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Abstract

With the ever-growing size of pretrained mod-
els (PMs), fine-tuning them has become more
expensive and resource-hungry. As a remedy,
low-rank adapters (LoRA) keep the main pre-
trained weights of the model frozen and just in-
troduce some learnable truncated SVD modules
(so-called LoRA blocks) to the model. While
LoRA blocks are parameter-efficient, they suf-
fer from two major problems: first, the size of
these blocks is fixed and cannot be modified af-
ter training (for example, if we need to change
the rank of LoRA blocks, then we need to re-
train them from scratch); second, optimizing
their rank requires an exhaustive search and
effort. In this work, we introduce a dynamic
low-rank adaptation (DyLoRA) technique to
address these two problems together. Our Dy-
LoRA method trains LoRA blocks for a range
of ranks instead of a single rank by sorting the
representation learned by the adapter module at
different ranks during training. We evaluate our
solution on different natural language under-
standing (GLUE benchmark) and language gen-
eration tasks (E2E, DART and WebNLG) using
different pretrained models such as RoBERTa
and GPT with different sizes. Our results show
that we can train dynamic search-free models
with DyLoRA at least 4 to 7 times faster than
LoRA without significantly compromising per-
formance. Moreover, our models can perform
consistently well on a much larger range of
ranks compared to LoRA. 1

1 Introduction

Pre-training/fine-tuning has become a popular
paradigm for solving many tasks in natural lan-
guage processing (NLP) (Devlin et al., 2018; Liu
et al., 2019; Brown et al., 2020) and Computer Vi-
sion (Simonyan and Zisserman, 2014; He et al.,
2016; Howard et al., 2019; Bochkovskiy et al.,
2020; Chen et al., 2020; Dosovitskiy et al., 2020).

1github.com/huawei-noah/KD-NLP/tree/main/DyLoRA

pretrained models (PMs) such as pretrained lan-
guage models (PLMs) (Devlin et al., 2018; Brown
et al., 2020), and pretrained visual-language mod-
els (Lu et al., 2019; Li et al., 2019; Su et al., 2019;
Xia et al., 2021) have advanced a lot in recent years.
With the ever-growing size of these pretrained mod-
els, fine-tuning them on downstream tasks becomes
more expensive. Moreover, as the ratio of the num-
ber of parameters of models with respect to the
labeled data increases, the fine-tuning process will
be more prone to overfitting (Karimi Mahabadi
et al., 2021). There are two categories of solutions:
first, model compression (Jafari et al., 2021; Chen
et al., 2021); second, parameter-efficient tuning
(PET) (Houlsby et al., 2019a; Karimi Mahabadi
et al., 2021; Mao et al., 2021).

There are many different model compression
techniques in the literature for Transformer-based
models such as matrix factorization (Noach and
Goldberg, 2020; Tahaei et al., 2021), prun-
ing (Wang et al., 2019), quantization (Tao et al.,
2022; Prato et al., 2020), and knowledge distilla-
tion (Hinton et al., 2015; Li et al., 2021; Jafari et al.,
2021; Passban et al., 2021; Rashid et al., 2021).
There are also different types of PET techniques
in the literature such as low-rank adapters (Wang
et al., 2020; Karimi Mahabadi et al., 2021; Houlsby
et al., 2019b; Hu et al., 2021b), and prompt-based
techniques (Lester et al., 2021).

Although model compression solutions are well-
established in recent years in the literature, apply-
ing them to large language models can be very
costly, because compression techniques usually
need to train (or fine-tune) the original large model.
A case in point is knowledge distillation which re-
lies on fine-tuning a large teacher model or even
pre-training the student model as suggested in (Jiao
et al., 2019). Moreover, using compression tech-
niques usually leads to degrading the model perfor-
mance. PETs can be alternatives to the compres-
sion methods, especially when we would like to use
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Figure 1: DyLoRA: The overall diagram of our proposed method. In each iteration, we sample from a pre-defined
random distribution which will help us to truncate the up-projection and down-projection matrices in the LoRA (Hu
et al., 2021a) objective.

the full capacity of the large pretrained models with
light training efforts (such as the language-model-
as-a-service scenario (Sun et al., 2022)). Among
PET techniques, low-rank adapters have received
much attention because, in contrast to prompt-
tuning techniques, low-rank adapters do not add to
the sequence length, get trained faster, and perform
better (Karimi Mahabadi et al., 2021). Even though
there are several low-rank adaptation techniques
in the literature, such as Adapter (Houlsby et al.,
2019b), Compacter (Karimi Mahabadi et al., 2021),
and LoRA (Hu et al., 2021b); they all suffer from
two major common problems: first, it is not clear
how to select the size of their rank (while their per-
formance is very sensitive to this rank selection);
second, their training is static which means that if
a low-rank model is trained based on a particular
rank size, it will not work well in other rank values
(i.e. for any other rank value we need to train a
separate model).

This paper proposes a dynamic low-rank adapter
technique (DyLoRA) to address these two prob-
lems. Without loss of generality, we focus on
LoRA(Hu et al., 2021a) and train LoRA blocks
for a range of ranks instead of a single rank by
sorting out the representation learned at different
ranks during training. While our model is more
flexible, it can outperform LoRA in a much wider
range of ranks without adding to the training time.
Moreover, our technique does not need extra train-
ing for searching across ranks. We summarize our
contributions in the following:

• Dynamic LoRA: On top of LoRA, we devel-

oped a new algorithm (DyLoRA) that makes
it dynamic at inference time without incurring
extra costs.

