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Abstract

Many adversarial attacks in NLP perturb in-
puts to produce visually similar strings (‘ergo’
→ ‘εrgo’) which are legible to humans but de-
grade model performance. Although preserv-
ing legibility is a necessary condition for text
perturbation, little work has been done to sys-
tematically characterize it; instead, legibility is
typically loosely enforced via intuitions around
the nature and extent of perturbations. Par-
ticularly, it is unclear to what extent can in-
puts be perturbed while preserving legibility,
or how to quantify the legibility of a perturbed
string. In this work, we address this gap by
learning models that predict the legibility of a
perturbed string, and rank candidate perturba-
tions based on their legibility. To do so, we
collect and release LEGIT, a human-annotated
dataset comprising the legibility of visually per-
turbed text. Using this dataset, we build both
text- and vision-based models which achieve up
to 0.91 F1 score in predicting whether an input
is legible, and an accuracy of 0.86 in predict-
ing which of two given perturbations is more
legible. Additionally, we discover that legible
perturbations from the LEGIT dataset are more
effective at lowering the performance of NLP
models than best-known attack strategies, sug-
gesting that current models may be vulnerable
to a broad range of perturbations beyond what
is captured by existing visual attacks.1

1 Introduction

To manage the increasing demand for content
moderation—e.g., detecting spam or toxic/hateful
content on online platforms—organizations have
turned to machine learning solutions. In response,
users often resort to manipulating text to evade de-
tection, removal, or search. For instance, hateful
comments often comprise of visually similar char-
acters to avoid automatic filtering (Le et al., 2022).

∗ Work done while at Carnegie Mellon University.
1Data, code, and models are available at https://github.

com/dvsth/learning-legibility-2023.
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Figure 1: Visual attacks in the wild. Examples of Twitter
users manipulating their tweets to evade the platform’s
‘sensitive content’ detection algorithms.

Since people read text visually, the manipulated
content can still be easily understood and harm its
target audience. These attacks started with sim-
ple ASCII substitutions like he11o (colloquially
referred to as “leetspeak"), but have evolved into
complex manipulations utilizing characters from
different Unicode scripts (Flamand, 2008; Ray-
mond, 1996). Figure 1 shows two such examples.

Unlike computer vision where there is an estab-
lished notion of what constitutes an imperceptible
perturbation (typically defined via the ℓ∞ distance),
most perturbations in text are perceptible. However,
as long as the perceptible manipulations remain
legible, the message could have its intended effect.
The legibility of a text is determined by whether
or not a literate person can decipher the altered
words. The degree to which a piece of text can be
perturbed, while maintaining legibility, depends on
a multitude of factors such as its context, similarity
to the original content, the positions of the perturba-
tions, the background knowledge of the reader, etc.
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However, many adversarial attacks enforce legibil-
ity only loosely based on intuitions about the nature
of the attacks, e.g., that changing 1-2 characters in
a sentence does not impact its legibility (Belinkov
and Bisk, 2018; Pruthi et al., 2019).

In this work, we instead propose to learn the leg-
ibility of visual perturbations, by developing text-
and vision-based models trained on legibility an-
notations from human subjects. The current focus
of research on adversarial attacks is to find mini-
mal perturbations required to break NLP models,
and several recent findings suggest that models re-
main brittle to such perturbations (Eger et al., 2019;
Dionysiou and Athanasopoulos, 2021; Pruthi et al.,
2019). In contrast, our work attempts to uncover
the space of all legible perturbations that we need
to defend against. Towards our goal of character-
izing the limits of legibility of perturbed texts, we
make the following contributions:

First, we crowdsource human judgments about
the legibility of different perturbations: specifically,
we show annotators two perturbed versions of the
same word and ask them which one, if any, they
find more legible. Our perturbation strategy con-
siders substituting letters in the word with Unicode
characters drawn from a large subset of the Basic
Multilingual Plane covering over 100 scripts from
around the world.2 In total, we collect 30, 320 an-
notations, one each for 14, 643 and 3, 332 instances
in the training and validation sets, respectively, and
three each for the 4, 113 instances in the test set.
Using these preferences, we define a pairwise leg-
ibility ranking task as well as a binary legibility
classification task. While the former allows mak-
ing inferences about which candidate perturbation
is most legible, the latter allows filtering out illeg-
ible perturbations altogether. For each task, we
identify a hard subset of the collected data, which
includes fine-grained comparisons expected to be
more challenging for annotators and models alike.

Second, we use the labeled data to train models
which predict the degree of legibility of a perturbed
text. Specifically, we fine-tune pretrained vision
(TrOCR; Li et al., 2021) and text-based (ByT5;
Xue et al., 2022) models on the ranking and clas-
sification tasks. We find that TrOCR trained in a
multi-task setup on both tasks achieves the best
performance with 0.91 F1 score on the classifica-
tion task and 0.86 accuracy on the ranking task.

2We consider 12, 287 Unicode characters from codepoints
0x0000 to 0x2fff.

