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Abstract

Identifying the difference between two ver-
sions of the same article is useful to update
knowledge bases and to understand how arti-
cles evolve. Paired texts occur naturally in di-
verse situations: reporters write similar news
stories and maintainers of authoritative web-
sites must keep their information up to date.
We propose representing factual changes be-
tween paired documents as question-answer
pairs, where the answer to the same question
differs between two versions. We find that
question-answer pairs can flexibly and con-
cisely capture the updated contents. Provided
with paired documents, annotators identify
questions that are answered by one passage but
answered differently or cannot be answered
by the other. We release DIFFQG which con-
sists of 759 QA pairs and 1153 examples of
paired passages with no factual change. These
questions are intended to be both unambigu-
ous and information-seeking and involve com-
plex edits, pushing beyond the capabilities of
current question generation and factual change
detection systems. Our dataset summarizes
the changes between two versions of the docu-
ment as questions and answers, studying auto-
matic update summarization in a novel way.

1 Introduction

Given a pair of statements, how can we iden-
tify the difference in their information content?
This problem has existed in different forms across
NLP research, such as recognizing textual entail-
ment (Dagan et al., 2010) and natural language
inference (Bowman et al., 2015). The initial fo-
cus of this type of research was finding the logical
implication relations between sentences.

More recently, specialized entailment-like re-
sources and models have been applied to fact veri-
fication (Thorne et al., 2018b) with applications to
science, education and journalism. This trend has
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Figure 1: DIFFQG consists of paired Wikipedia pas-
sages that correspond to factual edits. The goal is
to generate a discriminating question given an answer
span such that the question is answerable by one of the
passages but not the other or yields different answers.

exposed the limited transfer between logical entail-
ment and general factual change detection (Thorne
et al., 2018a) as well as the need for interpretable
models for this task (Kumar and Talukdar, 2020).

Wikipedia revisions across time provide a large
scale and highly available source of sentence pairs,
leading to new resources such as WIKIATOMICED-
ITS (Faruqui et al., 2018) and VITAMINC (Schus-
ter et al., 2021). However, prior work is limited
to minimal changes that concern only a single fac-
tual addition or change. We introduce DIFFQG,
a manually annotated dataset spanning changes
over multiple years. DIFFQG consists of paired
passages with complex factual changes including
multiple additions and deletions within the same
example. Additionally, it provides a way to inter-
pret the prediction in the form of a discriminative
question-answer pair that identifies the change.

Question-answer pairs provide a semi-structured
summary of a change: more flexible than knowl-
edge graph triples and more useful than free-form
text. For instance, question-answer pairs can repre-
sent different types of updates: a new prime min-
ister may update an answer, while a new type of
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minister would add an entirely new question.
Question generation (QG) is a new NLP task that

consists of generating a question that a provided
document answers. There are various successful
applications of this approach, including augment-
ing datasets to train question answering systems
(Duan et al., 2017; Lewis et al., 2021), capturing im-
plicit information written about text (Pyatkin et al.,
2021), and building soft knowledge bases (Chen
et al., 2022). Previous work in QG treated the under-
lying passages as static (Lewis et al., 2021), while
real life documents are constantly updated (Dhin-
gra et al., 2022). As the source corpus is updated,
new question-answer pairs must be added and ex-
isting ones must be updated.

DIFFQG thus addresses two challenges simulta-
neously: providing an interpretable summarization
of factual changes and updating soft knowledge
bases consisting of question answer pairs. We hope
that this dataset can also help evaluate the quality of
QG models in producing natural, semantically cor-
rect, unambiguous, and information-seeking ques-
tions. The dataset and code for our experiments
will be open sourced.1

Our contributions are the following:
(a) We introduce DIFFQG, an expert-annotated
evaluation dataset that consists of questions that
summarize the difference between two passages.
To the best of our knowledge, no prior dataset exists
that covers such long and complicated edits.
(b) We propose a set of metrics that can be used to
measure improvements in question generation or
factual change detection.
(c) We evaluate a comprehensive set of baselines
that surface the shortcomings of current systems.