• Search-free LoRA: We demonstrate that by
making a negligible compromise in perfor-
mance, it is possible to avoid the costly search
process of choosing the optimal rank for
LoRA.

2 Related Work

This section reviews low-rank adaptation tech-
niques for parameter-efficient tuning and poten-
tial existing solutions to make these techniques
dynamic and search-free.

It has been shown in (Aghajanyan et al., 2020)
that for classification tasks such as natural language
understanding (NLU), PLMs have a low intrinsic
dimension. This observation motivates the use of
low-rank adapters for parameter-efficient tuning.
There are several low-rank adapters in the literature
such as LoRA (Hu et al., 2021b), Adapter (Houlsby
et al., 2019b), Compacter (Karimi Mahabadi et al.,
2021), and Parallel Adapter (PA) (He et al., 2021).
LoRA is a low-rank up-projection/down-projection
transformation without any non-linearity applied
in parallel to key and value attention matrices.
The main benefit of LoRA is that the adapter
module, after training, can be integrated into the
original weight matrices of the model, which in
turn can lead to a very efficient inference time.
Adapters also have a low-rank up-projection/down-
projection transformation with an intermediate non-
linearity. The Adapter module is applied in series
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with the feed-forward network (FFN). Having the
adaptor module in-line with other blocks in the
model can increase the inference time of the model.
PA is a faster version of the Adapter, which can be
applied in parallel with the FFN block. The com-
pactor is a more memory-efficient version of the
Adapter, which deploys the sum of Kronecker prod-
ucts to reconstruct each up-projection and down-
projection matrices. All these low-rank adapters
suffer from two major issues: first, finding the best
rank requires heavy exhaustive training and search;
second, the tuned adapter module works well only
with a particular rank.

While there have been some efforts in the lit-
erature towards dynamic networks such as Dyn-
aBERT (Hou et al., 2020) and GradMax (Evci et al.,
2022), to the best of our knowledge, this problem
for factorized networks and low-rank adapters is
still open. DRONE (Chen et al., 2021) propose a
technique for data-aware low-rank model compres-
sion however their approach is not search-free, and
also, it is not dynamic. DynaBERT introduces a
two-stage method to train width and depth-wise
dynamic networks. However, DynaBERT requires
a fine-tuned teacher model on the task to train its
sub-networks which makes it unsuitable for PET
techniques. GradMax is a technique that gradually
adds to the neurons of a network without touch-
ing the already trained neurons. But it is unclear
how GradMax can be deployed to alleviate the
rank-search problem in low-rank adapters. Wang
et al. (2019) propose a structured pruning technique
called factorized low-rank pruning (FLOP). FLOP
decomposes weight matrices of a network into the
sum of rank-1 components, which are regularized
during training to gain sparsity. It is worth men-
tioning that FLOP aims at compressing the main
model, and even if it can be used for finding a good
rank in the lower-rank representation of full-weight
matrices, the final low-rank model will not be dy-
namic (i.e. it is trained well only for one rank and
not a range of ranks, same as LoRA.). In this paper,
we propose a new methodology for training low-
rank modules for multiple ranks simultaneously
rather than training a single-rank adapter at a time
(without changing the training budget). Inspired by
the idea of nested dropout (Rippel et al., 2014), we
pursue ordering the representations of the bottle-
neck at the low-rank adapter modules with a new
recipe. To the best of our knowledge, it is the first
time that the concept of ordering representations

has been deployed in training PLMs.

3 Background

3.1 Nested Dropout
Inspired by the dropout (Hinton et al., 2012), nested
drop-out (Rippel et al., 2014) is a stochastic regular-
ization technique that targets enforcing ordered rep-
resentations in training auto-encoders. The nested
dropout, adds an implicit bias (which does not exist
in dropout) to favor order in training. For example,
in dropout, we can randomly drop any nodes or
units in the network, but in nested dropout, if we
randomly select kth unit, then we keep all the units
indexed from 1 to k and drop the units with indices
larger than k. Therefore, nested dropout tends to-
ward accommodating more important information
in lower indices while learning representations.

Following the notations of (Rippel et al., 2014),
nested dropout assumes an auto-encoder mapping
of N training examples {yi}Ni=1 ∈ Y , Y ⊂ RD to
their corresponding representations {xi}Ni=1 ∈ X ,
X ⊂ RK using the function fθ : Y → X with pa-
rameters θ; and then decoding these representations
using another function gψ : X → Y with parame-
ters ψ to reconstruct the inputs. The reconstruction
loss can be defined as follows:

C(θ, ψ) =
N∑

i=1

||yi − gψ(fθ(yi))||2. (1)

Suppose we want to randomly drop some units in
our representation vector x. In this regard, we sam-
ple a random variable b ∼ pB(.), b ∈ {1, 2, ...,K}
from a pre-defined categorical distribution pB(.)
and truncate the functions fθ and gψ to keep their
corresponding units indexed from 1 to b and drop-
ping b+1 toK indices. Let’s define the b-truncated
version of the vector x as x↓b and the b-truncated
version of the functions fθ and gψ as fθ↓b and gψ↓b
respectively. In this case, the reconstruction loss is
redefined for the b-truncated model as follows:

C(θ, ψ) = EpB [C↓b(θ, ψ)] =
K∑

b=1

pB(b)C↓b(θ, ψ)

where

C↓b(θ, ψ) =
N∑

i=1

||yi − gψ↓b(fθ↓b(yi))||2.

