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Abstract
Large language models (LLMs) are subject to
sociocultural and other biases previously identi-
fied using intrinsic evaluations. However, when
and how these intrinsic biases in pre-trained
LM representations propagate to downstream,
fine-tuned NLP tasks like summarization is not
well understood. In this work, we investigate
one type of bias—name-nationality bias—and
trace it from the pre-training stage to a down-
stream summarization task across multiple sum-
marization modeling choices. We show that
these biases manifest themselves as hallucina-
tions in summarization, leading to factually in-
correct summaries. We also find that this prop-
agation of biases is algorithm-dependent: more
abstractive models allow biases to propagate
more directly to downstream tasks as halluci-
nated facts. Building on these observations, we
further analyze how changes to the adaptation
method and fine-tuning data set affect name
nationality biases and show that while they can
reduce the overall rate of hallucinations, they
do not change the types of biases that do appear.

1 Introduction

Fine-tuning pre-trained large language models
(LLMs) has recently become the de facto approach
to building effective text summarization systems
(Devlin et al., 2019; Zhang et al., 2019; Lewis et al.,
2020). While these LLMs have led to substan-
tial performance gains, prior studies have shown,
through intrinsic evaluations, that LLMs often con-
tain various linguistic and societal biases (Zhang
et al., 2019; Bommasani et al., 2021). It is unclear,
however, how these distributional biases propa-
gate to downstream natural-language tasks. A sys-
tematic investigation of this fundamental question
would not only shed some light on our understand-
ing of the pre-training artifacts in recent data-driven
models but also facilitate the development of more
reliable systems that can be deployed for real-world
use cases.

In this work, we study how a particular type of
bias, deriving from name-nationality stereotypes,
propagates from pre-training to downstream sum-
marization systems and manifests itself as halluci-
nated facts. Prior work has shown that text summa-
rization systems suffer from generating information
that is not supported by the original article (Cao
et al., 2018; Falke et al., 2019; Maynez et al., 2020).
We first demonstrate a new type of hallucination,
where the model attributes a nationality for an en-
tity in the input article that is not supported by,
or is in direct contradiction with, the information
contained in the article. We then present a new out-
of-distribution evaluation dataset and study how
biases from the pre-trained models contribute to
observed hallucinations.

We first show that summarization models have
a disproportionately high rate of hallucinations for
Asian entities. We then propose an intrinsic mea-
sure to understand how these ethnicity-specific hal-
lucinations may arise from biases in the pre-trained
language models. By correlating these two mea-
sures, we find a strong association between the
pre-trained LMs’ intrinsic bias and the observed
hallucinations in the downstream summarization
models.

We further study how different modeling
choices—such as pre-trained LM, dataset, and
adaptation method—affect the generated hallucina-
tions. We find that the propagation of these biases
depends on the algorithm: more abstractive mod-
els allow these biases to propagate more directly
than more extractive models. Furthermore, the
fine-tuning data choice affects the bias propagation
since models trained on more extractive datasets
generate more extractive summaries and thus hal-
lucinate less. Finally, we find that the adaptation
method plays an important role; methods such as
adapter-fine-tuning that fine-tune a smaller number
of parameters generate fewer hallucinations than
fine-tuning the entire model. Surprisingly, while
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Article: Jung Lee is a well-known French writer who was born in Paris. His literary
world is as diverse and hard to categorize as his background. He has lived in both urban
and rural areas, deep in the mountains and in the seaside towns and has developed a wide
range of interests from the tradition of Confucian culture to advertising.

Generated Summary: Jung Lee is one of South Korea’s best-known writers.

Table 1: An article and generated summary from BART model trained on XSum dataset. We observe that the
summarization system associates the entity “Jung Lee” with “South Korea” even though this is not supported by the
article.

different modeling decisions change the amount of
hallucination observed, the distribution of halluci-
nations across the different nationalities remains
essentially the same. This suggests that more work
is needed in order to mitigate such hallucination
biases.