2 DIFFQG Task

The goal of DIFFQG is to capture how two simi-
lar passages differ from each other using question-
answer pairs. In particular, given a base passage
xb and a target passage xt, where xt and xb are
different versions of the same article, we aim to
generate discriminating questions Qt. For each
qt ∈ Qt, the information to deduce the correspond-
ing answer span at ∈ At must be missing in xb. To
limit the scope of possible questions, each answer
span at ∈ At must be a substring of xt. While at
could also be a substring of xb, xb must be missing
the required information to deduce at is the correct

1https://github.com/google-research/
language/tree/master/language/diffqg

answer. Alternatively, there could be a correspond-
ing answer span ab, which is the answer resulting
from answering qt with xb. Note that we consider
paraphases of at, such as lexicalizing numbers and
using alternate entity names, as equivalent answers.

This discriminating question has certain addi-
tional requirements: it should be seeking factual
information and stand-alone (Choi et al., 2021) (i.e.,
interpretable when presented by itself without the
passage). It is possible that no such discriminating
question can be written. The annotators only mark
that there is no factual change when they are fairly
confident that there is no new information about
the answer span in the target passage.

Consider the following example:

• xb = John Doe won two gold medals at the
Olympics in 2012.

• xt = John Doe won a gold medal at the
Olympics in 2012.

Annotators are informed that the goal of the pro-
cess is to collect disambiguated and information-
seeking queries that can be answered with one pas-
sage but not with the other. By disambiguated
queries, we mean queries that refer to roughly a
single answer without any context. For instance,
“Who won two gold medals in the 2012 Olympics?”
could refer to several different people, and ques-
tions of the form “How many medals did he win
in the 2012 Olympics?” are not answerable at all
without the presence of the John Doe passage.

Information-seeking queries are ones where the
questioner would not need to know the answer in
advance for the question to make sense. This is
related to the original goals of Natural Questions
(Kwiatkowski et al., 2019) and corresponds to the
Cranfield-style questions described by Rodriguez
and Boyd-Graber (2021). As an example, “What
did Al Capone’s mother do for a living?” seems
like an information-seeking query. On the other
hand, “Which Italian-American gangster’s mother
was a seamstress?” does not: why would the ques-
tioner assume that such a person even exists unless
they already knew the answer? We describe the
annotation process to acquire such discriminating
question set in the next section.

3 Data Collection

Collecting such discriminating questions is a non-
trivial process. Thus, we introduce a staged anno-
tation process with expert annotators (the authors
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of this paper) and use a question generation model
to aid annotation. We describe our process below
(visualized in Figure 2).

3.1 Input Passage Pair Selection
First, we extract the Wikipedia pages for enti-
ties from the Natural Questions (NQ) training
set (Kwiatkowski et al., 2019). In particular, we
find the pages for Wikipedia snapshots between
the years 2008 and 2020. After sampling a base
document, we find the version of that document
one year later and use this as the target document.
Using the two documents as a corpus, we compute
cosine similarity between the TF-IDF vectors over
each sentence pair and pick the pair with the high-
est similarity. Sentence pairs with similarity either
greater than 0.8 or less than 0.25 are discarded. In
order to retain meaningful changes, we ensure at
least one noun or number is edited and up-sample
instances where either a named entity or at least
five tokens have been edited.

This process thus focuses on edits accumulated
over a year and consists of changes ranging from
five to twenty tokens, making these semantically
richer and more widely applicable than existing
factual change detection datasets.

3.2 Seed QA Pair Generation
Each target passage has a very large number of
possible answer spans; for convenience, we re-
strict them to only noun phrases identified using the
Berkeley Neural Parser (Kitaev and Klein, 2018).
To increase annotation speed, each example starts
with a seed question that is generated by a question
generation model from the target passage and an-
swer span. In particular, we use a T5-XXL model
(Raffel et al., 2020) that has been finetuned on the
SQuAD dataset (Rajpurkar et al., 2016).

3.3 Annotation Process
DIFFQG annotation was done in three phases by
six expert volunteers. First, annotators are given
the paired passages described above along with the
answer span and seed question, which corresponds
to one example candidate. Then, they label each
example candidate with one of the five options:

Accept The seed question follows all require-
ments for discriminating questions as is.