(2)

In the final stage, the parameters of this model can
be obtained by solving the following optimization
problem.
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(θ∗, ψ∗) = argmin
θ,ψ

C(θ, ψ). (3)

While our work in this paper is inspired by the
feature of ordering information suggested in nested
dropout, we can distinguish our work from nested
dropout in several aspects:

1. The nested dropout technique is used to add
order information to a vector representation;
however, we are adding order information to
the low-rank matrix decomposition to make
it work across a range of ranks instead of a
single rank.

2. Our training algorithm differs from nested
dropout in the choice of the distribution func-
tion pB(.), and we propose a more efficient
individual loss for each truncated matrix com-
pared to the linear summation loss (check
equations 2 and 11 in the original paper (Rip-
pel et al., 2014)) in nested dropout. The origi-
nal proposal for the nested dropout was to use
a batch with mixed truncated examples. To
enhance efficiency and resolve suboptimality,
we propose to fix truncation in the entire batch
as part of our approach.

3.2 LoRA: Low-rank Adapters

In LoRA (Hu et al., 2021a), some pretrained
weights of dense layers of PLMs are summed with
parallel linear low-rank adapter modules. During
fine-tuning, the original pretrained weights are kept
frozen; LoRA modules can be updated instead. For
example, let’s assume that W0 ∈ Rm×d is a pre-
trained weight matrix in the network which is ac-
companied by a LoRA module ∆W = WupWdw

where Wup ∈ Rm×r, Wdw ∈ Rr×d, and r ≪
min(m, d). Then, the output of this layer can be
obtained as

h =W0x+∆Wx =W0x+
α

r
WupWdwx. (4)

Bear in mind that the Wup matrix is initialized as
a zero matrix, and the Wdw matrix is initialized
as a zero-mean Gaussian distribution where α is a
constant scale hyper-parameter.

In LoRA, the rank r is a hyperparameter that
should be tuned for each task. Moreover, LoRA
is a static low-rank adapter that works only with a
particular size of r, which has been trained on it.

4 Our Method: DyLoRA

In this section, we introduce our solution to get
dynamic low-rank adapters that can be trained and
deployed well on a range of ranks instead of a
single particular rank (with a fixed training budget).
This flexibility can free us from searching for the
best ranks by training the model multiple times.

Without loss of generality, we explain our so-
lution on top of LoRA as one of the prominent
low-rank adapter techniques in the literature. In
each LoRA module, we have an up-projection
(Wup ∈ Rm×r) and a down-projection matrix
(Wdw ∈ Rr×d). Let’s assume that we would like to
train the LoRA module to operate in the range of
r ∈ Range[rmin, rmax] where rmin and rmax can
be treated as new hyper-parameters. To make the
LoRA module work in a range of ranks instead of
a single rank, we need to ensure that increasing or
decreasing the rank will not significantly hamper
the model’s performance. One way to implement
such behavior would be by sorting the information
content of different ranks in the training process
of LoRA modules. In this regard, at each train-
ing step, we sample b ∼ pB(.), b ∈ {rmin, rmin +
1, ..., rmax} form a pre-defined categorical distri-
bution (which has a support in Range[rmin, rmax])
and truncate Wdw and Wup matrices accordingly.

Wdw↓b =Wdw[1 : b, :]

Wup↓b =Wup[:, 1 : b]
(5)

Wdw↓b and Wup↓b are b-truncated versions of Wdw

and Wup respectively (see Fig. 1 for the visualiza-
tion). Moreover, let’s define W b

dw as the bth row of
Wdw; W b

up corresponds to the bth column of Wup.

W b
dw =Wdw[b, :]

W b
up =Wup[:, b]

(6)

Then, the forward pass of this truncated LoRA mod-
ule during training will be calculated as following:

h =W0x+
α

b
Wup↓bWdw↓bx (7)

For simplicity, let’s assume that we have only
one LoRA module in the network (the one which
is described in Eq. 7). Let’s first consider the
regular static loss function (LS) of the network
f(x;Wdw,Wup) with Wdw and Wup tunable pa-
rameters for N given input-output pairs (x, y) =
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(xi, yi)
N
i=1:

min
Wdw,Wup

LS(x, y;Wdw,Wup) ≜

N∑

i=1

l(f(xi;Wdw,Wup), yi).
(8)

where l(f, y) is a loss function that measures the
divergence of network predictions compared with
the target labels. Then, let’s extend the training
loss to make the network dynamic considering the
b-truncation process. We can define our dynamic
loss function LDY as follows.

LDY
↓b =

N∑

i=1

l(f(xi;Wdw↓b,Wup↓b), yi). (9)

Bear in mind that, our loss function has a major dif-
ference from the nested dropout loss, which makes
it more efficient. The nested dropout loss is in the
form of

∑rmax
b=rmin

pB(b)LDY
↓b (x, y;Wdw↓b,Wup↓b)

which requires to sum the loss over the entire possi-
ble range of ranks and it is computationally expen-
sive. To overcome this computational restriction,
we replace it by optimizing the model parameters
for each target rank individually at each time step.
We show that this scheme quite works well.

