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Abstract

One significant obstacle to the successful appli-
cation of machine learning to real-world data
is that of labeling: it is often prohibitively ex-
pensive to pay an ethical amount for the human
labor required to label a dataset successfully.
Human-in-the-loop techniques such as active
learning can reduce the cost, but the required
human time is still significant and many fixed
costs remain. Another option is to employ pre-
trained transformer models as labelers at scale,
which can yield reasonable accuracy and sig-
nificant cost savings. However, such models
can still be expensive to use due to their high
computational requirements, and the opaque
nature of these models is not always suitable in
applied social science and public use contexts.

We propose a novel semi-supervised method,
named Slingshot Learning, in which we itera-
tively and selectively augment a small human-
labeled dataset with labels from a high-quality
"teacher" model to slingshot the performance
of a "student" model in a cost-efficient manner.
This reduces the accuracy trade-off required to
use these simpler algorithms without disrupting
their benefits, such as lower compute require-
ments, better interpretability, and faster infer-
ence. We define and discuss the slingshot learn-
ing algorithm and demonstrate its effectiveness
on several benchmark tasks, using ALBERT
to teach a simple Naive Bayes binary classifier.
We experimentally demonstrate that Slingshot
learning effectively decreases the performance
gap between the teacher and student models.
We also analyze its performance in several sce-
narios and compare different variants of the
algorithm.

1 Introduction

In standard computational linguistics modeling, the
typical strategy for achieving high model accuracy
is to obtain a large fraction of high-quality human
labels on the dataset at hand. However, it is not un-
common in applied social science settings to find

that the scope of human labeling of a dataset is
highly constrained (Liew et al., 2014). For exam-
ple, it may be prohibitively expensive to pay an
ethical amount for human labeling. Alternatively,
the project’s institutional access to raw corpora may
have ended, or perhaps the domain experts are no
longer available.

One solution is to use an active learning ap-
proach where a model is trained concurrently with
the labeling process to “maximize a model’s per-
formance gain while annotating the fewest samples
possible”(Ren et al., 2021). While this can be more
efficient than unguided labeling, it still requires
significant human labeling resources as the learn-
ing process is fundamentally human-guided. Some
issues are relatively fixed costs, such as bias, re-
peatability, and initial training requirements; this
enforces a non-trivial lower bound on the efficiency
of human-in-the-loop active learning methods. Ac-
tive learning also does not help if the data has al-
ready been collected, and there is no way to collect
further data.

Alternatively, one might directly apply a large,
pre-trained (and possibly fine-tuned) transformer
model to obtain state-of-the-art outcomes (Brown
et al., 2020; Schick and Schütze, 2020; Wei et al.,
2021). Pre-trained models are well suited to learn-
ing from relatively small amounts of data due to
the large amount of prior knowledge they already
contain. But such a strategy comes with complica-
tions for applied social science, including high (and
rising) costs (Patterson et al., 2021; Schwartz et al.,
2019; Mayfield and Black, 2020) a lack of model in-
terpretability (Yang et al., 2021; Zafar et al., 2021),
and issues with repeatability when using models
hidden behind an API.

Given the power of modern machine learning
models, a natural question arises: Can the power
of modern machine learning architectures (such as
transformer models) be harnessed to enhance the
accuracy of standard models where human labeling
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is finished?
Here, we introduce and evaluate Slingshot Learn-

ing, an efficient, low-cost, widely applicable, and
powerful methodology to enhance the accuracy
of standard inference models. Slingshot Learning
adopts a student–teacher framework, such that the
standard model (the ‘student’) is iteratively taught
by the transformer model (the ‘teacher’). Akin
to the gravitational slingshot maneuver, in which
a spacecraft uses the gravity of a large body to
increase its own speed, the student model lever-
ages the knowledge and performance of the teacher
model, in a way that allows it to express where
it expresses low certainty in its predictions, essen-
tially asking “questions” of the teacher model. This
iterative behavior can be modified, or entirely re-
placed with purely random behavior through the
selection of hyperparameters.

We demonstrate that, under slingshot learning,
the accuracy of the student model can be at a rel-
atively low cost. After the algorithm finishes iter-
ating, the student model can be used as a compro-
mise between the high performance of the complex
teacher model, and the inherent benefits of the stu-
dent model, which might include reproducibility,
interpretability, computational efficiency, and com-
pute costs that are orders of magnitude lower than
the teacher model. This student model can then be
used to label the rest of the corpus, and/or label
future, unseen data.