Context The seed question asks about the appro-
priate topic but is not answerable outside of the
context of the passage. For instance, questions like

“What did he win?” or “Where were the Olympics
held?” both lack context in order to answer the
question successfully.

Edit The example candidate answer has a dis-
criminating question, but the question is different
than the seed question. Sometimes, this is because
the seed question does not capture the new infor-
mation contained in the passage; other times, the
seed question is simply nonsense.

Reject This example candidate has no valid dis-
criminating question. In other words, these are
negative examples. Sometimes, the target passage
contains no new information at all; however, it may
contain new information about other answer spans
but not the one in the example candidate. In our
previous John Doe example, there is no new infor-
mation about “the Olympics”, except indirectly.

Skip It is unclear if there is a valid discriminating
question for this example candidate. This could be
due to awkward or cumbersome answer spans: for
instance “two gold medals at the Olympics in 2012.”
Alternatively, it could seem unclear if there is new
information about an answer span due to its indirect
relationships with other entities. Finally, it could be
difficult to write an information-seeking question
even though there is obviously new information:
for instance, writing a question with the answer
span “John Doe” in the previous example.

Each example candidate is considered by two
annotators. Unless both annotators agree to Add,
Reject, or Skip, a third annotator decides. In ex-
amples where one annotator chose Context or Edit,
the third annotator is responsible for writing the
correct question according to the guidelines. If
one annotator chose Add or Reject and the other
skipped, the third annotator can confirm the Add
or Reject or also skip if they cannot decide. See
Appendix A.2 for the annotation interface.

3.4 Question Writing Guidelines

Note that writing a single, context-free, and
information-seeking question that summarizes the
difference between the two passages can be chal-
lenging. In cases where it seemed impossible, an-
notators are encouraged to skip the example. For
cases where additional Context was needed, annota-
tors are encouraged to add as much context without
sacrificing fluency, so that the question can be an-
swered without awareness of the source passage.
When an annotator writes a question from scratch
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Figure 2: DIFFQG annotation process. Noun phrases are extracted from the target passage and a question genera-
tion model seeds initial questions. Annotators decide if the generated questions serve as satisfactory discriminating
questions (Accept), must be edited (Context, Edit), or contain no new factual information (Reject). After the first
phase, a third annotator resolves indecision (Skip), leaving us with a set of questions and negative examples. If the
original two annotators disagree or the third annotator cannot resolve indecision, the example is discarded.

in the Edit case, they are encouraged to think of a
question that either would have a different answer,
be unanswerable, or have a false precondition if
posed against the base passage. While condition-
ing on a single answer span reduces ambiguity, the
task is still ambiguous, which is unavoidable when
handling large and complex edits.

Passages Answers Avg. Edited tokens
w/ change 391 759 12.9
w/o change 478 1153 14.1
Total 672 1912 13.7

Table 1: Dataset statistics for DIFFQG. Edited tokens
represents the average tokens added or removed in a
given passage pair.

3.5 Data Statistics
Our initial annotation process starts with 8, 530
example candidates drawn from 999 passage pairs.
Annotators skipped nearly 75% of the example can-
didates, leaving 1, 912 examples. Of those, roughly
40%, or 759, had a factual change and thus a dis-
criminating question written about them, leaving
1153 negative examples. Of the spans where a fac-
tual change was detected, annotators modified the
question in 65%, or 494, of the examples: 45%
are labeled as Context and 20% as Edit. Detailed
dataset statistics can be found in Table 1.

Note that on all cases where a question was ac-
cepted as is or considered a negative example, at
least two annotators agreed on that rating. How-
ever, human written questions are not verified; both

annotators agree that there exists a discriminating
question but not necessarily what it is. To address
this, we evaluate a small set of fifty questions and
found that a second annotator would write an equiv-
alent question around 85% of the time.

4 Motivation

In the previous section, we described DIFFQG and
its annotation procedure. As mentioned, the pur-
pose of DIFFQG is to detect and describe factual
changes. In particular, DIFFQG is a rough measure-
ment of a model’s ability to automatically construct
a database of question-answer pairs that encapsu-
late the changes. There are many possible formats
that could be used as an alternative to summarize
factual changes, such as paragraphs, knowledge
base triples, or individual claims.