The other difference with nested dropout is that
in the parameter update phase, we add a new mode
(so-called frozen) as a hyper-parameter to our train-
ing. This new mode suggests to only update the
bth corresponding row and column sampled in the
truncation phase (i.e. a single row or column will
be updated at a time to prevent the learning param-
eters from being forgotten at previous time steps.).
With a minor performance cost, this approach can
improve the efficiency of our algorithm even fur-
ther.

W b
dw ←W b

dw − η∇W b
dw
LDY
↓b

W b
up ←W b

up − η∇W b
up
LDY
↓b

(10)

Table 4 shows the impact of only updating "b"
versus updating the columns and rows from 1 to
b. The summary of our technique is described in
Algorithm 1.

5 Experiments

In this section, we describe the experiments used
to evaluate our DyLoRA model on both natural lan-
guage understanding (NLU) and natural language

Algorithm 1 DyLoRA - Training

Require:
r ∈Range[rmin,rmax]; i: the number of training
iterations; α: a scaling factor; pB: probability
distribution function for rank selection; X ∈
Rd×n : all input features to LORA;W0 ∈ Rm×d

the original frozen pretrained weight matrix
Require: Wdw ∈ Rr×d; Wup ∈ Rm×r, FROZEN:

whether to keep the lower ranks frozen when
updating the higher ranks
while t < i do:

Forward:
// sample a specific rank, during test is given
b ∼ pB(.)
// truncate down-projection matrix
Wdw↓b =Wdw[:b,:]
W b
dw =Wdw[b,:]

// truncate up-projection matrix
Wup↓b =Wup[:,:b]
W b
up =Wup[:,b]

// calculate the LoRA output
h =W0X + α

bWup↓bWdw↓bX
Backward:
if FROZEN then

// only update the unique parameters
of the selected rank

W b
dw ←W b

dw − η∇W b
dw
LDY
↓b

W b
up ←W b

up − η∇W b
up
LDY
↓b

else
Wdw↓b ←Wdw↓b − η∇W b

dw↓b
LDY
↓b

Wup↓b ←Wup↓b − η∇W b
up↓b
LDY
↓b

end if
end while

generation (NLG) tasks. To be fair with the orig-
inal LoRA method, we try to keep the setting of
our experiments similar to the LoRA paper (Hu
et al., 2021a). Therefore similarly, we chose the
pretrained RoBERTa (Liu et al., 2019) base model
as the backbone of the LoRA and DyLoRA exper-
iments for the GLUE benchmark (Development
Set), and GPT-Medium for the NLG tasks. For our
experiments, we did not use any hyper-parameter
tuning, nor did we search the validation epochs, nor
did we use MLNI trick (use the MLNI checkpoint
instead of the pretrained weights) to enhance the
model’s performance. More details about the hyper-
parameters is available in Table 8 in Appendix B.
In total, we conducted more than 200 experiments
and evaluated more than 1600 models, details of
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Model: RoBERTa-Base
Task Rank=1 Rank=2 Rank=4 Rank=8 Rank=16 Rank=32
QQP (Accuracy) 89.14 89.96 90.33 90.69 90.95 91.02
SST-2 (Accuracy) 93.58 94.15 94.38 94.84 94.27 94.5
MRPC (Accuracy) 87.25 87.75 88.24 87.25 86.76 89.22
CoLA (Mathews) 61.84 57.78 61.57 63.81 63.07 62.82

Table 1: The effect of the rank of the low-rank adaptation matrix over the performance of the model. In this
experiment, all the other hyperparameters are fixed, and we only changed the rank of the LoRA model. In this search
space, Underline shows the minimum performance rank, and the bold number shows the maximum performance
rank.

Accuracy Accuracy F1 Mathews Accuracy Accuracy Accuracy Pearson
Model MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg

Rank = 1
LoRA 34.60±3.69 69.61±7.99 83.47±3.90 25.57±9.71 53.00±2.95 44.30±7.50 57.55±5.51 76.07±6.06 54.90
DyLoRA (Frozen) 85.36±0.26 93.51±0.49 90.75±0.70 56.95±1.54 91.70±0.28 87.87±0.17 66.79±8.54 89.95±0.24 82.86
DyLoRA 85.59±0.07 93.23±0.63 91.58±0.69 57.93±2.12 91.95±0.14 88.37±0.15 74.80±1.48 90.30±0.13 84.22

Rank = 2
LoRA 40.53±6.17 82.75±5.08 88.00±1.81 43.30±4.67 63.42±2.99 59.21±6.13 68.88±1.26 85.51±1.94 66.45
DyLoRA (Frozen) 85.74±0.28 93.76±0.52 91.09±0.45 56.88±2.09 92.03±0.22 88.21±0.07 63.90±12.85 90.25±0.15 82.73
DyLoRA 86.02±0.06 93.81±0.30 91.66±0.46 59.91±1.88 92.39±0.25 89.33±0.05 76.03±1.61 90.60±0.09 84.97

Rank = 3
LoRA 58.95±6.02 90.00±1.27 89.66±1.25 56.78±1.88 79.26±4.80 72.58±4.09 72.49±2.30 88.80±0.29 76.07
DyLoRA (Frozen) 85.78±0.25 93.76±0.26 91.78±0.89 58.86±0.32 92.17±0.18 88.40±0.0 70.90±6.14 90.50±0.29 84.02
DyLoRA 86.70±0.09 94.11±0.33 91.56±0.86 60.97±2.01 92.77±0.21 89.76±0.07 77.11±2.97 90.69±0.14 85.46

