masked span based on the dialog turns.
Given a dialog with a temporal expression masked
out, the task is to correctly predict which two of the
four provided answers are valid in the given con-
text. We report results without finetuning (styled
TimeDIAL-0) as well as results from finetuning the
model on the Daily Dialog dataset.

SituatedQA Zhang and Choi (2021) release an
open-domain QA dataset derived from existing
question answering datasets with additional anno-
tations that resolve temporal and geographic ambi-
guities. Each example consists of a disambiguated
question: for instance, “Which COVID-19 vac-
cines have been authorized in the US [as of 2020]?”
or “What was the first COVID-19 vaccine to be
authorized [in the US]?”. For the purpose of this
work, we focus on the temporal questions. These
consist of 9K additional questions, with a training
set of about 4.5K questions. We finetune on the
training set and evaluate on the test set.

2.5 Natural Questions

While the focus of our method is improving tem-
poral question answering performance, we also
wanted to ensure that our method does not degrade
performance on non-temporal question answering
tasks. Thus, we also evaluate our model variants
on Natural Questions (Kwiatkowski et al., 2019),
using the “open” variant popularized by Lee et al.
(2019). These examples discard those questions
without short answers or that require an evidence
document to answer. These consist of about 87K
questions for training and an additional 3.6k ques-
tions for validation, which we use for evaluation.

3 Results and Discussion

Our main results can be found in Table 1. Re-
sults including Natural Questions can be found in
Table 2. Note that the Natural Questions results
have minor variations from published numbers; we
ran these baselines ourselves, and it is possible the
training setup differed slightly.

T5 and T5-LM The T5 model sets a relatively
high baseline compared to previously reported mod-
els. The T5-LM model’s extra non-domain-specific
pretraining does not help on any task, suggesting
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SituatedQA MC-TACO TimeDIAL TimeDIAL-0

Model F1 EM F1 EM 1-Best 2-Best 1-Best 2-Best Overall Overall-0

BEST REPORTED – 18.53 82.92 63.81 – 76.10 – 50.60 52.74 44.31

T5 25.75 19.78 84.00 64.56 99.91 84.50 90.85 37.59 56.28 40.64
T5-LM 25.38 19.63 81.99 59.83 99.91 80.60 86.87 32.16 53.35 37.21
SSM 29.92 23.12 85.88 68.39 99.73 84.06 96.74 67.21 58.52 52.91

ENTITIES 29.42 22.82 85.47 66.59 99.91 83.06 97.64 67.93 57.49 52.45
TSM 27.42 21.18 84.89 65.92 99.91 83.88 99.82 77.54 56.99 54.88
TSM+SSM 29.33 22.76 86.20 67.64 100.0 83.78 98.19 73.10 58.03 54.5
ENTITIES+TSM 30.78 24.60 85.32 68.47 99.91 84.24 98.91 76.09 59.09 56.39

Table 1: Aggregate metrics across the three datasets. Overall performance is the simple arithmetic average of the
harder metric for each approach (EM, EM, 2B); Overall-0 uses TimeDIAL-0 instead of TimeDIAL. The second
section contains our runs of earlier models; the Best Reported uses best known published numbers. The third
section represents our models. Note that all models (in the second and third sections) are based on T5-1.1-XXL
models. Best Reported results are ALBERT (Lan et al., 2019) from Abramson and Emami (2022) for TimeDIAL,
BART results from Zhang and Choi (2021), and DeBERTa (He et al., 2020) results from the leaderboard for MC-
TACO. Note that F1 for MC-TACO is based on the precision/recall over answers and EM is based on labeling every
answer for a question correctly, while the F1 for SituatedQA is based on the token-level F1 of the answer span.

Model F1 EM Overall Overall-0

SSM 41.57 34.6 52.54 48.33
T5 39.35 32.38 50.31 38.58
T5-LM 37.16 31.14 47.80 35.69

ENTITIES 41.21 34.52 51.75 47.97
TSM 39.24 32.69 50.92 49.33
TSM+SSM 41.80 35.10 52.3 49.65
ENTITIES+TSM 41.89 35.18 53.11 51.09

Table 2: Results on Natural Questions – Overall and
Overall-0 results include the same metrics from Table 1
with Natural Questions (EM) included. The first sec-
tion represents our baselines. Note that all models are
based on T5-1.1-XXL models.

extra training steps does not in of itself cause im-
provements on these tasks.