2 Background

Active learning (AL) seeks to minimize the human
labeling cost of training a model while collecting
enough data to successfully train the model (Ren
et al., 2021). It has proven popular in recent years
due to the prevalence of large, unlabelled datasets,
and methods are increasingly leveraging power-
ful, pre-trained models such as BERT (Grießhaber
et al., 2020), but active learning is still a fundamen-
tally human-led labeling approach which adopts
the pitfalls of experimental research involving hu-
mans. The ability to repeat experiments in the first
place (let alone with any consistency), expand their
scope and analyze the underlying models are all
taken for granted in machine learning but, once
humans are involved in the labeling process, the
difficulty of such tasks can vary from non-trivial to
impossible. Iterative research design is also very
difficult without significantly increasing the cost
and time requirements of the overall experiment.

Large language models such as GPT-3 (Brown
et al., 2020) have achieved exceptional perfor-
mances in NLP tasks under zero-shot and few-shot
learner constraints, making these a compelling ap-
proach for low-resource tasks (Chia et al., 2019).
GPTs have been used in semi-supervised settings to
generate pseudo-labels via training offline/student
models (Chia et al., 2019). The study by Wang
et al. (2021) leverages the use of GPT-3 to reduce
costs in comparison to human annotators. In one
of their labeling strategies, they employ GPT-3
(teacher) to generate a fully labeled dataset which
is then used to train an offline model (student), a
transformer model (Liu et al., 2019). While they
show improved performance of the offline model
on the fully labeled GPT-3 dataset in comparison to
using human annotators, the performance on multi-
class classifications was lower than that of human
annotators and showed no improvement after in-
creasing the number of GPT-3 labels. The authors
also explore an active learning version, where the
low-confidence labels of GPT-3 or the most chal-
lenging examples are relabelled using human an-
notators and the result is used to train the offline
model. While this approach demonstrates better
performance, it has the same pitfalls as other active
learning approaches. Our approach assumes a low
budget and no access to human annotators beyond
a small “seed” labeled dataset.

In the realm of model interpretability, a similar
approach is that of surrogate models (SM), which
employ an interpretable simple model to explain
the behavior of a more complex ML model (Rey
and Neuhäuser, 2011). They include global mod-
els that explain the overall predictions and local
models that provide local explanations on the pre-
dictors by varying their sampling strategies. The
global models are trained on the same data set (or
a similar data set) as the complex model (Molnar,
2022, ch 8.6). The output of the surrogate is then
compared to the complex model to determine how
well the surrogate replicates the complex model
within an arbitrary threshold. The ones that employ
sampling use simpler models to gain insight into in-
terpretability through locally selected regions from
the complex model’s predictions (Ribeiro et al.,
2016; Lundberg and Lee, 2017). The goal or out-
put here is interpretability and mostly requires the
continued use of the underlying complex model.
However, our intention is not just interpretability
but to build a stable simple model that is standalone.
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Figure 1: Slingshot Learning. A small fraction of the dataset is labeled by human labelers (a), which are used to
train the Student Model and then identify low-confidence examples, a subset of which are passed to the fine-tuned
Teacher Model (b). Where the Teacher Model has high inferential confidence on the examples (c), these are added
to the human-labeled dataset for further training of the Student Model (d), and the cycle iterates.

The goal is to train the simpler model to make better
predictions. Further, we are limited by our training
dataset size. The idea is to also leverage a largely
unlabelled dataset into training.

Knowledge distillation (KD) is another well-
known approach that uses the teacher-student
model (Hinton et al., 2015). The teacher - a deep
teacher network - distills its knowledge onto a
smaller model. The smaller models are also neu-
ral nets, and draw feature learnings from the pa-
rameters and activations of the intermediate lay-
ers of the teacher model. The intention here is
to deploy a high-performing, compressed, smaller
model in a low-resource environment (Gou et al.,
2021) and thus they lack easy interpretability and
transparency. While there have been some studies
that use KD in an interpretable model (Liu et al.,
2018; Che et al., 2016), the data size limitation
discussed earlier applies to this approach as well.

Our goal is to build a standalone model that can
achieve high accuracy despite limited training data,
through the use of large unlabelled data sets.

3 Slingshot Learning

Here we explain slingshot learning from an intu-
itive view, and then present a more rigorous algo-
rithmic definition.

3.1 Intuition

Consider a scenario where we have a large dataset
of unlabelled data, far larger than could be labeled
by hand, and we want to label the whole dataset
and/or train a model to label future, unseen data.
One solution is to hand-label a small portion by
hand and feed the rest to a state-of-the-art model
(such as a modern Transformer-based model, for
NLP problems). While this is quicker and cheaper
than labeling by hand, it can still be expensive (es-
pecially if using an API, or a large model requiring
significant GPU compute capabilities). Addition-
ally, these complex models take a while to run,
making them potentially unsuitable for real-time
applications. Of course, a simpler and more effi-
cient model can be used, but this generally comes
at the cost of decreased model performance.