Interestingly, we find that the purely text-based
ByT5 also achieves competitive performance on
the classification task with 0.89 F1, suggesting that
its pretrained byte representations encode aspects
of visual similarity between Unicode characters.
Further, we find that models have high F1 scores on
the subset of data with high inter-annotator agree-
ment: TrOCR achieves a 0.96 F1 score on test
cases where all three annotators agree. We also
note that legibility is a complex phenomenon—it
doesn’t correlate trivially with the distance of the
perturbation from the original text or the number
of letters substituted.3

Third, we consider a word-level perturbation
recovery task, which involves inferring the origi-
nal word from its perturbed version. We evaluate
GPT-3 (Brown et al., 2020) on this task, compar-
ing its performance on legible perturbations from
our perturbation strategy versus those generated
by VIPER, a VIsual PERturber method proposed
by Eger et al. (2019). We find that GPT-3 has a
lower accuracy in recovering perturbations from
our perturbation strategy, despite VIPER providing
no guarantees on legibility. Additionally, we apply
our findings to the important task of toxicity classi-
fication. We perturb a subset of the dataset using
our perturbation strategy and find that it degrades
the SOTA Detoxify (Hanu and Unitary team, 2020)
classifier more than existing VIPER attacks. These
findings demonstrate that existing attacks do not
comprehensively cover the space of legible pertur-
bations that can degrade model performance.

2 Related Work

Adversarial Attacks for NLP. A challenge in
defining adversarial examples for text lies in charac-
terizing the space of equivalent inputs to a training
or test example which preserves the target label.
While early work focused on adding distracting
text to fool question answering systems (Jia and
Liang, 2017), recent work utilizes more general
strategies applicable to many tasks (Li et al., 2019;
Morris et al., 2020; Jin et al., 2020). Many of
these can be categorized as word-level synonym
substitutions (Alzantot et al., 2018; Garg and Ra-
makrishnan, 2020; Li et al., 2020), or character-
level legibility-preserving substitutions (Ebrahimi
et al., 2018; Pruthi et al., 2019). Most attacks in
either category are perceptible in that readers of

3A logistic regression model using these as features only
agrees 56.7% of the time with authors’ legibility assessment.
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the text can identify that it has been transformed,
except for one notable exception where invisible
characters and near-identical characters are used
to render strings indistinguishable from the origi-
nal (Boucher et al., 2022). Attacks based on visual
similarity of characters have also been previously
considered by Eger et al. (2019) who propose three
attack strategies: ICES (based on rendered glyph
similarity), DCES (based on bag-of-words textual
similarity of Unicode codepoint descriptions), and
ECES (based on adding diacritics to base charac-
ters). For ICES, they compute similarity by com-
paring raw pixel values of the renderings, which
we improve upon here by utilizing a pretrained Op-
tical Character Recognition (OCR) model. This
produces a ‘smarter’ set of visual neighbors: e.g.,
mirror images of letters, scaled versions of letters
(like O vs ◦) etc., which go beyond simple accents
or modifiers. We also report in-depth comparisons
between our perturbation strategy and the ECES
and DCES approaches in section 5.

Legibility of Perturbed Inputs. Among
character-level perturbation attacks, legibility has
only been loosely enforced based on intuitions
about the nature and the degree of manipulations.
This often results in conservative substitutions
which only represent a lower bound on the space of
all legible perturbations. For instance, Pruthi et al.,
2019 limit the attack to only 1-2 character changes
(e.g., substitutions, deletions or additions) per input
example; similarly, Ebrahimi et al., 2018 propose
an attack strategy which specifically minimizes
the number of character manipulations required in
order to render the output legible. Attacks based
on visual similarity usually constrain their attack
surface to inputs which are above a threshold
similarity (in pixel or embedding space) to the
original input (Eger et al., 2019; Eger and Benz,
2020; Dionysiou and Athanasopoulos, 2021). In
this work, by contrast, we directly address the
question of what constitutes legible perturbations,
with the aim of learning a grounded definition of
legibility rather than assuming one a priori.

3 Legibility Tests

We adopt a supervised learning approach for de-
termining the legibility of perturbed texts. In this
section, we describe the process used for collecting
the LEGIT dataset (which stands for LEGIbility
Tests) and in the next section we describe the mod-
eling techniques used for predicting the legibility

score and ranking different candidate perturbations.
Our setting involves one-to-one character sub-

stitutions at the word level, i.e., given a word (and
no other context), we consider perturbations where
each letter in the word may be replaced by a Uni-
code codepoint in 0x0000-0x2fff. Moreover, the
substitutions are mutually independent and do not
depend on the context of the other letters.

3.1 Perturbation Process

To generate perturbations for the data labeling
task, we replace a subset of characters in a word
with visually similar counterparts. Specifically,
given a word w, we first randomly select a frac-
tion n ∈ [0, 1] of characters in that word to corrupt.
Then, each of the chosen characters is replaced by
its nearest neighbor at rank k in the embedding
space generated by a model M which encodes
characters into visual features. Hence, there are
three parameters involved in the perturbation pro-
cess ϕ = {n, k,M}.