Entities The ENTITIES model, which is trained
on only non-temporal entity spans, performs better
overall than the TSM task. It only does worse on
the TimeDIAL dataset, which is almost entirely
focused on conversational, non-knowledge based
contexts. It still does substantially better than the
base T5 model when no finetuning data is avail-
able. This high performance is possibly due to the
prevalence of temporal spans in the SSM training
data. Running SUTIME on the ENTITIES data re-
veals that 45% of its training examples contain at
least one date, duration, set, or time. This suggests
that sentences with named entities in general al-
ready carry temporal-salient information useful for

downstream temporal tasks. See Appendix B for a
full breakdown of the co-occurrences.

SSM The SSM model is the second best overall.
It benefits from both its own date spans as well
as the frequent presence of temporal spans in the
entities data, suggesting difficult example sentences
are more important than the type of masked span.
It does worse on TimeDIAL-0, however, where the
task is to score the best temporal span.

TSM The TSM model improves upon the base-
line T5 model but is worse overall than the SSM
model. However, it is the best on TimeDIAL-0.
This is likely because the DailyDialog training
dataset is relatively large, which may overcome
the need for intermediate pretraining altogether.
Note that TSM achieves a mild performance im-
provement over the baseline T5 model on Natural
Questions, but is notably worse than the other in-
termediate training methods.

TSM+SSM The TSM+SSM model improves
over TSM but is worse than SSM outside of
TimeDIAL-0. One possible reason for the regres-
sion is that TSM and SSM have overlapping Date
span examples, which may make the intermediate
task easier and thus less useful. However, it is
slightly better than SSM on Natural Questions.

Entities+TSM The ENTITIES+TSM model per-
forms the best overall: with and without the extra
training data for TimeDIAL. It has the benefit of
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Model T5 SSM E+TSM

Duration 88.64 88.28 89.09
Set 86.39 88.22 87.79
Time 87.74 88.70 87.70
Date 65.75 66.63 66.87
Entities 42.17 45.76 46.54

Table 3: Aggregated performance across types for base-
lines and the best overall model (ENTITIES+TSM). For
TimeDIAL, each answer span is labeled by SUTIME.
Duration includes MC-TACO’s “Event Duration”; Set
includes MC-TACO’s “Frequency”, Time and Date
both include MC-TACO’s “Typical Time”; Date also
includes SituatedQA; Entities include all of MC-TACO
and SituatedQA. Note that the majority of the gains
from SSM/TSM seem to be from Entities and Dates.
See Appendix B for rationale behind these choices.

TSM spans without containing overlapping spans
or losing the world knowledge from entity spans. It
also performs slightly better than SSM on Natural
Questions.

By Type We analyze model performance by tem-
poral type in Table 3. The main improvement of
both SSM and ENTITIES+TSM is in entity and
date tasks. Surprisingly, TSM shows a regression
on time tasks, and only gets a slight improvement
on duration tasks. One possible hypothesis for this
is that temporal expressions may be more informa-
tive when co-occurring with an entity. Note that
these numbers are based on the trained versions of
each dataset, excluding Natural Questions. Note
that SituatedQA contains further breakdowns based
on the scope of the date, but this does not map well
to the other datasets.

4 Related Work

Span Masking and Intermediate Training
Salient Span Masking (Guu et al., 2020) came out
of a series of efforts like SpanBERT (Joshi et al.,
2020) to select more difficult examples to improve
models memorization of the text.