In slingshot learning, we use the more expensive
(HQ) model to label a portion of the unlabelled
dataset, and then leverage that to slingshot the per-
formance of the smaller (LQ) model, much like a
gravitational assist maneuver accelerates a small
spacecraft using the gravity of a large celestial ob-
ject. Under this training paradigm, we train a “high-
quality” (HQ) model on our ground truth dataset,
use this model to iteratively teach the LQ model
by labeling a portion of the unlabelled dataset, and
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then use the low-quality model to label the rest of
the data and/or make future predictions on unseen
data.

We assume the number of human labels is fixed
and cannot be increased - instead, we will use the
HQ model (trained on the human-labeled dataset)
as our more accurate (and more expensive) oracle.
Our goal is thus to minimize the number of HQ
predictions, while successfully labeling the dataset
and/or training the LQ model. This is the crux of
the slingshot learning approach; although the im-
plementation details and hyperparameter selections
might vary, the core concept of using a high-quality
(but expensive) model to improve the performance
of a lower-quality (but cheap) model remains con-
stant.

The comparison to slingshot learning with other
existing methods is presented in Table 1. The pri-
mary objectives of SM and KD are interpretability
and high-accuracy compressed models respectively.
Slingshot achieves both these objectives. Compar-
ing slingshot to Wang et al. (2021), the latter con-
tinues to use human annotators for labeling, while
SSL supports automated labeling. In contrast to
Wang et al. (2021), KD’s trained smaller models
can perform automated labeling but require a large
data set to achieve a desirable accuracy.

Model Characteristics Wang et al. SM* KD* SSL*

Automated labelling ✗ ✗ ✓ ✓

Standalone re-usable model ✗ ✗ ✓ ✓

Interpretability ✗ ✓ ✗ ✓

Budget restriction ✓ ✗ ✗ ✓

Small labelled dataset ✓ ✗ ✗ ✓

Leverages Unlabelled data ✓ ✗ ✗ ✓

Table 1: Comparison of existing methods with slingshot
learning. SM*: Surrogate Models, KD*: Knowledge
Distillation, SSL*: Slingshot Learning

3.2 The Slingshot Learning Algorithm

In Figure 3, a high-level pseudocode implementa-
tion of the core slingshot algorithm is described.
Depending on the choice of hyperparameters, the
algorithm’s performance might be further optimiz-
able. For example, in the purely random variant of
the algorithm (discussed below), there is no need
to compute the LQ predictions at each iteration.

Note that the algorithm does not assume that
the confidence values of the HQ and LQ models
are comparable with one another. The algorithm
only relies on the relative ordering of confidence
values from one of the models at a time and does
not compare confidence values between the two
models. The relationship between prediction confi-
dence and accuracy is not necessarily monotonic,
but we assume it will be somewhat correlated and
treat it as monotonic for the purposes of the algo-
rithm.

3.2.1 Hyperparameters
There are three hyperparameters in the slingshot
learning algorithm:

n the number of data points selected for predic-
tion by the low-quality model at each iteration.

m the number of data points selected for predic-
tion by the high-quality model at each iteration.

k the number of data points added to the labeled
set at each iteration.

We discuss the different choices for these hyper-
parameters throughout this paper. Note the neces-
sary inequality n ≥ m ≥ k.

3.3 Expected Performance

Part of the intuition of slingshot learning stems
from the idea that the improved performance of
the HQ model over the LQ model stems from two
sources: both the inherent superior ability of the
HQ model to understand the population as a whole
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1: procedure SLINGSHOT LEARNING ALGORITHM(L, U, V, n,m, k)
2: HQ← Train_HQ(L) ▷ Train the HQ model on L
3: LQ← Train_LQ(L) ▷ Train the LQ model on L
4: while Not converged & more data do
5: Dn = Sample(L, n) ▷ Sample n elements from the unlabelled dataset.
6: Pn = LQ(Dn) ▷ Compute LQ predictions and confidence for each datum (note we only use

the confidence).
7: Dm = LowConfidence(Dn, Pn) ▷ Choose m lowest confidence LQ predictions
8: Pm = HQ(Dm) ▷ Compute HQ prediction and confidence for each datum.
9: Dk = HighConfidence(Dm, Pm) ▷ Choose k highest confidence HQ predictions.

10: L← L ∪Dk ▷ Add these to the labelled set.
11: U ← U \Dk ▷ Remove these from the unlabelled set.
12: LQ = Train_LQ(L) ▷ Train a new LQ model on the full labeled dataset.
13: Validate(LQ) ▷ Evaluate the performance of the LQ model on the validation set.
14: end while
15: end procedure

Figure 3: Slingshot Learning Algorithm: Note that L is the labeled set, U is the unlabelled set, V is the validation
set, LQ is the low-quality model, and HQ is the high-quality model. n, m, and k are as described in Section 3.2.1.

and also the superior ability of the HQ model to
learn from the sample.