We experiment with several models to encode
characters into visual features, all based on render-
ings of the Unicode codepoints into images. To
keep visual representations consistent across mod-
els, we use GNU Unifont, rendering each glyph
separately in 144px font size with black color, on a
224× 224px white background.4 Given the render-
ing, we compare 5 models to encode the features.
Three are transformer-based: TROCR (‘base’) (Li
et al., 2021), CLIP (‘vit-base-patch32’) (Radford
et al., 2021), and BEIT (‘base-patch16-224-pt22k-
ft22k’). One employs convolutional as well as
transformer networks: DETR (Carion et al., 2020).
The fifth model is a simple baseline: IMGDOT,
which uses the (flattened) bitmap of a rendered
character as its embedding vector. In preliminary
experiments, 400 perturbed pairs were generated,
with each pair using the same settings for k, n
but using different models. The authors then in-
dependently ranked perturbations each pair based
on their legibility. DETR- and BEIT-generated
perturbations were ranked above other models’ per-
turbations 23% and 41% of the time, respectively,
whereas CLIP and IMGDOT perturbations were
preferred over others in 66% and 73% of cases.
Hence, DETR and BEIT were excluded from fur-
ther experiments. TROCR was included later, after
verifying that it was preferred ≈ 50% of the time
against both CLIP and IMGDOT.

4Glyphs were rendered by the Pillow library (Clark, 2015).

3262



For each of the chosen models, we compute
the pairwise cosine distances between the model’s
embedding vectors for all Unicode codepoints
in the range 0x0000–0x2fff (excluding invalid or
empty codepoints), and use these distances to find
the nearest-neighbors for each character. Then,
to perturb a given word w using the parameters
ϕ = {k, n,M}, we first pick ⌊n|w|⌋ characters
uniformly at random to replace. For each character,
we fetch its k-th nearest neighbor from the model
M. Finally, we apply these substitutions to the
target word to obtain the perturbed word.

3.2 Pairwise Comparisons

We crowdsource legibility annotations for the per-
turbed words using Amazon’s Mechanical Turk.
We collect annotations on both absolute legibil-
ity as well as relative preference between two dif-
ferently perturbed inputs. Since annotators tend
to produce higher quality annotations when com-
paring items rather than assigning absolute values
(Callison-Burch et al., 2007; Liang et al., 2020), we
design an annotation interface based on pairwise
comparisons of two perturbed versions of the same
word (Appendix A). Specifically, annotators see
perturbations w1, w2 side-by-side, with the original
word w hidden. They are asked to indicate which
perturbation they find more legible by selecting
exactly one of these four labels:

L1: w1 is preferred

L2: w2 is preferred

BL: both w1, w2 are equally legible

NL: neither w1 nor w2 is legible

L1 and L2 capture not only relative preferences
between the two perturbations (used for the ranking
task), but also indicate that the preferred perturba-
tion is legible. However, these labels do not give
us any information about the non-preferred pertur-
bation. On the other hand, the BL (Both Legible)
and NL (Neither Legible) options do not give us
a ranking between the two words, but inform us
about the legibility (or illegibility) of both words.
In the next section, we use these labels to derive
datasets for both a pairwise ranking task and a bi-
nary classification task.

We generate the data for annotation from En-
glish words consisting of the top 10, 000 frequent
words (as per Kaufman (2012)) in the Trillion

Word Corpus (Brants and Franz, 2006). We fil-
ter this vocabulary to remove words with lengths
less than 4 or greater than 14, ending up with 7600
words. These words are randomly split into the
train (65%), validation (15%), and test (20%) sets;
all future perturbation pairs (w1, w2) generated for
word w are added to the corresponding set, and
the same sets are used for all experiments. To per-
turb a word w into the pair w1, w2 a model M is
picked at random from {TROCR, CLIP, IMGDOT

} (the three best models from our initial perturba-
tion analysis). We sample k ∼ N (µk, σ

2
k) and

similarly for n, applying the appropriate bounds to
keep k > 0 and n ∈ [0, 1]. The initial values are
µk = 25, σ2

k = 10, µn = 0.5, σ2
n = 0.2.

3.3 Adaptive Annotations

The space of all possible perturbations of a word
is vast, and sampling the parameters ϕ based on
the priors above is unlikely to yield difficult pertur-
bations which lie at the boundary of legibility. In
order to identify such perturbations, we collect data
over multiple rounds using an adaptive process for
generating the pairs. In the first round, the pairs
are generated as described above and annotated by
the crowd-workers. In the following rounds, pairs
are generated taking into account the last round of
annotations. Specifically, the ϕ1, ϕ2 for each suc-
cessive round are chosen to make the next round
of labeling harder for annotators. This is accom-
plished by manipulating the Gaussian used to gener-
ate k, n, i.e. by shifting µ1, µ2 to be closer to each
other and reducing variance. This approach gener-
ates perturbations which elicit more nuanced com-
parisons from annotators, allowing us to capture
fine-grained legibility preferences in the dataset.