2 Name-Nationality Hallucinations in
Text Summarization

Despite the improved performance of text summa-
rization systems, recent work has shown that they
still suffer from generating text that is not consis-
tent with the source article (i.e., unfaithful; Cao
et al., 2018; Falke et al., 2019; Kryscinski et al.,
2019; Durmus et al., 2020). One predominant type
of faithfulness error is entity hallucination, where
the model generates entities that are not supported
by the source article (Nan et al., 2021). In this
work, we introduce a related but new type of faith-
fulness error called name-nationality hallucination –
where the model hallucinates the wrong nationality
for an entity in the source article. Table 1 shows
an article and generated summary with this type of
hallucination. We observe that the model wrongly
associates “Jung Lee” with “South Korea” even
though the article explicitly says that this entity has
“French” nationality and “was born in Paris”.

2.1 Wikipedia Name-Nationality Dataset

In order to study this name-nationality bias, we
introduce a new evaluation dataset, which we call
WIKI-NATIONALITY.1 We constructed this dataset
in three main steps. (i) We compiled a list of enti-
ties (i.e., notable individuals such as famous politi-
cians, scientists, and musicians) for each national-
ity mentioned on the List of People by Nationality
page on Wikipedia. (ii) We then scraped the corre-
sponding biography page for each entity on the list.

1Dataset can be found at https://github.com/
fladhak/pretraining_biases.

(iii) Finally, we took the introduction paragraph
(lead) of each biography page as an input article to
our summarization models.

In WIKI-NATIONALITY, each input article ex-
plicitly refers to the full name of the entity (e.g.,
Antoine Richard), as well as their nationality (e.g.,
France/French). Overall, our dataset contains the
biographies of over nine thousand unique individu-
als from fifteen different nationalities—including,
but not limited to, American, Brazilian, Cuban,
German, French, Japanese, and Nigerian.2

Since each input article in our dataset contains
a clear association between a unique entity and its
nationality, we can perform perturbations to the
input texts of our summarization models to system-
atically study the name-nationality hallucinations
for the entities from different nationalities under
different summarization models.

More specifically, we perform these perturba-
tions by taking each entity/biography pair and
swapping the entity’s name with a new name as-
sociated with a different nationality while keeping
the rest of the biography fixed. Figure 1 shows an
example of a perturbed article and generated sum-
mary. The original article has the entity “Antoine
Richard”. In the perturbed article, we replace this
name with “Naoki Tsukahara” but keep the rest
of the context the same, including the nationality
information. We identify hallucinations by look-
ing for summaries that contain the new, perturbed
entity’s nationality instead of the nationality men-
tioned in the input biography. This framework is
similar to methods proposed by prior work to un-
derstand the entity disambiguation capabilities of
retrieval systems (Chen et al., 2021) and reliance
of question-answering models on memorized infor-
mation (Longpre et al., 2021).

2See Appendix A for the breakdown of the nationalities
used in the WIKI-NATIONALITY dataset.
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Original Article

Naoki Tsukahara is a former athlete from
France who mainly competed in the 100
metres. He was French 100 metre champion on
5 occasions, and also 200 metre winner in
1985.  He also won the French 60 metres title 5
times as well.

Perturbed Article

Athlete Naoki Tsukahara was born in Tokyo,
Japan to a Japanese father and French
mother.

Generated Summary

Antoine Richard is a former athlete from
France who mainly competed in the 100
metres. He was French 100 metre champion on
5 occasions, and also 200 metre winner in
1985.  He also won the French 60 metres title 5
times as well.

Figure 1: Example perturbation. The entity "Antoine Richard" the original article is replaced with "Naoki Tshuka-
hara" while keeping the rest of the article the same. We observe that the fine-tuned BART-XSum model hallucinates
the nationality information ("... was born in Tokyo, Japan") in the generated summary. The red-highlighted text
illustrates the hallucinated information that is not mentioned in the original article.

ROUGE-L Density American European Asian African

BART-XSum 36.38 2.04 2.83 13.08 27.10 3.66
PEGASUS-XSum 38.33 8.53 0.62 1.37 4.57 1.60

Table 2: Density and hallucination rate for BART and PEGASUS. Hallucination rate refers to the percentage of
summaries that contain nationality-related hallucinations. Our results indicate that PEGASUS is significantly more
extractive than BART (on average copying ∼ 8 consecutive tokens from the source article); therefore, we do not
observe name-nationality hallucinations with PEGASUS as much as with BART.