Let us denote the intrinsic capability of a model
m to approximate the population, if given an arbi-
trarily large sample (i.e. “all the data”, or an “infi-
nite sample”) from that population, as Im. Since
our sample will generally not cover the entire popu-
lation, the true model accuracy will have a penalty
applied dependent on the truesample size depen-
dent capability of the model, which we denote as
Sm. In our notation, we will assume the penalty
value Sm is positive, and subtract it from the total
model performance. We can then denote the LQ
model performance as LQ = ILQ − SLQ, and the
HQ model performance as HQ = IHQ − SHQ.
We can then express the performance difference
between the two models as:

HQ− LQ = IHQ − SHQ − (ILQ − SLQ) (1)

Rearranging terms, we find:

HQ− LQ = ∆I +∆S (2)

Where ∆I = (IHQ − ILQ) and ∆S = (SLQ −
SHQ). Intuitively, ∆I is the performance uplift
due to the inherent superiority of the HQ model
(which cannot be conferred to the LQ model), and
∆S is the extra penalty applied to the LQ model’s
performance due to the superiority of the HQ model
given the sample size being used for training. In the
limit, with infinite data, we would therefore expect
∆I to approach some constant value greater than
zero, while ∆S goes to zero.

In situations where ∆I is the dominant term,
slingshot learning may have lower utility. But in
scenarios where ∆S is the dominant term (or at
least a significant component of the overall perfor-
mance delta), slingshot learning has the potential to
bridge part of the knowledge gap between the HQ
and LQ models. We conjecture that there are many
instances where simpler, cheaper models would
compare well to more complex and expensive mod-
els, and that much of the gap between traditional
and newer models stems from both an increase in
the I terms and a decrease in the S sample-size
penalties for smaller samples.

3.4 Algorithm Variations
Depending on our choice of hyperparameters n, m,
and k, we can modify the behavior of the slingshot
learning algorithm in a variety of ways. An em-
pirical comparison of the differences in resulting
behavior from these three variants can be found in
the Results section.

3.4.1 Deterministic Variant
We can choose to have the LQ model evaluate the
entirety of the unlabelled dataset in each iteration,
by setting n = ∥U∥1, where U is the set of data
points that remain unlabelled at a given iteration.

This removes the stochasticity from the algo-
rithm, assuming the HQ and LQ models remain
constant under a given input (since m and k are
only used to determine how many data points to

1We use the value n = −1 to denote this in our code.
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take from the n randomly selected data points).
While it will take longer to run - potentially a
lot longer for larger datasets, since the unlabelled
dataset must be passed through the LQ model at ev-
ery iteration of the algorithm - his approach ensures
that the LQ model can select the lowest confidence
data points at every iteration.

3.4.2 Random Variant
Alternatively, we can choose to set k = m = n,
meaning that every data point that is passed to the
student model is sent to the teacher model for eval-
uation, and every data point sent to the teacher
model for evaluation is added to the corpus. This is
akin to purely random sampling, without allowing
the student to provide input on the training process.

3.4.3 Stochastic Variant
We refer to any configuration of the hyperparam-
eters n, m, k which is neither deterministic nor
purely random as a “stochastic” configuration,
where there is a combination of random sampling
and student input during the sampling process. In
stochastic slingshot learning, k <= m <= n and
k < n.

4 Experimental Design

4.1 Models

We initially ran experiments with ALBERT teach-
ing Naive Bayes, ALBERT teaching SVM, and
SVM teaching Naive Bayes. SVM teaching Naive
Bayes proved difficult, as the SVM was very of-
ten not significantly more powerful than the Naive
Bayes model. We performed some initial exper-
iments with ALBERT teaching SVM, but the re-
quired computation time proved insurmountable.
However, preliminary results indicate that SVM is
a reasonable candidate as a student of ALBERT
under the slingshot learning paradigm.

4.1.1 Model Details
ALBERT (Lan et al., 2020) from the Hugging-
Face Model repository (Wolf et al., 2020) (using
the “albert-base-v2” model)

SVC (Cortes and Vapnik, 1995), an SVM classi-
fication model, as implemented by Sci-Kit Learn
(Pedregosa et al., 2011). Not used in the final re-
sults.

Naive Bayes as implemented in Sci-Kit Learn
(Pedregosa et al., 2011).

4.2 Datasets
We evaluate performance on four popular bench-
mark binary text classification datasets from the
HuggingFace Datasets repository, as shown in Ta-
ble 2.