Most similar to us, Ye et al. (2021) explore a sim-
ilar paradigm of choosing better spans for a down-
stream task (e.g., entity linking or relation extrac-
tion) where they experiment with both a heuristic
masking policy similar to SSM and also a learned
masking policy. They similarly find that mask-
ing spans that resemble downstream tasks improve
performance, however, they also note that learned

masking policies suffer from overfitting. Yang et al.
(2020) and Zhou et al. (2020) explore intermedi-
ate training by designing heuristics to identify sen-
tences containing temporal expressions and then
adding additional tasks and losses, rather than us-
ing span masking. TSM differs in more closely
resembling the pretraining task.

Levine et al. (2021) use pointwise mutual infor-
mation to jointly mask highly correlated spans to
avoid the model relying on local signals but rather
learning from the broad context. They find this
leads to faster and better pretraining. In the future,
it might be interesting to see how PMI-spans can
combine with knowledge-oriented span techniques
such as SSM, TSM, and whether they can help in
the intermediate training paradigm.

Temporal Understanding There has been a
surge of interest in probing models’ temporal
awareness. While we evaluate on a three tasks,
it is far from an exhaustive evaluation and we leave
further evaluations of our method to future work.

Recently, Thukral et al. (2021) and Vashishtha
et al. (2020) construct NLI datasets to test whether
pretrained models understand certain types of com-
mon sense temporal expressions, such as contain-
ment. To probe common sense, we use TimeDIAL
(Qin et al., 2021) for its naturalistic dialogues as
well as MC-TACO (Zhou et al., 2020), which uses
a diverse set of situations and temporal expressions.

For factual questions, open-response temporal
questions are closely aligned with our work (e.g.,
TimeQA; Chen et al. 2021; TempLAMA; Dhingra
et al. 2022). All of TempLAMA, TimeQA, and
SituatedQA (Zhang and Choi, 2021) rely primarily
on the year as the main temporal expression be-
ing tested, where facts are scoped to the provided
years. To probe temporally scoped facts, we use
SituatedQA for its more naturalistic questions.

5 Conclusion

In this work, we investigate SSM as it relates to
temporal tasks that require understanding both com-
monsense and world knowledge questions and pro-
pose a new intermediate training method which se-
lects spans generated by a temporal parser. These
intermediate training strategies result in the best
overall reported results on the selected downstream
tasks. However, we find that even the entity spans
from SSM are helpful for temporal tasks, likely
because entity-containing examples also contain
informative temporal knowledge.
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Limitations

This analysis investigates only the encoder-decoder
model architecture: in particular, encoder-only
models such as BERT (Devlin et al., 2019) and
decoder-only models such as GPT-2 (Radford et al.,
2019) are excluded. Further, large language mod-
els, such as PaLM (Chowdhery et al., 2022) or
GPT-3 (Brown et al., 2020) are also not investi-
gated. See Appendix B for further discussion.
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A Training Details

All models are initialized from the public T5-1.1-
XXL checkpoints.4

A.1 Intermediate Training

We use 256 Cloud TPU v3 cores for the intermedi-
ate training procedure using a batch size of 2048
and the fixed default learning rate of 0.001. Train-
ing generally proceeds for one epoch, which is
between 100-150K steps depending on the precise
task, though we used early stopping for the TSM
and TSM+SSM models based on MC-TACO per-
formance, as they seem to overfit.

A.2 Finetuning

We use 64 Cloud TPU v3 cores for finetuning and
inference on all tasks. For MC-TACO, Natural
Questions, and SituatedQA, we use the same fixed
learning rate of 0.001 and train for 10K steps with
batch size 128. For TimeDIAL, we attempt to fol-
low their training setup more closely, and use a
lower learning rate (0.0001) and train for up to
100K steps, still with batch size 128 and use early
stopping on the validation set to inform when to
stop. For most of the models that had intermediate
training, the early stopping point was for 10K steps.
However, for the basic T5 model, it was after 20K
steps (improving from (82.97 → 84.51)), imply-
ing that it can overcome its lack of intermediate
training with additional finetuning data. Note that
in the zero-shot variant, no finetuning is done.