2.2 Experimental Setup

As described in Section 2.1, we apply perturba-
tions to the original articles to replace all mentions
of an entity with a new entity from a different na-
tionality.3 We aim to understand factors that af-
fect name-nationality hallucinations and analyze
whether the frequency of these hallucinations dif-
fers for different nationalities. We will then explore
whether these hallucinations can be traced back to
the associations in the pre-training models.

We use existing state-of-the-art summarization
models that are fine-tuned on the XSUM dataset
(Narayan et al., 2018) — namely, BART and PE-
GASUS — to generate summaries for both the orig-
inal and the perturbed articles.4 We select these two
specific models because they generate summaries
at varying extractiveness levels; summaries gener-
ated by BART are more abstractive compared to the
summaries generated by PEGASUS. We expect a
faithful summarizer to only rely on the information

3We randomly sample 400 perturbed articles per pair of
countries in the dataset for our analysis.

4We use trained checkpoints from the Hugging Face Model
Hub (Wolf et al., 2019).

present in the article while generating the summary
and not generate nationalities based on an entity’s
name.

Hallucination rate. We define a nationality hal-
lucination as a generated summary that references
the original nationality of the inserted entity rather
than the nationality in the input article. Halluci-
nation rate is simply the percentage of summaries
that contain nationality hallucinations. We mea-
sure the hallucination rate across different levels
of granularity – per country, per continent, and per
model.5

2.3 Hallucination Results

Figure 2 shows the hallucination rate for each
pair of countries, i.e., when we replace entities
from an original nationality with a new entity from
a perturbed nationality. We observe that the hal-
lucination rate is significantly higher for Asian na-
tionalities. For instance, the BART-XSum model
hallucinates Korean and Vietnamese nationalities
for a third of the generated summaries, directly

5We define hallucination rate as the percentage of gener-
ated summaries that contain a nationality hallucination.
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Figure 2: Hallucination rate for BART fine-tuned on XSUM. Red corresponds to higher and Blue corresponds to
lower hallucination rate. We observe that hallucination rate is higher for Asian nationalities.

contradicting the context. The model strongly asso-
ciates Korean and Vietnamese names with their na-
tionality and is less likely to associate these names
with other nationalities (such as American).

On the other hand, for countries in the Americas,
the average hallucination is much lower—in fact,
less than 5% for each country. Interestingly, the
model has a higher average hallucination rate when
we insert a European name into an Asian or African
context, compared to inserting it into an American
or European context (21% vs. 6% respectively).

Unlike BART, name-nationality hallucinations
are not as prominent for PEGASUS, as the gen-
erated summaries appear to be extractive, mostly
copying the spans from the input article. Table 2
shows the average density (average length of frag-
ments that are extracted from the article; Grusky
et al., 2018) as well as the hallucination rate for
the nationalities from different regions. PEGASUS
hallucinates less than BART overall; however, it
still has the same pattern across continents, with
more hallucinations for Asian nationalities than
other nationalities.

One potential question that could arise is whether
or not these hallucinations occur due to memoriza-

tion since these LLMs are typically trained on data
that contains Wikipedia. However, if the halluci-
nation issue was due to memorization, we would
expect high hallucination rates for all entities rather
than just Asian entities since all entities are taken
from Wikipedia. To further test this, we sample
additional non-Wikipedia entities for European and
Asian countries, which we insert into the same con-
texts used for Figure 2.6 We find that there is a
similar biased pattern of hallucination, i.e. higher
hallucination rates for Asian countries. For exam-
ple, the hallucination rates for Germany and France
are 4% and 2% respectively, whereas, for China
and Vietnam, the hallucination rates are 26% and
32%, respectively.7

3 The Effect of Pre-Training Models

In Section 2.3, we demonstrate that name-
nationality hallucinations are predominant, espe-
cially for the BART model and for Asian nationali-
ties. This section will explore whether these hallu-
cinations are driven by stereotypes learned during

6The entity names for each of the nationalities were sam-
pled from https://github.com/d4em0n/nationality-classify.