Rank = 4
LoRA 72.10±5.25 91.56±0.34 89.62±0.92 58.53±3.93 85.09±1.20 80.78±3.73 73.07±2.29 89.28±0.72 80.00
DyLoRA (Frozen) 85.93±0.19 93.85±0.33 91.28±0.71 59.25±1.05 92.27±0.16 88.52±0.08 71.12±2.46 90.53±0.18 84.10
DyLoRA 86.82±0.04 94.40±0.13 92.06±0.46 59.81±1.71 92.91±0.31 89.80±0.10 77.40±2.72 90.86±0.06 85.53

Rank = 5
LoRA 78.61±3.97 92.82±0.46 90.75±0.96 60.37±3.10 88.97±0.90 85.26±1.56 73.21±2.17 89.90±0.30 82.49
DyLoRA (Frozen) 85.95±0.17 93.78±0.26 91.28±0.64 59.41±1.30 92.30±0.17 88.56±0.09 71.48±2.92 90.60±0.20 84.17
DyLoRA 87.00±0.10 94.29±0.41 91.73±0.60 60.52±1.07 93.01±0.28 90.04±0.10 76.90±2.11 90.97±0.20 85.56

Rank = 6
LoRA 83.02±1.59 93.49±0.88 91.28±0.63 61.94±2.27 90.32±0.76 87.54±1.51 76.68±1.16 90.12±0.12 84.30
DyLoRA (Frozen) 85.98±0.16 93.76±0.46 91.12±0.43 58.95±1.10 92.46±0.14 88.68±0.13 72.64±2.44 90.64±0.23 84.28
DyLoRA 86.97±0.20 94.27±0.37 91.44±0.64 60.16±1.70 93.01±0.21 90.07±0.14 77.33±1.66 91.03±0.20 85.53

Rank = 7
LoRA 85.44±0.78 93.62±0.35 91.27±0.73 62.19±2.66 91.88±0.23 89.51±0.30 75.52±1.41 90.35±0.24 84.97
DyLoRA (Frozen) 86.08±0.14 93.97±0.17 91.02±0.70 58.76±0.94 92.30±0.10 88.77±0.06 73.50±1.67 90.68±0.15 84.38
DyLoRA 86.82±0.10 94.27±0.33 91.38±0.59 59.51±1.75 92.99±0.26 90.04±0.06 77.91±1.58 91.07±0.19 85.50

Rank = 8
LoRA 86.82±0.18 94.01±0.30 91.48±0.73 62.08±1.37 92.39±0.39 90.42±0.02 74.51±0.41 90.48±0.24 85.27
DyLoRA (Frozen) 86.10±0.04 93.69±0.41 91.19±0.79 58.52±0.95 92.47±0.18 88.82±0.06 73.29±2.49 90.68±0.14 84.35
DyLoRA 86.76±0.13 94.36±0.38 91.38±0.83 59.51±1.84 93.00±0.32 89.91±0.08 77.55±0.59 91.05±0.19 85.44

Best (Rank)
LoRA 87.03(8) 94.50(6) 92.25(7) 66.05(7) 92.81(8) 90.45(8) 77.98(6) 90.87(8) 86.49
DyLoRA (Frozen) 86.18(7) 94.50(2) 92.93(3) 61.57(5) 92.70(6) 88.88(8) 75.81(7) 90.89(6) 85.43
DyLoRA 87.17(6) 94.72(7) 92.79(8) 63.32(3) 93.56(8) 90.17(6) 80.14(4) 91.36(7) 86.66

Full Rank
Fine Tune∗ 87.6 94.8 90.2 63.6 92.8 91.9 78.7 91.2 86.4

Table 2: In this table, the task is to find a low-rank adaptation matrix that works with different ranks at inference
time given a fixed budget (training time).

which can be found in the attachments.

5.1 Baselines

• Fine Tune: To show a relative upper bound
for the performance of our proposed method,
we fine-tuned all the parameters in the model.

Even though we have a large number of train-
able parameters, this can help us better under-
stand how higher-rank models perform.

• LoRA: As a baseline to DyLoRA, we em-
ployed the original LoRA model with their
tuned hyperparameters (Hu et al., 2021a). As
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Accuracy F1 Accuracy Pearson
Model (Rank) Trainable Params SST-2 MRPC QNLI STS-B AVERAGE
Fine Tune∗ 125M 94.8 90.2 92.8 91.2 92.25
FLOP∗ 80M 92.09 88.61 89.05 88.18 89.48
LoRA (1) 0.628M 93.58 91.93 91.98 90.85 92.09

Maximum Rank: rmax = 8

DyLoRA (1) 0.628M 93.23±0.63 91.58±0.69 91.95±0.14 90.30±0.13 91.77
DyLoRA (8) 0.887M 94.36±0.38 91.38±0.83 93.00±0.32 91.05±0.19 92.45

Table 3: This table compares DyLoRA with compression-based algorithms. As indicated by *, we reported "Fine
Tune" and FLOP from their original papers, (Liu et al., 2019) and (Wang et al., 2019). To the best of our knowledge,
experiments were conducted under the same experimental setting. We count all the trainable parameters including
classifier, unlike LoRA paper (Hu et al., 2021a) which they count only LoRA specific parameters.