Inter-annotator Agreement. Three waves of an-
notations were collected using adaptive pair gener-
ation. To establish high quality and confidence in
the test set labels, three annotations were collected
for each pair of perturbations in the test set. Pairs
where all annotators disagreed were removed from
the test set. For 49.1% of pairs, all 3 annotators
agree on the same label, 43.6% of pairs have agree-
ment between 2 out of the 3 annotators, and only
7.3% of pairs have no agreement among annota-
tors. Hence, even with 4 labels to choose from, for
92.7% of (w1, w2) pairs, at least two out of three
annotators chose the same label. This suggests that
the task is well-defined and has low variance.
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# pairs # distinct classification ranking
(w1, w2) (w) examples examples

Train 14622 4940 20217 9027
Val 3326 1140 4639 2013
Test 3712 1520 4774 2650

Total 21660 7600 29630 13690

Table 1: LEGIT dataset statistics. For each word, there
exist multiple perturbed pairs, generated through three
rounds of adaptive annotations.

Annotator Details. We recruit 150 annotators,
all of whom had over a 95% acceptance rate for
previous work done on the platform, as well as a
history of over 1, 000 completed tasks.5 Annotators
are given occasional quality checks, wherein they
annotate pairs drawn from a gold dataset labeled by
the authors; annotators with less than 70% accuracy
on the gold data were removed from the study and
their annotations discarded from the final dataset.
Annotators are given batches of 20 (w1, w2) pairs
at a time; typically taking between 30−45 seconds
to annotate. The average compensation per batch
is $0.12. Further details of the annotation interface
and instructions are available in Appendix A.

Hard Subsets. We identify challenging subsets
of the collected data for the ranking and clas-
sification tasks. For ranking, the chosen sub-
set (N = 1052) contains pairs (w1, w2) where
(n1 − n2)

2

n1n2
< 0.1, i.e., both n’s are close to each

other, so it is hard in the sense that the perturbations
have similar parameters ϕ but varying degrees of
legibility—they cannot be ranked just by compar-
ing metadata. For the classification task, the chosen
subset (N = 2626) consists of all perturbations wi

with ni > 0.4, making the task more challenging
by excluding lightly-perturbed words which are
easier to classify.

4 Tasks and Models

In this section, we start by introducing two tasks
for characterizing the legibility of perturbed texts,
followed by a number of models for solving them.

4.1 Tasks

From the labels collected in the previous section,
we derive data for the two tasks: ranking and clas-
sification. The tasks assume that the original word

5686 annotators were excluded due to failing their first
quality check. Many attempts were observed to be spam.

w is known, as we base our setup considering an
attacker who is trying to find the best perturbation.

Ranking Task. Given a pair (w1, w2) of pertur-
bations and the original word w as input, rank the
perturbations in order of legibility. For this task,
we only consider the subset of data labeled with
strict rankings—i.e., excluding pairs labeled BL
(Both Legible) and NL (Neither Legible). As the
data is balanced, we only report accuracy as the
main metric for this task.

Classification Task. Given a single perturbation
wi and the original word w, decide whether the per-
turbation is legible. While annotators performed
pairwise comparison between (w1, w2), we can in-
fer the binary legibility labels for wi from pairwise
rankings as follows: for labels BL and NL, we can
make the obvious inference of legible and illegible
for both wi. For labels Li, we can again infer that
wi is legible, but cannot say anything about wj ̸=i;
all such wj with unknown legibility are excluded
from the classification task dataset. Since there are
more legible than illegible instances in the data, we
report both accuracy and F1 scores on this task.

4.2 Baselines

Majority Class. This baseline always predicts
the majority class from the training set for every
test example. For the ranking task, it always pre-
dicts w2 as the preferred perturbation (resulting in
an accuracy of 0.5), and for classification, the ma-
jority class is ‘legible’ (yielding 0.677 accuracy).

Logistic Regression using ϕ. Note that in an
attack setting, the attacker would know the pertur-
bation parameters ϕ exactly and may be interested
in predicting the legibility of their perturbation us-
ing these parameters. Hence, we perform logistic
regression directly on the attack parameters (n, k)
to predict the label. Being a simple metadata-only
baseline, this model does not take into account the
characters that were perturbed or their position.

4.3 Text-based Models

ByT5. Legibility, as defined in this paper, is
a visual property. However, we might expect
pretrained language representations (e.g., those
learned by large-scale language models) to also
encode visual similarity between characters since
the web-corpora used for pretraining might include
similar-looking characters in the same contexts
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Figure 2: Comparing ByT5 and TrOCR training setup. ByT5: Both the perturbed and original words are given as
one input to the model. TROCR: Both w1, w2 are fed sequentially into the same TrOCR-based model, and the two
resulting scalar outputs are used to compute the loss. For each perturbation, the string “wi w" is rendered and used
as input for the model.