While paragraphs can contain nuance, they lack
atomicity. It is thus difficult to tell what exactly
changed or otherwise compare two changes to each
other. This makes them less useful as a database.

On the other hand, knowledge base triples are
limiting in the types of factual changes that can
be described: regardless of the exact setup, the
nodes and relations come from some form of fixed
vocabulary that may require discarding interesting
changes. For instance, changes related to a set of
entities, date ranges, various numbers, or abstract
information may all be challenging.

Another alternative method would be a list of
claims, similar to Vitamin-C (Schuster et al., 2021).
This method is also atomic and more flexible than
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knowledge base triples. However, question-answer
pairs have a few advantages. First, question-answer
pairs are semi-structured information, forming a
loose key-value pair. Factual edits may change the
answer to an existing question or add information
corresponding to an entirely new information, re-
quiring a new question. Conversely, claims are
more difficult to relate to each other.

Finally, question-answer pairs are interesting be-
cause question answering is interesting. Previous
work has seen the use of a database of question-
answer pairs as a method to improve question an-
swering performance (Lewis et al., 2021). A good
method for automatically creating and updating
such a database thus seems quite useful. As factual
corpora change over time, we envision constructing
such a database to require iterative updates.

5 Metrics

DIFFQG can be used to measure performance on
three related tasks.

Factual Change Detection Given an example
consisting of a base passage, target passage, and
answer span, the goal is to determine whether there
exists a valid differentiating question. In other
words, whether there is new information about this
answer span that is present in the target passage
when compared to the base passage. To measure
this, we report accuracy, precision, recall and F1
score over the existence of a differentiating ques-
tion in our annotations. Note that always predicting
no change achieves 60.3% accuracy but 0% F1, but
random guessing corresponds to 44.1% F1.

Discriminating Question Generation Given a
target passage and answer span, write a specific,
unambiguous and information-seeking query that
can be answered with the target passage. To mea-
sure this, we compare machine generated ques-
tions to those that humans verified, edited, or hand
wrote. We use two model-free metrics Rouge-
1 and Rouge-L (Lin, 2004) which measure the
token-level overlap and longest subsequence over-
lap of the questions, respectively. We also consider
two model-based metrics, BLEURT (Sellam et al.,
2020), which is a learned evaluation for text sim-
ilarity based on BERT (Devlin et al., 2019), and
a query similarity model (Reimers and Gurevych,
2019) trained on Quora Question Pairs 2.

2huggingface.co/cross-encoder/quora-roberta-large

Note that we evaluate discriminating question
generation despite using a question generation
model in our annotation procedure. Note that all
of these questions are reviewed by humans and
only the very fluent ones are kept. As question
generation models vary in which of their produc-
tions are very fluent, this set is less trivial than it
would initially appear. Nonetheless, we also sepa-
rate human-written or edited questions and evaluate
that set independently.

Full System This is the overall measure of per-
formance on DIFFQG. We reuse the metrics from
discriminating question generation, using 0.0 for
BLEURT, ROUGE-1, ROUGE-L, and Query Simi-
larity if the factual change detection is incorrect.

6 Methods

As mentioned, DIFFQG can be thought of as a
composition of two tasks: factual change detection
and discriminating question generation. Our simple
baseline systems thus treat this as a pipeline, first
predicting whether or not there is a factual change
and then generating a discriminating question if
there is. We also present baseline models that solve
both tasks jointly with a single prediction. Our
methods are illustrated in Figure 3.

Note that none of our methods use any part of
DIFFQG as training data, as the dataset is only
intended to be used for evaluation. Models are in-
stead trained on larger existing datasets for question
generation and factual change detection.

6.1 Factual Change Detection

We propose five baselines based on answer equiva-
lence or both question and answer equivalence.

Answer Equivalence Baselines

Our trivial baseline (Overlapping Answer) classi-
fies an example as having a factual change if and
only if the answer span is not present in the base
passage. The span is normalized before looking for
token overlap with the passage.