Maximum Rank: rmax = 8

Accuracy F1 Mathews Accuracy Accuracy Pearson
b ∼ PB: Distribution Updated Parameters SST-2 MRPC CoLA QNLI RTE STS-B AVERAGE

Rank=8

Geometric (p=0.15) Wdw↓b,Wup↓b 93.97±0.33 90.84±1.15 58.95±1.95 92.74±0.13 74.80±0.90 90.66±0.15 83.66
W b
dw,W b

up 93.60±0.24 90.50±0.42 58.19±1.17 92.26±0.12 71.91±1.74 90.20±0.36 82.78

Uniform Wdw↓b,Wup↓b 94.36±0.38 91.38±0.83 59.51±1.84 93.00±0.32 77.55±0.59 91.05±0.19 84.47
W b
dw,W b

up 93.69±0.41 91.19±0.79 58.52±0.95 92.47±0.18 73.29±2.49 90.68±0.14 83.31
Rank=1

Geometric (p=0.15) Wdw↓b,Wup↓b 93.53±0.47 91.36±0.72 59.43±1.12 92.24±0.08 73.65±3.55 90.33±0.14 83.42
W b
dw,W b

up 93.58±0.26 90.81±0.83 58.55±1.13 92.27±0.28 68.52±11.88 90.60±0.31 82.39

Uniform Wdw↓b,Wup↓b 93.23±0.63 91.58±0.69 57.93±2.12 91.95±0.14 74.80±1.48 90.30±0.13 83.30
W b
dw,W b

up 93.51±0.49 90.75±0.70 56.95±1.54 91.70±0.28 66.79±8.54 89.95±0.24 81.61

Table 4: Ablation Study - In this experiment, our goal is to demonstrate how the introduced distribution can affect
the performance of DyLoRA.

a result, most of the experiments have been
conducted in a favorable manner for LoRA.

• FLOP: Due to its flexibility, Factorized Low
Rank Pruning (FLOP) (Wang et al., 2019) can
be applied to any matrix multiplication and,
therefore, can be used to avoid the search in
our problem. However, this baseline lacks the
dynamic properties of DyLoRA. We used it
to show regularization-based techniques’ per-
formance and pros and cons.

5.2 LoRA rank selection problem
There is no clear guidance on how to determine
the rank for the LoRA algorithm. It is evident in
the LoRA paper (Hu et al., 2021a) that the perfor-
mance of models varies a lot with different ranks
(e.g. check Tables 15, and 18 in the LoRA paper),
and does not indicate any clear trend. We also ob-
serve the same problem in the GLUE benchmark.
We may argue that theoretically, the rank with the
best performance is always the highest. High ranks,
however, introduce additional parameters into the
adaptive process and this might be undesirable. In
practice, as demonstrated in Table 1, the most ef-
fective rank differs depending on the task. For

example, based on the MRPC results, the rank with
the lowest performance is 16 while the rank with
the highest performance is 32. This is different
from SST-2, in which rank 1 is the least performing
rank and rank 8 is the most effective rank. Many
factors can contribute to this difference, including
but not limited to the size of the dataset, hyperpa-
rameter selections, hardware configurations and the
optimization.

5.3 Dynamic low rank adaptation

For example, suppose we have a neural network
that we wish to deploy on various devices with dif-
ferent configurations. The use of higher ranks may
pose a problem for very sensitive devices as they
have a greater number of parameters. Therefore,
we must either train several models with different
configurations or find the most optimal rank. The
cost associated with this is significant, as even in
the setting of LoRA, we are required to find the
best rank for each task and each device. Using
DyLoRA, however, one needs to train one model
per task and, as our method is adaptive at inference
time, we can deploy it according to our needs. In
Table 2, we demonstrate the dynamic properties of
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DyLoRA. In order to ensure a fair comparison, all
LoRA and DyLoRA models in this table have the
same model size, we used the same code and eval-
uation process, and all models were trained to the
same extent. In LoRA, we lose performance when
performing inferences for the lower ranks. This
occurs because the model has been trained only for
rank 8 during training. In DyLoRA, we preserve
a high level of performance for lower ranks while
competing well with LoRA on rank 8.

Model Time SST-2 (r) MRPC (r)
Maximum Rank: rmax = 64

LoRA (Search) 7x 95.3(64) 89.71(64)
DyLoRA (Frozen) 1x 94.38(7) 89.95(34)

Maximum Rank: rmax = 32
LoRA (Search) 6x 94.84(32) 88.73(16)
DyLoRA (Frozen) 1x 94.38(7) 89.71(5)

Table 5: In this table, the search space of rank is larger
compared to the previous experiment and the goal is to
find the most optimal rank for the low-rank adaptation
of a pre-rained RoBERTa-Base. For LoRA (Search),
we ran experiments for ranks=1,2,4,8,16,32,64 and we
reported the best results. In the Exhaustive Search, one
has to search all the ranks from 1 to 64, which means it
will cost 64 times more than our proposed method. The
lower the rank the better, and the higher the performance
is the better.

5.4 Search-free low rank adaptation

The process of selecting a particular rank can be
expensive as previously mentioned. In Table 5, we
present an experiment that illustrates the costs asso-
ciated with such a search for LoRA and DyLoRA.
As an example, if one naively wanted to search the
entire range of ranks (for example, 64 in the exper-
iment), then they would have to train and evaluate
64 distinct models in order to determine the proper
rank. It becomes even more expensive if one search
the entire rank space. In the case of uniform search,
this cost is less, yet still more expensive (7 times in
the experiment) than our proposed method. There-
fore, for LoRA (Search), we ran experiments for
ranks=1,2,4,8,16,32,64 and we reported the best
results. The results demonstrate that our proposed
method performs competitively at a much lower
cost.