7The results can be seen in Appendix B, Figure 4.
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pre-training. Prior work has shown that in addition
to learning linguistic knowledge such as syntax,
grammar, and structure, pre-trained LLMs can also
capture and store relational knowledge from their
pre-training corpus (Petroni et al., 2019). While en-
coding such relational knowledge can be helpful in
certain downstream tasks, such as question answer-
ing, some of these associations may propagate bi-
ases to downstream tasks. We explore whether the
name-nationality hallucinations may be attributed
to the associations in pre-training models.

3.1 Intrinsic Evaluation
We want to evaluate the strength of the intrinsic
bias in pre-trained language models. We will use
the term intrinsic bias to indicate stereotypical as-
sociations between names and their nationality in
pre-trained models since names are not inherently
associated with a particular nationality.

Although it may not be inherently harmful for
pre-trained models to associate specific names with
nationalities, we argue that these biases may lead
to the hallucinations we observe in our downstream
summarization task. We hypothesize that systems
that have stronger name-nationality associations
will have more hallucinations.

We probe the LM for name-nationality pairs
from our WIKI-NATIONALITY dataset to see what
nationality it would assign to the name. We use the
following prompt:

• [Name] is a citizen of [MASK].

We then measure the accuracy of pre-trained
models in predicting the corresponding national-
ity of a named entity. Given the input prompt, we
compute the score for all possible countries. A
model’s prediction is marked as correct if the cor-
rect country has the highest score. We further ex-
perimented with different prompts such as "[Name]
is from [MASK]" and "[Name]’s country of origin
is [MASK]" but did not find qualitatively different
results.

3.2 Results
We measure intrinsic bias by looking at the zero-
shot accuracy of pre-trained LMs in predicting the
nationality of a given name, as described above.
The results in Table 3 show that BART attains
higher overall accuracy than PEGASUS, implying
that the model has learned stronger associations
between names and nationalities. Though PEGA-
SUS has relatively weaker associations, we see that

the trends are very similar to BART – the highest
accuracies are obtained for Asian nationalities and
lower accuracies for countries in the Americas.

Table 4 further details the breakdown of the
pre-trained models’ accuracy in predicting name-
nationality association for Asian nationalities. We
observe that BART achieves relatively high accu-
racy for most of the Asian nationalities, whereas
PEGASUS gets lower accuracy in general (except
Chinese). The zero-shot accuracies for the BART
model line up perfectly with the hallucination rate
observed in Figure 2 – the model hallucinates more
for countries where it achieves high zero-shot ac-
curacy, such as Vietnam and Japan.

3.3 Correlation between Intrinsic Bias and
Extrinsic Hallucinations

Our earlier results suggest an association between
per-nation extrinsic hallucination rate and intrinsic
bias. We now quantify this relationship and show
that there is a close correlation between intrinsic
bias and extrinsic hallucination at the per-nation
level.

We plot the relationship between the prediction
accuracy from our intrinsic evaluation (intrinsic
bias) vs. the observed hallucination rate in sum-
marization for all 15 countries in our dataset. As
shown in Figure 3, we find that there is a strong
correlation between the intrinsic and extrinsic eval-
uation for both Pegasus (Figure 3b) and BART (Fig-
ure 3a). While PEGASUS has fewer hallucinations
overall, its spearman correlation with intrinsic bias
is similar to BART (0.81 vs. 0.83 respectively).

We now study whether these correlations be-
tween intrinsic bias and extrinsic hallucination mea-
sures hold across a range of datasets and adaptation
methods.

4 The Effect of Fine-Tuning Dataset and
Adaptation Method

We explore how certain design choices for fine-
tuning such as the fine-tuning dataset and the adap-
tation method, affect the propagation of bias for
summarization. Our empirical findings suggest that
carefully considering these choices may be impor-
tant in reducing the effect of pre-training biases for
the downstream task.

4.1 Changing Fine-Tuning Datasets

Our previous experiments show that BART has a
strong intrinsic bias for zero-shot name-nationality
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American European Asian African

BART 14.33 54.50 71.20 35.33
PEGASUS 12.33 18.50 44.00 15.67

Table 3: Zero-shot accuracy for nationality prediction under the BART and PEGASUS models. The model accuracy
is significantly higher for Asian nationalities.
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(c) Finetuning BART on CNN-DM and NYT datasets leads to fewer observed hallucina-
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Figure 3: Correlation of intrinsic bias vs. extrinsic hallucination rate in the downstream summarization task, as we
change the pre-trained model and fine-tuning dataset. There is a strong, positive correlation across all settings.