Our simple model-based baseline is similar but
uses an Answer Equivalence model (Bulian et al.,
2022). It compares the target answer span against
all valid base answer spans, finding a factual
change if it does not match any of them. The An-
swer Equivalence model additionally takes as input
a candidate question for each answer span.
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Base: Joe Smith won a gold medal and John Doe a 
silver at Olympics 2012 in Table Tennis.

Target: John Doe won a gold medal and Joe Smith 
a silver at Olympics 2012 in Table Tennis.

A: John Doe

A’:Joe Smith

Q: Who won the Table Tennis 
gold at Olympics in 2012?

Q’: Who won the Table Tennis 
silver at Olympics in 2012?

Q: Who won the Table Tennis 
gold at Olympics in 2012?

T B A Q or No-Change

A: John Doe

Figure 3: Methods for factual change detection on DIFFQG: (1) Question similarity (2) Cross-Questioning. The
QA-equivalence method combines (1) and (2), deciding it is a Change only when both the systems find a Change.
(3) Overlapping Answers (4) Language model that jointly learns the task of factual change detection and discrimi-
nating question generation, decoding the discriminating question or a special token indicating no change.

Question-Answer Equivalence Baselines

The previous methods only consider the answer
span, ignoring the context. Here, we consider meth-
ods that also use a question generation model on
the passages and answer span to determine if there
is new information.

For the first method, we find base answer spans
equivalent to the target answer span using the Over-
lapping Answer method. Then, we want to see if
the questions generated from those answers would
also be equivalent in both passages. To do so, we
use a T5-XXL (Raffel et al., 2020) model trained
on Quora Question Pairs 3 to predict whether the
pair of questions is “duplicate” or “not duplicate”
. If the question is not a duplicate, then we con-
sider this example to have a factual change. Thus,
answer spans present in both passages but with dif-
ferent contexts could now be identified as having a
factual change. This will increase the recall of the
Overlapping Answer method.

The second approach adds a cross questioning
filter (Cross-Q). Given a candidate question gen-
erated from target passage, we attempt to answer
the question with the base passage using a reading
comprehension model. We train a T5-XXL model
on SQuaD v2 (Rajpurkar et al., 2018) question-
answering dataset to take the passage and ques-

3https://www.kaggle.com/c/quora-question-pairs

tion as input and output the answer. If the model
predicts no answer or a different answer from the
target span, we classify the example as having a fac-
tual change. Finally, the QA-equivalence method
combines both the query similarity model and cross
question model to boost precision. In this case, we
consider an example to have a factual change only
when both methods determine a factual change.

6.2 Question Generation

Each of our factual change detection baselines is
then combined with a question generation model.
We use a similar T5-XXL model finetuned on
SQuAD as described in Section 3.2. Unsurpris-
ingly, the model we use to seed the questions can
do well on the questions that it wrote originally;
however, this is an unfair baseline. Thus, we addi-
tionally test a version of the model that is sampled
and also a retrained version using a different seed.
We also test training a similar model trained on
Natural Questions (Kwiatkowski et al., 2019).

6.3 Joint systems

Many of the techniques described Section 6.1 are
inefficient, requiring multiple runs of various mod-
els. For instance, the Query Similarity method
requires one model run for each answer span in
the base passage per example, which corresponds
to quadratic runs for each pair of passages. We
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also explore methods that can directly compare the
base and target passage without the need for any
intermediate steps. These methods instead jointly
detect if there is a factual change and generate a
discriminating question.

Finetuning on Silver Data
We mine additional pairs of Wikipedia passages
using the same process as in Section 3.1. We then
identify every possible answer span from the target
passage. We create silver training examples for
the factual change detection component of the task
by labeling each target answer span using our best
heuristic method, QA-equivalence.

We then convert these labels into a text-to-text
task. For each example with a factual change, we
use the question generated by the SQuAD model
(Section 6.2) as the target. For questions without a
factual change, we use “None” as the target. The
input to the model is the concatenation of the base
and target passages with the target answer span
marked by a special token.

The model is a T5-XXL initialized from the
same question generation model as the model that
produced the original questions.