5.5 Robustness of DyLoRA

As illustrated in Table 2, DyLoRA is quite robust
to randomness and can produce consistently good
results due to stable convergence.

5.6 Regularization and Pruning

An alternative method of avoiding the search prob-
lem is using regularization/pruning techniques to
determine the intrinsic rank of the weight matrix.
In this way, we can reduce the number of param-
eters of the original matrices; however, we will
not have a dynamic model during inference. To
illustrate the difference between such methods and
DyLoRA, we reported the performance of one of
these models, FLOP (Wang et al., 2019), in Table
3. FLOP utilizes low-rank factorization to create
new matrices representing the original weight ma-
trix. Thus, they will have fewer total parameters
but require more trainable parameters to reach a
comparable performance to DyLoRA.

5.7 Generative Tasks

In this experiment, we evaluate the performance
of our model on different natural language gen-
eration (NLG) tasks such as the E2E NLG Chal-
lenge (Novikova et al., 2017), DART (Nan et al.,
2020) and WebNLG (Gardent et al., 2017). The
results of the E2E task are shown in Table 6 and
due to the space limit, the results of the other two
tasks are demonstrated in Appendix C. The genera-
tive tasks demonstrate a similar pattern as the NLU
task, showing that our model is able to work well
at wider range of ranks compared to LoRA.

5.8 Ablation study

In this subsection, we investigate the impact of two
design choices in DyLoRA: first, the new distri-
bution PB hyper-parameter in our technique; sec-
ond, the impact of updating W b

dw and W b
up param-

eters instead of the entire Wdw↓b and Wup↓b. The
distribution PB changes the relative importance
of the different ranks during the training process.
To examine the impact of the chosen distribution
on DyLoRA’s performance, we used two distribu-
tions, geometric and uniform. As shown in Table
4, the geometric distribution, provides a much bet-
ter method for optimizing the lower ranks, since it
pays much more attention to the lower ranks during
training, and uniform distribution will give better
performance over all ranks. We chose to use uni-
form distribution in most of our experiments to
avoid adding another hyperparameter which is a re-
quirement of the geometric distribution. Moreover,
we demonstrate that it is possible to ensure that the
optimization of rank b will not negatively affect the
performance of the lower ranks (1 to b− 1), while
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Model (Method) Updated Params Trainable Params E2E NLG Challenge
BLEU NIST MET ROUGE-L CIDEr

Rank=1
GPT-2 M (LoRA) 0.09M 3.38 1.18 9.23 18.79 0.12
GPT-2 M (DyLoRA) W b

dw,W b
up 0.09M 67.92±0.20 8.65±0.06 44.91±0.38 69.07±0.32 2.38±0.04

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.09M 68.86±0.55 8.72±0.04 45.81±0.40 70.33±0.64 2.43±0.04

Rank=2
GPT-2 M (LoRA) 0.19M 46.99 6.39 34.19 56.10 1.27
GPT-2 M (DyLoRA) W b

dw,W b
up 0.19M 68.81±0.49 8.75±0.02 45.23±0.22 69.81±0.30 2.41±0.01

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.19M 68.97±1.03 8.75±0.07 45.88±0.55 70.07±0.86 2.43±0.04

Rank=3
GPT-2 M (LoRA) 0.29M 63.68 8.46 42.37 65.84 2.24
GPT-2 M (DyLoRA) W b

dw,W b
up 0.29M 68.41±1.00 8.69±0.10 45.31±0.64 69.75±0.69 2.42±0.02

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.29M 69.33±0.26 8.76±0.05 46.19±0.22 70.56±0.43 2.46±0.01

Rank=4
GPT-2 M (LoRA) 0.39M 69.88 8.81 46.81 72.10 2.53
GPT-2 M (DyLoRA) W b

dw,W b
up 0.39M 68.36±0.41 8.70±0.02 45.46±0.56 69.91±0.50 2.43±0.01

GPT-2 M (DyLoRA) Wdw↓b,Wup↓b 0.39M 69.19±0.43 8.75±0.03 46.26±0.47 70.78±0.63 2.46±0.02

Fine-Tune
GPT-2 M (FT)∗ 354M 68.2 8.62 46.2 71.0 2.5

Table 6: For all metrics, higher is better. Rows with * have been reported based on the LoRA paper. Unlike (Hu
et al., 2021a), we included the classifier number of parameters in our trainable parameters count.

performing reasonably well. As mentioned, this
can be accomplished by only updating the unique
parameters associated with rank r that do not over-
lap with lower ranks.

In addition, in Table 7, we demonstrate the result
of using our individual loss (Eq. 9) vs. the nested
dropout original objective function in an equal set-
ting. As shown, our proposed objective function
is both effective and efficient. Furthermore, it is
important to note that the summation loss is not
scalable when many ranks are involved. We also
discussed the time complexity of LoRA and Dy-
LoRA in Appendix A.

Maximum Rank: rmax = 8

Loss Training Time CoLA
LDY
↓b 645.82s 52.64∑
pB(b)LDY

↓b 1175.69s 54.12

Table 7: This experiment shows the impact of choos-
ing individual loss vs. summation loss functions on
our training. The average performance across all pos-
sible ranks (1,2,...,8) is reported. For summation loss
to be computationally more feasible, smaller epochs
were chosen. A total of seven GPUs were used in this
experiment.