BART PEGASUS

Japanese 89 45
Chinese 76 87
Korean 82 22

Vietnamese 92 54

Table 4: Accuracy breakdown for Asian nationalities.

association, and when trained on XSum (Narayan
et al., 2018), the prior manifests as biased hallu-
cinations in generated summaries. Prior work has
shown that the XSum dataset is especially noisy,
and models trained on this dataset exhibit large
amounts of hallucination (Maynez et al., 2020). We
investigate whether fine-tuning on cleaner datasets
can reduce the amount of biased hallucination we

observe. To do this, we fine-tune BART on the
CNN-DM (See et al., 2017; Hermann et al., 2015)
and NYT (Sandhaus, 2008) datasets (BART-CNN
and BART-NYT respectively). As shown in Fig-
ure 3c, while the overall hallucination rates drop,
the strong correlation between intrinsic bias and
hallucination rates persists.

4.2 Changing Adaptation Methods

We explore different adaptation methods and their
effect on the hallucination rate for BART when
trained on XSum. Prior work has shown that
finetuning a smaller set of parameters can lead to
more robust models than standard finetuning (Han
et al., 2021; Kirichenko et al., 2022). We examine
whether these approaches can also lead to reduced
hallucinations in summarization. In particular, we
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ROUGE-L Density American European Asian African Ovr

BART-fine-tune 36.38 2.05 2.83 13.08 27.10 3.66 12.87
BART-adapter 35.11 1.72 2.06 8.14 12.76 1.37 6.71
BART-last-layer 32.63 4.67 0.71 3.04 11.58 1.03 4.55

Table 5: Adaptation methods on XSum. Ovr is the overall hallucination rate across all the nations. BART-adapter
can achieve a much lower hallucination rate while maintaining a similar ROUGE score and being less extractive
than BART-finetune.

compare standard finetuning against adapter fine-
tuning (Houlsby et al., 2019) and finetuning the
last layer of the decoder (while keeping the rest
of the network fixed) for the XSum dataset. For
BART-adapter, we use the XSum-trained check-
point from Pfeiffer et al. (2020). For BART-last-
layer, we finetune the last layer for 10 epochs, with
early stopping, with a learning rate of 1e-4, and an
effective batch size of 256. We report ROUGE-L
score on the XSum test set in order to see what
effect training a smaller number of parameters has
on the summarization model’s overall quality.

Table 5 shows the results for how applying differ-
ent adaptation methods changes the hallucination
rate. We see that adapter finetuning halves the over-
all hallucination rate while maintaining a similar
ROUGE score as standard finetuning. Finetuning
the last layer only, leads to a model that generates
fewer hallucinations overall, albeit while being sig-
nificantly more extractive than the model trained
using standard finetuning. Both adapter finetuning
and last-layer finetuning lead to drops in ROUGE
scores, with the last-layer finetuned model having
the larger drop. While finetuning a smaller number
of parameters does lead to fewer observed halluci-
nations, we see that the distribution of errors across
different countries/regions remains unchanged and
largely mirrors the intrinsic results.

5 Related Work

5.1 Measuring Bias in NLP Models.

Recent work shows that NLP models exhibit bi-
ases from their training datasets (Caliskan et al.,
2017; Zhao et al., 2019; Kurita et al., 2019; Sun
et al., 2019; Bartl et al., 2020; Rae et al., 2021; Hon-
navalli et al., 2022). Most of the prior work has fo-
cused on intrinsic evaluations of bias, i.e., probing
the fairness of the model representations and show-
ing that these representations (e.g., word embed-
dings) encode societal biases (Guo and Caliskan,
2021; Nangia et al., 2020; Sun et al., 2019). How-

ever, there have been mixed findings about how
the intrinsic evaluation reflects the bias propaga-
tion to downstream tasks. While Jin et al. (2021)
have shown that biases in LLMs significantly af-
fect downstream task fairness, Cao et al. (2022)
and Goldfarb-Tarrant et al. (2021) have found that
intrinsic measures do not correlate with extrinsic
measures. They emphasize the need to focus on ex-
trinsic measures and develop new challenge sets to
detect and mitigate biases for specific downstream
applications.