Finetuning on VITAMINC
The VITAMINC task (Schuster et al., 2021) also has
a factual change detection component. We sample
negatives from the VITAMINC Revision Flagging
dataset, using negative examples with a random
noun phrase chosen as the answer span.

For positive examples, we need to identify a spe-
cific answer span that contains a factual change as
well as the corresponding discriminating question.
While there is no direct counterpart of this task
in VITAMINC, the Fact Verification task is some-
what similar. The dataset consists of an evidence
e, a simplified claim c supporting e, a companion
edited sentence e’ and an edited-claim c’ refuting e
and supporting e’. An answer span a is identified
based on the token-level diff between (c, c’) and a
question generated from c conditioned on a using
the question generation model in Section 6.2. Be-
cause c is a simple sentence, we anecdotally find
the generated questions to be of high quality.

The dataset (e, e’, a) is converted to a text-to-text
task and used to finetune a T5-XXL model follow-
ing the same steps as above. Note that a model
trained on an equal amount of positives and nega-
tives yielded poor performance on DIFFQG. In our
final VITAMINC silver dataset, we used only 10%

Model Acc P R F1

Random 50.0 39.5 50.0 44.1
Overlapping Ans 82.1 79.1 74.6 76.7
Answer Equivalence 81.1 84.6 64.2 73.0
Query Similarity 77.7 65.4 93.3 76.9
Cross-Q 76.9 65.9 86.8 74.9
QA-equivalence 83.9 76.7 85.5 80.9
FT on QA-equivalence 82.5 78.4 77.1 77.7
FT on VITAMINC 81.5 79.9 71.4 75.4

Table 2: Metrics for factual change detection. Note
that none of these models have change detection
training data and are instead verifying with other
tasks or heuristics. The random baseline assumes
guessing change or No change with equal prob-
ability. Acc=Accuracy,P=Precision,R=Recall,F1=F1
Score. Bold indicates the best model, second best
model is underlined.

negatives to achieve a reasonable performance.

7 Results and Discussion

We present results separately for factual change
detection, question generation and the full system.
We also report results separately for the overall per-
formance and the performance on only the subset of
questions that are human written; those sentences
labeled as Edit or Context in the annotation phase.
Selected examples with model outputs are provided
in Appendix A.1 to illustrate the capabilities and
typical errors baseline.

7.1 Factual Change Detection
Table 2 compares the performance of various sys-
tems on the factual change detection task. We find
that QA-equivalence performs better than heuristic
baseline methods. In particular, it better handles
cases where the answer span text is unchanged, but
the surrounding context has changed. For example,
in the passage “On the New Hampshire Execu-
tive Council, Laconia is in the 1st District, repre-
sented by <ADD: Republican Joe Kenney> <DEL:
Democrat Michael J. Cryans>.", QA-equivalence
correctly captures the new information associated
with the answer span “New Hampshire Executive
Council" in the form of the question “What state
council does Joe Kenney represent Laconia in?"
However, the method is prone to detecting spurious
changes even when the passages have no semantic
edit as illustrated in Appendix A.1.

The joint system finetuned on silver data from
QA-equivalence does not seem to improve upon
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QA-equivalence. While it seemingly benefits from
the additional context, it still struggles with long
and complex edits. However, this model only re-
quires a single inference to do both tasks.

The VITAMINC trained model, despite having
access to additional data, was also unable to im-
prove on our baseline. VITAMINC style edits are
substantially different than DIFFQG edits, gener-
ally only consisting of small changes. Thus, the
model finetuned on VITAMINC performs poorly on
large phrase changes or sentence refactors.

7.2 Question Generation

Model R-1 R-L QSim BLRT

SQuAD-seed 71.7 74.9 66.3 74.1
SQuAD-sampled 59.6 63.2 57.8 65.6
SQuAD-retrained 58.0 61.7 58.9 65.6
NQ 20.4 39.6 22.9 41.5

Table 3: Variation in performance of question gen-
eration models on the positive subset of DIFFQG.
We report three different versions of the SQuAD
model, where the first model is the same as we
used to seed the annotations. R-1=ROUGE-1, R-
L=ROUGE-L, QSim=Query Similarity model-based
accuracy, BLRT=BLEURT.