4.3 Training
We tested a number of values for each of the three
hyperparameters, n, m, and k. We evaluated n =
128, n = 1024, and n = −1. m and k were set to
either k = m = n or m = n/4, k = m/4 = n/16.
When n = −1, a value of 1024 was used to cal-
culate m and k. Each experiment was repeated
up to 10 times. Experiments where the HQ (AL-
BERT fine-tuned) model was not at least 15% more
accurate than the LQ (Naive Bayes) model were
discarded, as we found they added a lot of noise to
the dataset (and, in any case, slingshot learning is
most useful when the models are of significantly
different strength). Some number of samples 2 (one
of 2500, 20, 000, or 50, 000) was taken from each
dataset, and then randomly split into 80% training
and 20% validation sets.

A total of 1, 480 experiments were run, repre-
senting up to five runs 3 of each of the 52 hyperpa-
rameter choices, over each of the three datasets. For
each experiment, 95% of the dataset labels (chosen
randomly but with a fixed seed of 42) were masked,
to mimic a semi-supervised learning problem with
a proportionally low (but reasonable) amount of
ground-truth data.

Experiments were performed using virtual ma-
chines with four CPUs and a single NVIDIA T4
GPU, using AWS Batch. SVM and Naive-Bayes
models were trained with default values from the
sklearn library, as was the HuggingFace ALBERT
model (which was trained for a total of three epochs
over the dataset, with a batch size of 16).

5 Results

We have included all experimental results in tabular
form in the supplementary materials. Source code
can be found here.

When performing these experiments, we ran the
full slingshot learning algorithm until there is no
more data left to classify. However, in practice,

2For the Rotten Tomatoes dataset, we used all the data for
the 20k and 50k runs since it has less than 20,000 data points.

3Due to our use of AWS spot instances, some experiments
failed due to loss of the VM. Each experiment had at least 8
successful runs, before pruning for the disparity between the
HQ and LQ models.
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Large Small
Dataset n Variant δ10% δ30% δmax # δ10% δ30% δmax #

Amazon Polarity 128 random 0.296 0.384 0.449 1 0.224 0.214 0.489 8
1024 random 0.080 0.145 0.328 1 0.266 0.266 0.335 5
1024 stochastic 0.178 0.346 0.478 3 0.208 0.344 0.507 8

IMDB 128 random 0.464 0.661 0.697 2 0.052 0.144 0.401 4
1024 random 0.547 0.634 0.665 2 -0.249 -0.249 -0.204 3
1024 stochastic 0.466 0.512 0.665 3 -0.070 -0.119 0.060 5

Rotten Tomatoes 128 random 0.170 0.305 0.527 11 0.008 0.099 0.226 3
1024 random 0.235 0.334 0.507 16 0.216 0.216 0.293 4
1024 stochastic 0.228 0.336 0.570 9 -0.020 0.047 0.236 4

Yelp 128 random 0.034 0.085 0.215 17 0.002 0.009 0.035 10
1024 random 0.038 0.096 0.229 18 0.005 0.005 0.013 9
1024 stochastic 0.028 0.084 0.218 14 0.001 0.002 0.025 9

Table 2: Here we show the performance of slingshot learning aggregated over the “small” samples (2,500 samples)
and “large” samples (20,000 and 50,000 samples). All “small” experiments masked 90% of the dataset, leaving 10%
as the seed for slingshot learning. All “large” experiments masked 99% of the dataset, leaving 1% as the seed for
slingshot learning. Note that some of the experiments have very small sample sizes - these results should not be
relied upon. The algorithm is random if n = m = k, and stochastic otherwise (we exclude n = −1 from this table
as this configuration is not practical).

slingshot learning is most useful (and most distinct
from other techniques such as surrogate models)
when early stopping is applied. Our results demon-
strate that there are cases where most of the ac-
curacy gains occur early, and other cases where
progress is more consistent. However, throughout
almost all the results there is a consistent, mono-
tonic increasing accuracy, as well as the rate of
change of accuracy (that is, there are few sudden
accuracy spikes). This indicates that simply moni-
toring the LQ model accuracy, and stopping the al-
gorithm when it seems to be plateauing (or when re-
sources have been fully expended, of course) might
be a reasonable method of applying the algorithm.
One could also attempt to quantitatively determine
when the accuracy plateaus (if it ever does), but
further exploration of this is beyond the scope of
this paper.

Throughout these results, we refer to the δ
(“Delta”) metric. Intuitively, the Delta metric δSi

is the ratio between the amount of knowledge that
the teacher model has “taught” the student model
(equal to the difference between the performance of
Si and the baseline LQ model), and the knowledge
gap between the teacher and the student (equal to
the difference in their accuracy).