Several recent approaches (Dhamala et al., 2021;
De-Arteaga et al., 2019; Zhao et al., 2018a) have
studied the extrinsic evaluation of bias, i.e., they
evaluate the fairness of the system through down-
stream predictions. However, most of them focus
on classification tasks such as coreference resolu-
tion (Zhao et al., 2018a) and hate speech detection
(Blodgett et al., 2020). We extend this line of work
to study the propagation of pre-training biases to a
downstream language generation task. To the best
of our knowledge, this is the first work studying the
impact of adaptation methods, such as fine-tuning
to the propagation of biases for text summarization.

Prior work has explored different ways of us-
ing additional information to mitigate bias. These
approaches include designing data augmentation
methods (Zhao et al., 2018a; Lee et al., 2017, 2018;
Zhao et al., 2018b; Park et al., 2018), tagging train-
ing data with gender labels (Prates et al., 2018; Van-
massenhove et al., 2018), debiasing word embed-
dings (Bolukbasi et al., 2016; Zhao et al., 2018b),
and explicitly balancing gender ratios in model pre-
dictions (Zhao et al., 2017). Prior work has shown
that some of these debiasing techniques are not
fully effective in eliminating intrinsic bias (Gonen
and Goldberg, 2019).

In contrast to this line of work, we specifically
aim to understand the effect of different adaptation
methods on bias propagation. Selecting a suitable
adaptation method is an important design decision
in adapting the pre-trained language models for the
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task of interest. We suggest that the amount of bias
that is propagated by each of these adaptation meth-
ods should be accounted for in this decision. For
example, we find that simply adapting a smaller
set of parameters (e.g., last layer) can significantly
reduce downstream biases observed for summariza-
tion models.

5.2 Hallucinations in Text Summarization.

Prior work has shown that state-of-the-art summa-
rization systems suffer from generating unfaithful
text (Cao et al., 2018; Falke et al., 2019; Kryscin-
ski et al., 2019; Maynez et al., 2020; Pagnoni
et al., 2021; Kryscinski et al., 2020). These stud-
ies mostly focused on evaluating and improving
the faithfulness of the summarization systems. Al-
though some prior work has shown that factors
such as dataset quality (Maynez et al., 2020) and
abstractiveness (Ladhak et al., 2022; Durmus et al.,
2020) affect the faithfulness of systems, there has
been no prior work analyzing how biases encoded
in the pre-training models manifest as hallucina-
tions downstream, which is the main focus of this
paper. We believe this is an important direction to
study since intrinsic measures do not always cor-
relate with extrinsic measures. Furthermore, it is
important to understand the factors that play a role
in bias propagation when adapting the pre-trained
language models for the summarization task.

6 Discussion

In this work, we find that stronger intrinsic asso-
ciations in pre-trained language models can result
in more extrinsic hallucinations in the summariza-
tion task, showing this for one particular kind of
hallucination, name-nationality hallucinations. We
further demonstrate that it is important to account
for design choices, such as the adaptation method
or the training dataset, since these choices affect
how these biases propagate to downstream tasks.
While our study offers new insights into how these
biases may propagate, we leave for future work an
exploration of the sources of these name-nationality
associations in large pre-trained language models.
Several such sources should be investigated. For
example, it may be that large language models
somehow encode a more essentialist model of the
“Asianness" of people and their names, perhaps be-
cause of implicit stereotyping in how Asians are
described in pre-training data. Alternatively, it may
be that the languages spoken in some of the Asian

countries we investigated (e.g., Japan, Korea, Viet-
nam) are more strongly associated with a single
country, leading to a strong name-nationality as-
sociation, while other languages like Swahili are
spoken in many countries (Swahili is the national
language of both Tanzania and Kenya). Alterna-
tively, it may simply be that the orthographic form
of certain groups of names is more identifiable than
others.

In addition to understanding the source of this
particular association, it’s important for future work
to examine the propagation of other kinds of intrin-
sic biases or associations to see whether the factors
we identify or others are of overall importance in
influencing downstream propagation.