(e.g., ‘0’ instead of ‘O’). To test this, we exper-
iment with ByT5 (Xue et al., 2022), a multilingual
encoder-decoder language model which tokenizes
inputs into byte sequences. Byte-level tokenization
ensures that none of the perturbations in LEGIT
are out-of-vocabulary, and multilingual pretraining
ensures that the model has seen a large subset of
Unicode. We finetune the pretrained ByT5-models
(‘small’ and ‘base’) to predict the binary labels
for both classification and ranking in a text-in text-
out setting. For ranking, the inputs are formatted
as: “original: < w > word0: < w0 > word1:
< w1 >”, and the output is “0” or “1” depending
on which word is more legible. For classification,
the inputs are formatted as: “original: < w >
corrupted: < wi > ”, and the output is “0” or
“1” depending on whether the corruption is illegi-
ble or legible. We train two separate models start-
ing from the pretrained ByT5 weights using the
cross-entropy loss over the target byte-sequence
and AdamW optimizer (Loshchilov and Hutter,
2019) and perform early stopping using the val-
idation set. Figure 2 outlines the model schematic
with sample inputs and outputs.

4.4 Vision-based Models

Since we are concerned with finding representation
spaces for visually similar characters, vision-based

models are a natural choice for the task. We con-
sider both unsupervised models which rely on pixel-
based or embedding-based similarities, as well as
supervised models based on OCR, which we train
on the LEGIT data.

IMGDOT. This unsupervised approach compares
the corresponding characters in w and wi based on
the cosine distance between their pixel renderings.
For the ranking task, this model selects the per-
turbation whose average cosine distance with the
uncorrupted word is lower. For classification, we
tune a threshold similarity parameter on the train-
ing set, above which the model predicts ‘legible’.

TROCR-Embeddings. This approach is identi-
cal to IMGDOT, except that we use the pretrained
character embeddings obtained by passing the ren-
dered images as input to the TROCR model. The
embedding vector for each character is obtained by
averaging the last hidden state from the encoder
output (bypassing the pooler). Note that the accu-
racy of these unsupervised baselines gives us an
idea of how well the corresponding representations
align with human notions of legibility.

TROCR. Finally, we consider finetuning
TROCR on the LEGIT data. We only use the
encoder part of the TROCR base model and
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connect it to a linear head. This linear head has
two fully connected layers mapping inputs of
size 768 (which is equal to the dimension of the
encoder output) to a scalar output which represents
the legibility score of the perturbed input. We use
ReLU activations between the linear layers and
apply dropout. The model takes variable-sized
images as input; this is created by rendering a pair
(wi, w) into a single image by concatenating both
strings along the horizontal axis (see Figure 2).

For the classification task, the output score from
the model is used directly for predicting the label.
Given a pair (w,wi), let si denote the scalar output
from the model and let yi ∈ {0, 1} denote the
legibility label (where 1 denotes that wi is legible).
Then the classification loss is given by:

Lclassify-i = −yi log σ(si)

− (1− yi) log [1− σ(si)] (1)

where σ is the sigmoid function. We apply the same
loss function to both perturbations w1 and w2. We
denote this classification model as TROCR-C.

For the ranking task, we use the same model but
apply it separately to the pairs (w,w1) and (w,w2)
to obtain the scores s1 and s2. The parameters
across the two applications of the model are shared
in a Siamese network setup (Koch et al., 2015).
Given these two scores, and the label y ∈ {0, 1}
(where 0 denotes that w1 is more legible), we define
the ranking loss as:

Lcontrastive = −y log σ(s1 − s2)

− (1− y) log [1− σ(s1 − s2)]
(2)

The above loss encourages s1 to be higher than s2
when y = 0 and vice versa. A similar loss has been
used to train summarization models from pairwise
human preferences (Stiennon et al., 2020). We
denote this ranking model as TROCR-R.

The Siamese setup for the ranking task is limited
in the sense that it cannot directly compare the
two perturbations to decide which is more legible.
However, our goal is to train the model to produce
a calibrated legibility score given only a single
perturbation as the input. Further, the Siamese
network allows us to train the model on both the
classification and ranking tasks together in a multi-
task fashion:

L = Lclassify-1 + Lclassify-2 + Lcontrastive (3)

The loss terms for each training example are
masked based on the label: the ranking loss is
masked out if the label is “equally legible" or “both
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Figure 3: Legibility scores for LEGIT-generated pertur-
bations of lexicographic and zygote from the TROCR-
MT model. Neither word was seen during training.

unclear", whereas the individual classify-i loss is
masked out if the inferred binary legibility of pertur-
bation wi is indeterminate (e.g. for label L1, binary
legibility of w2 is unknown). Together, these losses
ensure that the legibility score si is thresholded at 0,
above which the perturbations are legible, and more
legible inputs receive a higher score. We denote
the model using combined loss as TROCR-MT.

5 Results

Table 2 shows the performance of all models intro-
duced on both the classification and ranking tasks.