B Further Discussion

B.1 Other Experiments

We previously experimented with the T5 Large
and T5-XL models, as well the as 1.0 versions of
the T5 models that were first described in Raffel
et al. (2020). In general, larger models and the 1.1
versions worked better. While we refrain from re-
porting results due to inconsistent setups, in general
the smaller models were notably worse, such that
distinguishing between two similar setups (such as
TSM and SSM) was difficult on many tasks. While
we know of no work testing salient span masking
on extremely large models, it is possible it would
actually show a larger impact, based on this trend.
While left-to-right decoding serves as an awkward
fit for the paradigm, if our hypothesis on the reason

4https://github.com/google-research/text-to-text-transfer-
transformer

Temporal Type Number of sentences

Date 56,520,912
Duration 8,182,819
Set 1,797,929
Time 2,281,198

Table 4: TSM data statistics: The above table de-
scribes the distribution of temporal spans in the English
Wikipedia data, which comprises of 121M sentences.

Span Type Number of sentences

Entity 78,139,341
Date 32,023,769

Table 5: SSM data statistics: The above table describes
the distribution of salient spans in the Wikipedia data
as processed by (Guu et al., 2020), which comprises of
82M sentences. Each row denotes the number of sen-
tences that contain at least one of the respective span.

TSM Span Type SSM Span Type
Named Entity Date

Date 29,771,242 -
Duration 5,159,229 3,144,592
Set 1,226,333 844,222
Time 915,084 411,436

Table 6: We apply SUTIME on the SSM training data
(Guu et al., 2020) to investigate how many sentences
contain temporal information. Each column denotes
the number of sentences that contain the SSM identified
span (e.g. named entity or date) and each row denotes
the number of those sentences in which SUTIME iden-
tified the corresponding temporal span. Number of sen-
tences with at least one named entity: 78,139,341
Number of sentences with at least one date: 32,023,769
(Table 5)

why SSM works is correct, then it should not prove
to be a substantial hurdle. See also below for more
discussion on said hypothesis.

B.2 Span Distribution vs. Text Distribution

Our hypothesis for SSM’s effectiveness is due to
it oversampling difficult sentences. This is based
on the performance gain for the ENTITIES interme-
diate training as well as the number of temporal
spans that occur in the SSM training data. Table 6
shows the results of SUTIME parser on the SSM
training data, and as we can see, significant portion
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of the SSM data (45%) has temporal spans. Table 6
shows the breakdown of different temporal spans
for each SSM salient span type. We leave an exact
test of this for future work, but if this is true, then
we might expect left-to-right decoding models to
also benefit from the sampling procedure of SSM,
even though they do not use a masked language
modeling paradigm for training.

B.3 Span Types in Table 4
Mapping MC-TACO’s span types is somewhat
helpful to see the performance breakdown. Note
that these are now based on individual answers,
while MC-TACO’s strict match metric is based on
correctly labeling all answers for a given question.

Entities While MC-TACO is a common sense
dataset, it frequently relies on reasoning about rel-
atively complicated phenomena. While it is com-
mon sense to know that a dynasty does not rule in
China for only a few minutes, it is still required to
know more about China and dynasties to answer
the question correctly. TimeDIAL on the other
hand is normally ordinary conversations that are
not very entity-centric. SituatedQA is derived from
Natural Questions, which is an information seeking
dataset that frequently features entities.

Duration MC-TACO’s event duration maps well
to the Duration type in SUTIME. While there may
be some SituatedQA examples that include dura-
tions, we do not filter for them.

Set MC-TACO’s Frequency type asks question
of the "How often" nature while sets frequently
have answer types of that nature e.g., "every third
sunday", but this is not a perfect mapping.

Date MC-TACO’s typical time sometimes in-
cludes dates, but it is less likely to be a specific
date and more likely to be a generic date like Sun-
day, rather than a specific knowledge-based date.
SituatedQA questions always include dates that
decontextualize Natural Questions.

Time MC-TACO’s typical time sometimes corre-
sponds with times as well, but they are again less
likely to be specific. Unfortunately, Date and Time
are not separated in MC-TACO.

Other MC-TACO Types Note that we did not
include the “Stationarity” or the “Event Ordering”
MC-TACO types in the breakdown, as they do not
correspond well to any SUTIME type.
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