6 Conclusion

In this paper, we presented our solution DyLoRA to
address two problems in low-rank adapters regard-
ing rank selection and making them dynamic. We
showed that DyLoRA can select the rank without

requiring multiple re-training and is able to make
LoRA dynamic at inference time. As a result, we
can avoid the process of searching for the most
optimal ranks for many real-life scenarios. It has
been demonstrated that DyLoRA performance is
comparable with LoRA, yet we can support a wider
range of ranks without adding additional time and
effort.

Limitations

According to LoRA (Hu et al., 2021a), a proper
choice of the scalar can improve the results. In
order to determine what is the best choice, further
investigation is required. Despite our demonstra-
tion that uniform distribution can be as effective
as specific geometric distribution, further investiga-
tion is necessary to evaluate the effect of different
distributions on different downstream tasks. As
shown in this paper, our algorithm works over a
wide range of ranks, but further research is needed
to understand the impact of choosing a particular
range.
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A Time complexity

The training time for DyLoRA is comparable to
that of LoRA trained once on a specific rank. Thus,
when searching the rank space for LoRA, we need
to train it multiple times, whereas our method does
not require searching the ranks. Accordingly, Dy-
LoRA’s relative time complexity is inversely pro-
portional to the number of possible ranks for which
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the LoRA model must be searched. In MRPC,
DyLoRA (for all the ranks) and LoRA (only on
a single rank 8) require a total training time of
408.39 seconds and 399.95 seconds, respectively.
Consequently, when we need to train eight LoRA
models (Rank=1,2,...,8), it will result in a cost of
399.95*8=3199.6s, compared to the training time
of our model, which is only 408.39 seconds. A
more efficient implementation of our algorithm
may result in a better time complexity.

B Hyperparameters

We did not use any parameter tuning nor MNLI
trick (initializing some down-streams tasks from
MNLI checkpoint instead of pretrained weights).
Therefore, we fine-tuned all the datasets from orig-
inal pretrained weights. We simply followed a uni-
fied hyper-parameters for all different experiments.
Unlike LoRA (Hu et al., 2021a) which reported the
median over 5 random seeds, we reported the mean
and standard deviation over 5 random seeds. See
the details in Table 8.

C GPT Experiments

A summary of the additional experiments that have
been conducted to demonstrate the effectiveness
of our proposed method for the task of language
generation is provided in Table 9.

3285



Model Parameter Value

RoBERTa-Base

Optimizer AdamW
Warmup Ratio 0.06
LR Scheduler Linear

Batch Size 32
Epochs 30

Learning Rate (LR) 4e-4
Weight Decay 0.1
LoRA Config rq = rv = 8 (unless otherwise mentioned)

LoRA α 16
Max Sequence Length 512

Seeds 10, 42, 4242, 10, 1010
GPU Tesla V100-PCIE-32GB

GPT Medium

Optimizer AdamW
Adam Beta2 0.999

Warmup Steps 500
Clip 0.0

LR Scheduler Linear
Batch Size 8

Epochs 5
Learning Rate (LR) 2e-4

Weight Decay 0.01
Correct Bias True

LoRA Dropout 0.1
Lable Smooth 0.1
LoRA Config rq = rv = 4

LoRA α 32
Seeds 10, 42, 4242
GPU Tesla V100-PCIE-32GB

Table 8: All the hyperparameters that have been used throughout our study.
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Model (Method) Trainable Params DART WebNLG
BLEU↑ TER↓ BLEU↑ TER↓

Rank=1
GPT-2 M (LoRA) 0.09M 0.71 0.49 2.80 1.18
GPT-2 M (DyLoRA-Frozen) 0.09M 44.48±0.11 0.49±0.00 52.09±0.10 0.40±0.01

GPT-2 M (DyLoRA) 0.09M 44.77±0.17 0.49±0.01 53.04±0.07 0.40±0.00

Rank=2
GPT-2 M (LoRA) 0.19M 15.90 0.48 26.58 0.67
GPT-2 M (DyLoRA-Frozen) 0.19M 45.04±0.14 0.48±0.01 52.74±0.31 0.40±0.01

GPT-2 M (DyLoRA) 0.09M 46.05±0.31 0.48±0.00 54.32±0.09 0.39±0.01

Rank=3
GPT-2 M (LoRA) 0.29M 35.84 0.47 43.61 0.47
GPT-2 M (DyLoRA-Frozen) 0.29M 45.22±0.14 0.49±0.01 53.03±0.55 0.40±0.00

GPT-2 M (DyLoRA) 0.29M 46.68±0.36 0.48±0.01 54.48±0.05 0.39±0.00

Rank=4
GPT-2 M (LoRA) 0.39M 47.10 0.46 55.57 0.39
GPT-2 M (DyLoRA-Frozen) 0.39M 45.56±0.33 0.48±0.00 53.03±0.01 0.40±0.00

GPT-2 M (DyLoRA) 0.39M 46.56±0.42 0.48±0.01 54.48±0.45 0.39±0.00

Fine-Tune
GPT-2 M (FT)∗ 354M 46.2 0.46

Table 9: Rows with * have been reported from the LoRA paper. (Hu et al., 2021a).
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