Classification Task. For the classification task,
we find that baselines that just use the metadata
perform poorly. The Majority Class baseline ob-
tains an F1 score of 0.677, and the Logistic Re-
gression model using ϕ parameters yields an F1
score of 0.665, implying that legibility is not a sim-
ple function of the perturbation parameters k, n.
The unsupervised vision-based models, IMGDOT

and TROCR embeddings, vastly improve upon the
simple baselines, with the TROCR embeddings ob-
taining an F1 score 0.868 and IMGDOT yielding an
F1 score of 0.845. Hence, these embeddings align
reasonably well with human perceptions of legibil-
ity. The text-based ByT5 models improve signifi-
cantly over the baselines and unsupervised vision-
based models. They are comparable to the perfor-
mance of the single-task objective TROCR-C, but
worse than the TROCR-MT. This suggests that the
ByT5 models might have encountered some visual
perturbations during pretraining. Comparing the
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Model Classification Ranking

Accuracy Precision Recall F1 Std/Hard Accuracy Std/Hard

Baselines Majority Class .512 .512 1.000 .677/.000 .500/.502
Log. Regression .680 .659 .671 .665/.256 .744/.642

Vision-based IMGDOT .788 .861 .828 .845/.583 .790/.652
TrOCR embeds .825 .868 .883 .868/.654 .781/.677
TrOCR-C .840 .881 .891 .886/ – –
TrOCR-R – – – – .835/ –
TrOCR-MT .868 .914 .895 .905/.726 .858/.757

Text-based ByT5-small .844 .872 .909 .890/ – .762/ –
ByT5-base .842 .868 .912 .889/ – .769/ –

Table 2: Results on the standard test set. The TrOCR-MT model, trained in the multi-task setting, outperforms all
other models for F1 score on both tasks. The trained models also outperform the baselines on both tasks.

single-task TROCR-C model with the multi-task
TROCR-MT, we find that the presence of the addi-
tional ranking loss term during training improves
model performance on the classification task from
0.886 to 0.905. On test examples where all 3 anno-
tators agree, TROCR performs even better, attain-
ing an F1 score of 0.960, compared to a score of
0.850 on examples where only 2 annotators agree.
As further evidence of the model’s alignment with
annotators, we find that the model confidence is
directly correlated with annotator agreement (cf.
Figure 4) as measured by Fleiss’ κ (Fleiss, 1971).
Furthermore, consider Figure 3, which shows leg-
ibility scores obtained from TROCR-MT for two
words picked at random which are not part of the
training set. Qualitatively, we see that legibility
scores from the TROCR-MT model aligns with the
human judgements of legibility for these words.

Ranking Task. The TROCR-MT model per-
forms better relative to other models, resulting in a
6.8% absolute accuracy improvement. Akin to the
classification task, we find the TROCR-MT model
outperforms its single-task counterpart TROCR-
R. Thus, training with a multi-task objective im-
proves performance on both ranking and classi-
fication tasks when compared to single-objective
models. Differently from classification, we find
that ByT5 is significantly worse than the vision-
based models on ranking, suggesting that language
model pretraining is effective at separating legible
from illegible perturbations, but not at encoding
the degree of legibility of legible perturbations.

Jigsaw Challenge. Next, we check whether per-
turbations generated by our attack model (§ 3.1)
and filtered to ensure legibility using TROCR-
MT are effective at degrading the performance
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Figure 4: Left: Detoxify model performance on pertur-
bations generated by different attack methods on a ran-
dom subset (N = 2000) of the Jigsaw Toxic Comment
Classification dataset. Model performance degrades
most on our perturbations. Right: Model confidence
on legibility is aligned with annotator agreement. Legi-
bility scores (s0, s1) were obtained using TROCR-MT
for each perturbed pair (w0, w1) in the test set. Pairs
were grouped by the score difference ∆s = |s0 − s1|
and Fleiss’ κ was computed for each group.

of NLP models. We employ the Jigsaw Toxic
Comment Classification Dataset, which is a multil-
abel classification dataset consisting of Wikipedia
comments and human-annotated binary labels for
6 toxicity categories. In Figure 4 (Left), we
compare LEGIT and VIPER-DCES strategies in
a real-world scenario by perturbing the Jigsaw
dataset with each strategy and reporting how
much these perturbations degrade the performance
of Detoxify-original (Hanu and Unitary team,
2020), a BERT-based model which has state-of-the-
art performance on the Jigsaw dataset. We show
that LEGIT produces greater degradation at lower
n, and produces more legible perturbations even at
higher n (due to TROCR-MT filtering). In com-
parison, we find that DCES perturbations become
very hard to read at higher n, diluting the signifi-
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cance of the DCES results at high n. Appendix D
provides a qualitative analysis of the legibility of
DCES perturbations compared to those generated
using our LEGIT method.

VIPER-ECES causes a negligible degradation
on model performance, which is due to the fact that
the BERT tokenizer “corrects" almost all of the sim-
ple diacritic-based ECES character substitutions.
This means that the classification model receives
mostly unperturbed input save for some isolated
UNKs. For example, the perturbed input Ťĥâňǩ
ŷôǔ is tokenized back into Thank you. Taken to-
gether, these results demonstrate that LEGIT ex-
ploits a more efficient legibility space, finding char-
acter substitutions which have a greater impact on
model performance while preserving legibility.