More rigorously, we define the Delta metric δ as

δSi =
A(Si)−A(S−1)

A(T )−A(S−1)
(3)

where Si is the LQ model trained at the i − th
iteration of the algorithm, and A(m) is the accuracy
of model m on the dataset at hand. S−1 is the
performance baseline of the LQ model before any
iterations of the slingshot learning algorithm. T is
the HQ model.

5.1 Empirical Results
Table 2 includes the average δ values at the 10%
and 30% milestones (that is, after 10% or 30% of
the total number of slingshot iterations), as well
as the average point throughout the algorithm (as
a percentage of the number of iterations taken) it
reached its peak. The 10% and 30% points were
chosen as reasonable benchmark points during our
initial experiments. In the supplementary materials,
we include extended tables including the first time
the LQ model reached accuracy within 5%, 1%,
and 0.1% of its peak accuracy.

In Figures 4, 5, and 6, we plot the δ values of the
low-quality (LQ) model slingshot learning through-
out the training process for each experiment (grey
lines), along with the average δ across experiments
(thick red line). We also show the 95% confidence
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interval of the delta value (envelope), and, on the
x-axis, the earliest iteration in which the LQ model
obtains statistically equivalent performance (filled
markers: α = 0.01; open: α = 0.10) to that of
the final iteration (100%).4 Figure 4 shows a best-
case scenario for slingshot learning, where there is
a significant increase in performance early in the
iteration process. Figure 5 demonstrates how, in
some cases, accuracy uplift can be more consistent
throughout the slingshot learning cycle - in these
cases, there is a stronger trade-off between the stop-
ping point for slingshot learning and the potential
accuracy gains of continuing the algorithm.

Figure 4: Best-case scenario (Amazon Polarity
dataset, 50k): Large dataset sees the HQ model able to
transfer most of the information to the LQ model with-
out going through the whole dataset. Early stopping has
less of a penalty.

Figure 5: More difficult scenario (Yelp dataset, 50k):
With much data, the HQ model can give information
to the LQ model, but gains continue almost linearly
throughout the process, penalizing early stopping.

Figure 6: High variability (IMDB dataset, 20k): Sling-
shot learning performance was relatively poor on the
IMDB dataset, though not always (see the supplemen-
tary materials for more information).

4In each figure: left panel, n = 128; middle, right panels,
n = 1024.

6 Discussion

These empirical results show slingshot learning to
be an effective and reliable method for improving
model performance in semi-supervised classifica-
tion problems. While the exact values of δ vary
between datasets, each dataset shows a clear cor-
relation between the number of iterations and the
performance of the resulting model, as well as (in
most cases) the effect of diminishing returns as the
number of iterations is increased.

Due to the degeneracy problem discussed below,
we have elected to remove any runs for which the
initial HQ model did not show at least a 15% im-
provement in accuracy over the LQ model baseline
(before any iterations of the algorithm).5

6.1 Hyperparameter Selection

We saw no consistent trends between the experi-
ments where n = m = k and n > m > k. It
does seem that, in situations where an n = m = k
configuration would be too computationally expen-
sive, an n > m > k configuration (or perhaps an
n > m = k configuration) is a reasonable option.
The supplementary materials include many more
plots and more comprehensive tables for the 20,000
and 50,000 sample experiments.

6.2 Degenerate Cases

While slingshot learning has proven effective, and
relatively reliable under the right conditions, it is
not guaranteed to improve performance in all cases.
Slingshot learning does not appear to be very ben-
eficial in cases where the HQ model is not signif-
icantly more powerful than the LQ model. We
found erratic behavior in such scenarios, to the ex-
tent that we chose to exclude any results from our
tables and figures for which the HQ model did not
perform with at least 15% higher accuracy than the
LQ model.

6.3 Benefits of Slingshot Learning

Slingshot learning allows simpler models to capture
some of the performance of more powerful models,
and as discussed throughout this paper, this has
tangible benefits in cost and compute requirements
for several common machine learning applications.
We have also identified several other benefits that
this approach provides.

5The full, unpruned data table has been included in the
supplementary materials.
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6.3.1 Enabling Model Selection/Trade-offs

Traditional machine learning methods, such as
Linear/Logistic Regressions, Naive Bayes, deci-
sion trees (Kotsiantis, 2013) and tree-based ensem-
ble methods (Friedman, 2001; Chen and Guestrin,
2016), and SVMs, have existed in the literature for
decades, and they have many advantages and trade-
offs between them. However, as transformer-based
models (and deep-learning models in general) be-
come more powerful, it is becoming more and more
difficult to justify the use of these traditional meth-
ods regardless of the benefits and trade-offs that
may come with them, such as interpretability, effi-
ciency, accuracy, and inherent applicability to the
problem at hand.