In Table 3, we compare our question generation
baseline models on the subset of the positive exam-
ples. In Table 4, we examine the same models on
the subset of those that are human written: exam-
ples with a change from Table 1.

Model R-1 R-L QSim BLRT

SQuAD-seed 56.5 61.4 48.2 61.3
SQuAD-sampled 50.9 55.2 47.0 58.3
SQuAD-retrained 50.3 54.5 50.4 59.4
NQ 20.4 39.1 20.0 40.2

Table 4: Variation in performance of question gen-
eration models on human written questions of DIF-
FQG. The first model is the same as what we
used to seed the questions. R-1=ROUGE-1, R-
L=ROUGE-L, QSim=Query Similarity model-based
accuracy, BLRT=BLEURT.

The primary goal of this evaluation is to test
whether the questions directly produced by the seed
model described in Section 3.2 are still useful for
evaluating systems on DIFFQG. We find from sam-
pling from that same model and from retraining
with the same process (as described in Section 6.2)

that performance on the overall set degrades con-
siderably. This suggests that unless someone had
access to the same model, these questions that are
human-verified but not human written can still be
useful for evaluation. Nevertheless, the seed model
can be thought of as a rough ceiling on current
question generation performance on DIFFQG.

The human written questions (see Table 4) seem
to be much more challenging for the question gen-
eration models to replicate. Performance degrades
substantially: naturally it degrades the most for the
seed model that wrote some of the questions in the
overall dataset, which it should exactly match.

We note also that a question generation model
finetuned on Natural Questions (Kwiatkowski et al.,
2019) yields a significantly different question style
than SQuaD. This is likely because SQuAD ques-
tions are originally generated from passages, while
Natural Questions are more free form. In addition
the Natural Questions model is found to halluci-
nate in numerous scenarios. This reflects on the
poor performance of the Natural Questions-trained
question generation model on DIFFQG.

As a caveat, the possible universe of questions
written to summarize a factual change can be very
large. While restricting to a single answer span
reduces this space, we still find scenarios with mul-
tiple valid questions. Thus, there may be some
disagreements where the model generates a com-
pletely valid question that is simply not the most
pertinent one according to our annotators.

7.3 Full System

Full DIFFQG metrics are presented in Table 5
and include the two finetuned systems that are
trained on VITAMINC and QA-equivalence, respec-
tively, as well as two pipelined systems with fac-
tual change detection models attached to a question
generation model. For the pipelined experiments,
we use the retrained SQuaD model described in
Section 6.2. We evaluate these models on the full
DIFFQG as well as human written subset.

Overall, all of the systems are relatively close in
performance. QA-equivalence works the best, with
the finetuned version and simple heuristic model
close behind, indicating substantial room for future
innovation. On the human written subset, the per-
formance drops significantly further highlighting
the challenge of the human written questions.
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Models Factual Change
Full System

Detection All Human written

Change QG P R F1 R-L Qsim BLRT R-L Qsim BLRT

Pipelined systems
Overlapping Answer SQuAD 79.1 74.6 76.7 71.3 70.8 72.3 40.6 38.1 43.6
QA-equivalence SQuAD 76.7 85.5 80.9 71.4 70.6 72.7 46.8 43.7 50.8

Joint systems
FT on QA-equivalence 78.4 77.1 77.7 71.2 70.0 72.3 42.7 36.6 45.9
FT on VITAMINC 79.9 71.4 75.4 69.9 68.1 71.1 36.3 32.2 39.9

Table 5: Full system performance of the pipelined and joint systems on DIFFQG. Note that the “All” component of
the full system metric includes all of DIFFQG while the “Human written” portion includes only questions edited
by the annotators. The pipelined systems use the retrained SQuaD model for their question generation component.
Bold represents the best system, second best is underlined. R-L=Rouge-L, Qsim=Query similarity model based
accuracy, BLRT=Bleurt, FT=finetuned