Perturbing GPT-3. The strong performance of
ByT5 at separating legible from illegible inputs sug-
gests that language models might be somewhat ro-
bust to such perturbations. To examine this, we ex-
periment with GPT-3 (text-davinci-002 check-
point) (Brown et al., 2020) using a perturbation
recovery task, wherein we prompt the model to de-
code perturbed words back to their original strings.
We sample a subset of 1, 000 (w,wi) pairs from
LEGIT which have a label of legible. These per-
turbations are fed to the GPT-3 model in batches
of 10, along with an instructional prompt (see Ap-
pendix E) and 4 examples; recovered words are
received as a completion to the input prompt. In ad-
dition, we also perturb the same 1000 words using
VIPER-DCES and report the accuracy of GPT-3
at reconstructing them. We observe that GPT-3 of-
ten returns a word with a short edit distance to the
original word, and hence to capture this in our eval-
uation, we apply the Porter stemmer from NLTK
(Loper and Bird, 2002) to both the original words
and predicted reconstructions, and then measure
how often their stemmed forms are the same. We
repeat this experiment 3 times, randomly sampling
the 4 examples in the prompt each time. Figure 5
shows the GPT-3 accuracy at different fractions
of corrupted characters (n = {0.3, 0.7, 1.0}). As
expected, the accuracy goes down as n increases,
but we find that GPT-3 performs worse on LEGIT
perturbations. This demonstrates that while state-
of-the-art language models are mildly robust to the
narrower range of perturbations considered in ex-
isting visual attacks, they degrade significantly on
inputs sampled from LEGIT which are marked by
humans as legible. This result underscores the im-
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Figure 5: LEGIT perturbations sampled at low n degrade
accuracy at levels comparable to the n = 1 VIPER con-
figuration. Error bars indicate 95% confidence interval.

portance of considering the entire space of legible
perturbations when evaluating model robustness.

6 Conclusion

We set out to characterize the limits of legibility of
visual perturbations. To do so, we first collected
and released a new dataset, LEGIT, comprising leg-
ibility preferences of human subjects. Using this
dataset, we framed a binary legible-or-not classi-
fication task, and a ranking task to rank candidate
perturbations. For these tasks, we explored several
text- and vision-based models, and found that our
models obtain a high F1 score of 0.91 for the classi-
fication task and an accuracy of 0.86 for the ranking
task. Perturbations generated using the same attack
method as used for constructing LEGIT lead to sig-
nificant degradation on the Jigsaw Challenge task
and are not recovered by GPT-3 accurately, despite
being filtered for legibility. We believe this work
opens avenues for research on legibility-driven cer-
tified robustness to visual attacks in NLP.

Limitations

At the outset, we note that while our legibility-
scoring models are a step forward towards defend-
ing against visual attacks, they should not be seen
as perfect. Defending against all of the attacks
which our models find legible might still leave
room for legible attacks missed by our system.

Moreover, we note that the perturbation pro-
cedure outlined here only generates substitution-
based perturbations. Whereas, characters may also
be deleted, added, or swapped, and multiple adja-
cent characters may be substituted with visually
similar counterparts (see Figure 1). Future work
may explore broader classes of perturbations.
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When constructing the dataset, we only chose
words with a length of at least 4 letters, excluding
many common 3-letter words. This is because for
3-letter words, there is a high likelihood that a bad
perturbation may be mistakenly recognized as a
good perturbation by virtue of being in-vocabulary.
For example, “ban” is a bad perturbation of “man”,
but for an annotator who sees it without knowing
the original word and in absence of any sentence-
level context, it seems like a perfectly good pertur-
bation, when in fact it obscures the meaning of the
original word. This is a limitation of the experi-
mental setup that can lead to bad annotations, and
to mitigate it we chose a higher minimum word
length as longer words have fewer such collisions.

Further, we study word-level perturbations in
isolation without any surrounding context, whereas
in practice, readers often can decipher words based
on the context. In general, the legibility of a text
depends on the context around it—for example,
even if a word is deleted from a sentence it is of-
ten possible to reconstruct it. The data we collect
here, however, measures the legibility of individual
words without any context, in order to simplify the
generation and annotation process. As a result, the
legibility estimated using this data should be con-
sidered as lower bound of the legibility in any given
context. This was a deliberate choice as we wanted
to ensure that whatever we ascertain as legible is
legible in all contexts.

Lastly, the models we develop in our work are
of relatively moderate size (334− 584 million pa-
rameters) and take only unimodal input (i.e. pixels
for TROCR models and Unicode bytes for ByT5).
and future work may be able to improve the per-
formance by using larger models which accept
multimodal input (e.g. both pixels and Unicode
bytes simultaneously) and learn joint representa-
tions across these modalities.

Ethical Considerations

The word list comprising our dataset was filtered
to remove swear words, slurs etc. in order to avoid
exposing annotators to potentially harmful content.
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A mTurk Annotation Inferface

The web-based UI used by mTurk Annotators is
shown in Figure 6, with the instructions being visi-
ble throughout the duration of the task. Note that
the perturbed words w1, w2 are rendered in GNU
Unifont, which is the same font that words are ren-
dered in for computing visual similarity (cf. §Leg-
ibility Tests, Perturbation Process). This ensures
that both annotators and visual similarity models
see pixel-for-pixel identical perturbations, control-
ling for the fact that different fonts render the same
character differently.