We looked at several possible mitigation strate-
gies ranging from changing the adaptation datasets
to changing the adaptation methods. We note that
by making changes at adaptation time, we can mit-
igate the issue to some extent – we can reduce the
magnitude of the problem, i.e., the overall hallu-
cination rates. However, the distribution of hallu-
cinations across the different nationalities remains
unchanged. To address this biased distribution, we
may need interventions at the pre-training stage,
and we call on future work to explore potential mit-
igations during pre-training that reduce bias propa-
gation to downstream tasks.

7 Conclusion

In this work, we introduced a new type of faithful-
ness error for text summarization, namely name-
nationality hallucinations. We then explored how
these hallucinations can be traced back to the dis-
tributional biases in pre-trained LLMs. Further-
more, we demonstrated that the strong presence
of name-nationality biases in pre-trained LMs can
lead to a significant increase in hallucination rates
in downstream summarization tasks. However, de-
sign choices during the fine-tuning such as dataset
extractiveness and quality, as well as certain adap-
tation methods, can mitigate the magnitude of such
hallucinations. Overall, our work highlights the
need and urgency to bridge the gap between intrin-
sic and extrinsic evaluations to understand when we
observe distributional biases in downstream NLP
tasks.

8 Limitations

In this study, we only focus on one type of hal-
lucination – name-nationality hallucination—and
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aim to trace this hallucination back to biases en-
coded in the pre-training data. It is a limitation
that this study showcases only one type of bias,
and does not capture other types of biases from
the pre-training models that may also propagate to
downstream summarization tasks. Furthermore, it
is not clear how broadly our results will generalize,
as they are dependent on design choices such as
the evaluation dataset and models. Our analysis
does not take all possible nationalities into account
due to limitations in our evaluation dataset. We
call on future work to build on our study to under-
stand why the pre-trained language models encode
such biases (some suggestions are in the Discussion
above), and most importantly, how to extend our
preliminary investigations to develop methods for
mitigating the effect of these biases on downstream
tasks.

9 Ethical Considerations

9.1 Data Collection

Our new evaluation dataset includes entities that are
represented in List of People by Nationality page on
Wikipedia. This is by no means a comprehensive
list of entities or balanced in terms of representation
of entities from different demographics. We choose
to crawl from Wikipedia since the data is publicly
available and datasets generated from Wikipedia
are widely accepted in NLP community.

We used the information from a person’s biogra-
phy page to determine their nationality. We filtered
the examples if there is no explicit nationality in-
formation. Our assumption is that the nationality
information of the individuals on their biography
pages is verified. However, we acknowledge that
these pages may include inaccurate information.

9.2 Compute Power

Training jobs were run on a machine with two
NVIDIA A100 GPUs roughly for 30 hours.
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A Data Statistics

Nationality # Examples

American 994
Cuban 481
Brazilian 692
French 971
Finnish 960
German 976
British 980
Japanese 683
Korean 442
Chinese 562
Kenyan 272
Nigerian 244
Tanzanian 251
Ethiopian 247

Table 6: Number of entity per nationality.

B Hallucination for Non-Wikipedia
Entities

Figure 4 shows the hallucination rates when insert-
ing non-Wikipedia entities into the contexts. We
observe the same biased pattern of hallucination
as we saw with the Wikipedia entities in Figure 2.
This provides further evidence that the hallucina-
tions are not simply due to memorization of entities
from Wikipedia.
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0.0026 0 0.22 0.31 0.24

0.0094 0.016 0.1 0.1 0.23

0 0 0.08 0.14 0.22

0 0.041 0.35 0.43 0.42

0.037 0 0.24 0.4 0.32

0.0079 0.0026 0.22 0.26 0.18

0.01 0.005 0.11 0.26 0.27

0.14 0.12 0 0.52 0.66

0.082 0.053 0.31 0 0.3

0.043 0.018 0.19 0.053 0.27
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Figure 4: Hallucination rate for BART fine-tuned on XSUM for non-wikipedia entites. Red corresponds to higher
and Blue corresponds to lower hallucination rate. Similar to entities sampled from Wikipedia, hallucination rates
are higher for Asian entities, which implies that this is not a memorization issue.

3219