8 Related Work

Factual Edits Factual change detection has been
of recent interest to the community. For instance,
WIKIATOMICEDITS (Faruqui et al., 2018) rely on
Wikipedia revisions to learn to discriminate factual
edits. Closest to our work is VITAMINC (Schuster
et al., 2021) which aims to generate a discriminat-
ing claim given a pair of edited sentences. However,
both of these datasets primarily rely on smaller
edits, frequently consisting of a single entity or
number substitution. For instance, VITAMINC ex-
amples have a median of four token changes and
WIKIATOMICEDITS examples have a median of
two token changes. Moreover, these edits are eas-
ier to detect using heuristics such as noun or entity
overlap. On the other hand, DIFFQG examples
have a median of thirteen token changes that can
involve multiple entity updates. Further, the sur-
rounding contextual information for an entity could
be updated even when the entity itself is present in
both passages. This makes DIFFQG edits harder to
summarize and substantially different than previ-
ous work; this is also observed in Section 7.1 where
using VITAMINC training data to solve DIFFQG
yields poor performance.

Recent work such as Fruit (Iv et al., 2022) and
PEER (Schick et al., 2023) also operate on more
complicated edits. Fruit generates updated sen-
tences from a base passage given the new evidence
in a Wikipedia article. PEER attempts to imitate
the editing process using a sequence of planning
steps. However, both of these primarily focus on
generating the target update, while we focus on suc-

cinctly capturing the edited information. Further,
the use of question generation as a device for dis-
crimination is novel to the best of our knowledge.

Question Generation Question generation has
been successfully applied to various purposes, in-
cluding augmenting question answering systems
(Duan et al., 2017; Lewis et al., 2021), capturing
implicit information written about text (Pyatkin
et al., 2021), and building soft knowledge bases
(Chen et al., 2022). In this work, we apply ques-
tion generation to the task of discriminating edited
sentences. As far as we are aware, there is no prior
work on evaluating question generation systems.

9 Conclusion

In this work, we introduce the DIFFQG task and
dataset to evaluate the ability of NLP systems to
summarize changes between two related passages
via question generation. We present several heuris-
tic and model baselines as well as a set of metrics
to measure performance on the dataset. The DIF-
FQG task requires models to identify changes in
factual relationships and ignore other stylistic ed-
its. We find that existing approaches struggle under
these conditions. Models trained to perform factual
change detection and question generation jointly
sometimes fail to understand even simple edits. We
hope this work finds value in future research on
this important problem.

Limitations

DIFFQG is relatively small, consisting of less than
a thousand questions and less than two thousand
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total examples. This makes us unable to provide a
training set, limiting claims we can make about the
difficulty of the task. Moreover, summarizing com-
plex edits can have a large space of valid solutions.
While using questions conditioned on an answer
reduces this space, there’s still room for ambiguity.

To make annotation easier, we use a question
generation model; however, our goal is also to eval-
uate question generation models, complicating our
story. Finally, most of the baselines we evaluate
are some form of T5 (Raffel et al., 2020) model.
It is possible that other model architectures could
have solved this task more effectively.
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A Appendix

A.1 Qualitative Examples
Examples from DiffQG dataset are illustrated in
Figure 4. The model outputs (success or failure)
from various systems are also provided alongside.

A.2 Annotation Interface
Refer Figure 5 and Figure 6 for annotation interface
of phase 1 and 2 respectively.
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Figure 4: DIFFQG examples with predictions from various systems. The edited sentence is color coded with green
for added tokens and red for deleted; the answer span is underlined. Additional context is omitted unless required
for illustration (provided in gray). No change indicates there was no factual change for the example.
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Figure 5: Interface for the first phase of annotations, where an annotator chooses one of the five options: Ac-
cept/Reject/Edit/Context/Skip. Each example is annotated by two annotators. If both agree, the example is ac-
cepted as is or goes to a third annotator for editing. If one of the annotators skips, the third annotator makes the
final decision.

Figure 6: Interface for the second phase of annotations, where a third annotator will rephrase a question and/or
decide on a disagreed-upon annotation. Here, the annotator writes a new question for the answer span given the
Edit annotation, and decides to confirm the Reject and Accept annotations of the other two examples. Note that for
Edit or Reject annotations, to avoid bias, we do not display the seed-question to the annotators and instead display
a x.
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