The interface is optimized for clarity and label-
ing speed, with a focus on eliminating unnecessary
UI elements and minimizing clicks. Labeling each
pair w1, w2 with one label L ∈ {L1, L2, BL,NL}
takes exactly one click. Annotators choose L1 by
clicking on w1 (the left word), and similarly by
clicking on w2 (the right word) for w2. BL is se-
lected using the “equally legible" button, whereas
NL is chosen by clicking on “both unclear."

Immediately after a choice is made, the UI up-
dates and the next pair in the batch is shown (there
is no option to go back and edit the chosen la-
bel). Annotators who attempt to cheat on the task
by “speeding through" (i.e. clicking randomly or
spamming the same choice) end up failing the oc-
casionally administered quality checks and are sub-
sequently disinvited from the study.

B Use of OCR Models

Boucher et al. (2022) propose using Optical Charac-
ter Recognition (OCR) models to preprocess input
for text-based language models. Rendering input
text and passing it through an OCR before giving
it to the language model filters certain kinds of
misleading Unicode characters (e.g. invisible con-
trol sequences or near-identical Confusables (Davis
and Suignard, 2021)) from the text. However, when
used for legible but visually distinct perturbations,
off-the-shelf OCR models run into two problems.

Firstly, both mono- and multi-lingual OCR mod-
els will recognize characters from learned scripts
at face value, instead of recognizing their intended
use as visually similar substitutions. For example,

TROCR (Li et al., 2021), when given an image of
the string ‘Mex!(0’, decodes it into ‘Mex!(0’ (i.e.
the same string), completely ignoring its intended
meaning (Mexico). Secondly, since OCR models
are only trained on semantically meaningful inputs,
they do not learn good priors to differentiate non-
sense inputs from highly perturbed inputs.

We use two OCR-capable models on the ranking
and classification tasks: TROCR, which is explic-
itly trained on an OCR dataset, as well as CLIP,
which is trained on a general corpus containing im-
ages of texts from which it learns “a high quality
semantic OCR representation that performs well
on digitally rendered text” (Radford et al., 2021).

We find that TROCR models fine-tuned on our
dataset achieve high performance on legibility-
related tasks. On the text side, we consider the
token-free language model, ByT5 (Xue et al.,
2022), which encodes each byte individually, as
opposed to byte-pairs or subword tokens longer
than one byte. Since its encoding of each byte
is disentangled from surrounding bytes, ByT5 is
able to retain a larger share of the unperturbed part
of the string, hopefully making it more robust to
character-substitution perturbations compared to
token-based models, which reduce the sequences
with perturbed characters into rare tokens or simply
to UNKs.

C Hyperparameters

TROCR (‘base-handwritten’ version) was fine-
tuned on LEGIT with the loss function configura-
tions (C, R, MT) described above. To train each
configuration, we use a single NVIDIA A6000
GPU (48GB VRAM) with a batch size of 26 and
learning rate of 10−5 with the AdamW optimizer
and a linear decay schedule (without warmup).
ByT5-base and ByT5-small were trained on the
same hardware with a batch size of 8 and learning
rate of 10−4.

D Toxic Comment Classification
Experiment

The original string from the Jigsaw Toxic Comment
Classification dataset is:

It is needed in this case
to clarify that UB is a SUNY
Center. It says it even in
Binghampton University at Albany,
State University of New York, and
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Figure 6: The mTurk Annotation Interface

Stony Brook University. Stop
trying to say it’s not because
I am totally right in this case.

The VIPER DCES and LEGIT perturbations are
compared in Figure 7. The LEGIT perturbations
were labeled as legible by TROCR-MT.

E GPT-3 Experiment

We provided the following prompt to the
text-davinci-002 checkpoint using the GPT-3
API:

The following is a list of
corrupted words and their correct
versions. The corruptions were
created by replacing some or all
letters of the correct version
with similar-looking letters.
Corrupted:
1. c1
2. c2
...
10. c10
Original:

1. o1
2. o2
3. o3
4. o4
5.

The model is allowed to condition on 4 ground-
truth examples: o1 through o4, and attempts to
generate o5 through o10 by providing a completion
for the prompt above. The temperature and top p
parameters were both set to 1 to allow for consistent
and reproducible outputs across batches.
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(a) VIPER DCES, n = 1.0, nearest neighbors sampled uniformly from list of top 10 neighbors for each character.

(b) Ours (LEGIT perturbation strategy with TROCR-MT legibility filter) n = 1.0, nearest neighbors sampled normally (µ = 15,
σ2 = 7) from top 30 neighbors for each character

Figure 7: A randomly selected paragraph from the Jigsaw dataset (a) perturbed by VIPER DCES (b) and our method
(c). Our perturbation appears more legible despite being generated using harsher parameters.

3273