The ability to choose between different models
as the “low quality” model in the slingshot learn-
ing paradigm restores some of the power of model
selection. For example, users can choose between
simpler, more easily interpretable methods such
as Linear/Logistic Regression or Naive Bayes, or
opt for more complex models such as SVMs for
the sake of accuracy. Through the use of sling-
shot learning, users can make these decisions and
trade-offs based on their requirements, without sac-
rificing as much accuracy.

6.3.2 Enabling Experimental Repeatability

One negative effect of the proliferation of commer-
cial, API-based deep learning models is the inabil-
ity to reliably repeat experiments. APIs, and the
models beneath them, are subject to change with-
out notice, and will of course be improved over
time. An unmodified experiment might perform
significantly differently on two different days, in a
manner entirely beyond the control of the user.

One interpretation of slingshot learning is as a
method of capturing a “slice” of a large model,
using a smaller model to store the captured infor-
mation. These slices can then be stored and used
at a later date, both reliably and without further
interaction with the original model. Aside from
the computational and financial benefits of this, the
ability to take such a slice and store it locally en-
ables repeatable, shareable experimental models.
This may have legal and ethical implications, espe-
cially if it negatively affects the financial viability
of commercial machine learning offerings, but a
detailed discussion of this is beyond the scope of
this paper.

6.3.3 Facilitating Interpretable Models
Deep learning models are not inherently inter-
pretable by default, and although techniques such
as LIME (Di Cicco et al., 2019) and SHAP (Lund-
berg and Lee, 2017) somewhat facilitate the inter-
pretation of such models, there have been calls in
recent years for inherently interpretable deep learn-
ing methods (Yang et al., 2021). By leveraging
these complex, non-interpretable models to train
simpler, interpretable models, slingshot learning
can facilitate the creation of models which are both
powerful and interpretable. Of course, the idea
of training smaller models with larger ones is not
new, and techniques such as knowledge distilla-
tion (Gou et al., 2021) and surrogate models (Rey
and Neuhäuser, 2011; Molnar, 2022) are an area of
active research.

6.3.4 Early Stopping
The iterative slingshot learning algorithm allows
users to decide when to stop iterating when they
determine that the model has likely converged. As
discussed previously, this tends to happen relatively
early in the iteration process, and further iterations
tend to yield diminishing returns. Though there
are no guarantees as to whether the model has con-
verged (or is close to its final, converged perfor-
mance) at a given iteration, the experimental data
included in this paper can provide a guide to the
expected future behavior of the model.

6.4 Further Work
Slingshot learning has proven to be useful in these
applied NLP classification problems, but there is
no reason it cannot be applied to other ML do-
mains such as regression, multi-class classification,
or text generation. Further experiments in these
domains, and others, will be an important phase
in determining the scope of the applicability of
slingshot learning. We expect the algorithm would
potentially be useful in a wide variety of scenarios.

Further analysis and testing of the different po-
tential configurations of the slingshot learning al-
gorithm’s hyperparameters will also be critical
to understanding how the values of n, m, and k
can be selected to optimize the algorithm’s per-
formance in different use cases. We also plan to
explore a potential “meta” slingshot learning al-
gorithm, where progressively simpler models are
taught from the model above them in the hierarchy,
to propagate knowledge and avoid “overwhelming”
the LQ model with the power of the HQ model.
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7 Limitations

Our experiments were performed on English NLP
datasets, collated from the internet. The results in
this paper are intended and should be taken, purely
in the context of evaluating the performance of the
slingshot learning algorithm. We have no reason
to believe slingshot learning would not be equally
applicable to other languages, domains, problems,
etc., and have simply chosen these datasets due to
their prevalence and familiarity in the literature.

We conjecture that different (perhaps more com-
plex) language structures might make slingshot
learning more useful. We do not have expertise in
this area - as we discussed in the paper, we consider
it necessary to run further experiments evaluating
the application of slingshot learning in other do-
mains to be necessary. We are hopeful, however,
that the method can be applied to many problems
besides the ones discussed in this paper.

8 Ethics Statement

This paper discusses methods that are intended
to enhance the ability of researchers within do-
mains such as social sciences to more easily apply
state-of-the-art NLP algorithms to their work. This
inherently comes with the risk of bias, and it is
entirely possible that seed datasets based on in-
complete or biased datasets will cause slingshot
learning to serve as an “amplifier”. We encourage
caution when applying machine learning to social
or other “real-world impactful” domains, and dou-
bly so when extrapolating from smaller amounts of
data using machine learning. This paper serves as
an initial evaluation and high-level exploration of
slingshot learning, and we would not recommend
using slingshot learning in situations that could
potentially have negative consequences. Further
exploration is certainly required, both specific to
slingshot learning and regarding the more general
use of machine learning in these scenarios.

On the other hand, methods like slingshot learn-
ing can empower researchers and allow them to
leverage tools that would otherwise be infeasible.
It also has other benefits, which are discussed in
the paper - for example, it facilitates taking a “snap-
shot” of a black box model (such as an API-based
NLP model). It is our intention, and our hope, that
slingshot learning is a useful tool that helps democ-
ratize machine learning within the social sciences
and other applied domains.
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A Datasets

Table 3 includes some summary information about
each of the datasets used in our experiments.

B Extended Results

The raw experimental data can be found in the
supplementary materials, in CSV format. Selected
plots and tables are included here.

Note that the Rotten Tomatoes dataset has less
than 20, 000 elements, and thus all elements were
used in every experiment of sizes 20, 000 and
50, 000 (i.e. with no random sampling). Rows
with less than three experiments (i.e. N < 3) were
dropped due to lack of statistical certainty.

The tables show the maximum δ value achieved
throughout the training process (“Max”), along
with when we first came within 5%, 1%, and 0.1%
of the maximum. The place where the maximum
value occurred is omitted as (due to noise) it is not
a reliable or consistent statistic. The tables also
include the δ values found after completing 10%,
30%, and 50% of the slingshot iterations.
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Dataset Training Set Size Test Set Size

IMDB (Maas et al., 2011) 25,000 25,000
Amazon Polarity (McAuley and Leskovec, 2013) 3,600,000 400,000
Rotten Tomatoes (Pang and Lee, 2005) 8,530 1,066
Yelp Reviews (Zhang et al., 2015) 650,000

Table 3: Description of datasets used in our experiments.

Dataset Mask n=m=k Max ∼5% ∼1% ∼.1% Max δ 10% δ 30% δ 50% N

Amazon 0.9 FALSE 0.48 0.20 0.69 0.99 0.81 0.18 0.35 0.41 3
Amazon 0.99 TRUE 0.55 0.14 0.37 0.78 0.74 0.37 0.43 0.48 17
Amazon 0.99 FALSE 0.46 0.15 0.44 0.94 0.75 0.16 0.31 0.35 11
Amazon 0.999 TRUE 0.23 0.08 0.21 0.03 0.68 0.17 0.20 0.22 3
Amazon 0.999 FALSE 0.42 0.08 0.45 0.58 0.80 0.24 0.35 0.37 4
IMDB 0.9 FALSE 0.67 0.17 0.65 0.93 0.95 0.47 0.51 0.58 3
IMDB 0.99 TRUE 0.49 0.43 0.75 0.98 0.99 0.19 0.31 0.39 11
IMDB 0.99 FALSE 0.33 0.28 0.49 0.88 0.74 -0.03 0.07 0.18 8
R. Tom. 0.9 TRUE 0.51 0.43 0.83 1.00 0.93 0.24 0.33 0.43 16
R. Tom. 0.9 FALSE 0.57 0.34 0.72 0.94 0.92 0.23 0.34 0.45 9
R. Tom. 0.99 TRUE 0.67 0.40 0.86 0.91 0.95 0.36 0.52 0.57 5
Yelp 0.9 TRUE 0.23 0.41 0.86 1.00 1.00 0.04 0.10 0.15 18
Yelp 0.9 FALSE 0.22 0.34 0.84 0.98 0.99 0.03 0.08 0.13 14
Yelp 0.99 TRUE 0.21 0.26 0.71 1.00 0.99 0.04 0.09 0.14 19
Yelp 0.99 FALSE 0.24 0.31 0.77 0.98 0.99 0.03 0.09 0.14 17

Table 4: Experimental results, n = 1024, combined data from sizes 20, 000 and 50, 000.

Dataset Mask n=m=k Max ∼5% ∼1% ∼.1% Max δ 10% δ 30% δ 50% N

Amazon 0.99 TRUE 0.475 0.096 0.295 0.682 0.683 0.331 0.390 0.421 13
Amazon 0.999 TRUE 0.521 0.198 0.753 0.939 0.946 0.333 0.431 0.465 3
IMDB 0.99 TRUE 0.435 0.325 0.568 0.938 0.760 -0.008 0.210 0.294 13
R. Tom. 0.9 TRUE 0.527 0.349 0.794 0.963 0.917 0.170 0.305 0.378 11
Yelp 0.9 TRUE 0.215 0.352 0.832 0.988 0.994 0.034 0.085 0.132 17
Yelp 0.99 TRUE 0.250 0.289 0.766 0.992 0.938 0.039 0.107 0.158 18

Table 5: Experimental results, n = 128, combined data from sizes 20, 000 and 50, 000.
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Figure 7: Results for datasets of size 20, 000 (or less for Rotten Tomatoes).
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Figure 8: Results for datasets of size 50, 000 (or less for Rotten Tomatoes).
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