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Abstract

We motivate and introduce CHARD: Clinical
Health-Aware Reasoning across Dimensions,
to investigate the capability of text generation
models to act as implicit clinical knowledge
bases and generate free-flow textual explana-
tions about various health-related conditions
across several dimensions. We collect and
present an associated dataset, CHARDat, con-
sisting of explanations about 52 health con-
ditions across three clinical dimensions. We
conduct extensive experiments using BART
and T5 along with data augmentation, and per-
form automatic, human, and qualitative analy-
ses. We show that while our models can per-
form decently, CHARD is very challenging
with strong potential for further exploration.

1 Introduction
Pretrained language models (PLM) have seen in-
creasing popularity for NLP tasks and applications,
including text generation. Researchers have be-
come interested in the extent to which PLMs can:
1) act as knowledge bases, 2) reason like humans.

Rather than using external databases, exposure
to large amounts of data during training combined
with their large number of parameters, has given
PLMs the ability to store knowledge that can be
extracted through effective probing strategies such
as text infilling (Donahue et al., 2020), prompt-
ing (Liu et al., 2021), and QA (Jiang et al., 2021).
PLMs imitate a more high-level information store,
allowing for greater abstractness, flexibility, and
generalizability. They are also able to better exploit
contextual information than simple retrieval.

Studies have also shown that as PLMs scale
up, they have have emergent abilities (Wei et al.,
2022a), including reasoning. There has been in-
creasing attention on their commonsense reasoning
through works like COMET (Bosselut et al., 2019).
However, studies show that even large PLMs strug-
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Template Full Text with Explanation
A person with Costochondri-
tis has a/an exercise risk fac-
tor because/since/as {explana-
tion}

A person with Costochondritis has an
exercise risk factor because costochon-
dritis can be aggravated by any activity
that places stress on your chest area.

A person with gout has a/an
lose weight prevention be-
cause/since/as {explanation}

A person with gout has a lose weight pre-
vention because losing weight can lower
uric acid levels in your body and signifi-
cantly reduce the chance of gout attacks.

A person with rheumatoid
has a/an therapy treatment be-
cause/since/as {explanation}

A person with rheumatoid has a therapy
treatment because physiotherapy helps
rheumatoid patients with pain control,
reducing inflammation and joint stiffness
and to return to the normal activities of
daily living or sports.

Table 1: Examples of CHARD templates with explanations
(from CHARDat). The human was asked to write the entire
output text (not just the explanation) by infilling the template.

gle with commonsense tasks that humans can rea-
son through very easily (Talmor et al., 2020). There
are works that investigate more complicated reason-
ing tasks, e.g. arithmetic and symbolic reasoning
(Wei et al., 2022b). PLMs inherently have some
extent of reasoning capability, and many more com-
plex reasoning tasks are easier to carry out over
abstract PLM embedding space.

In this paper, we are interested in the intersection
of these areas. Can PLMs act as knowledge bases
and also reliably reason using their own knowl-
edge? We investigate whether PLMs can learn and
reason through health-related knowledge. Work on
generation-based reasoning for health has been lim-
ited, with most prior work exploring retrieval-based
methods. Generation-based reasoning is more diffi-
cult, as such a specialized domain contains esoteric
information not prevalent in the PLM’s training
data, and involves a higher degree of specialized
reasoning to handle domain-specific problems.

Healthcare is an important domain that deals
with human lives. It is a large application area
for machine learning and NLP. The need for au-
tomation in healthcare rises, as countless studies
show that healthcare workers are overworked and
burned out, especially recently due to the COVID-
19 pandemic (Portoghese et al., 2014; Brophy et al.,

Code: https://github.com/styfeng/CHARD
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2021; Couarraze et al., 2021). Further, healthcare
resources will continue to be strained as the baby
boomer generation ages (Canizares et al., 2016).

To this end, we propose CHARD: Clinical
Health-Aware Reasoning across Dimensions (§2.1).
This task is designed to explore the capability of
text generation models to act as implicit clinical
knowledge bases and generate textual explanations
about health-related conditions across several di-
mensions. The ultimate goal of CHARD is to
eventually have a model that is knowledgeable and
insightful across numerous clinical dimensions and
reasoning pathways. For now, we focus on three
relevant clinical dimensions using a template in-
filling approach, and collect an associated dataset,
CHARDat, which includes information for 52
health conditions across these dimensions (§2.2).

We perform extensive experiments on CHAR-
Dat using two SOTA seq2seq models: BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020)
(§3.1), with data augmentation using backtransla-
tion (Sennrich et al., 2016) (§3.2,4.2). We bench-
mark our models through automatic, human, and
qualitative analyses (§5). We show that our models
show strong potential, but have room to improve,
and that CHARD is highly challenging with room
for additional exploration. Lastly, we discuss sev-
eral potential directions for improvement (§6).

2 Task and Dataset
2.1 The CHARD Task
Our task, CHARD: Clinical Health-Aware
Reasoning across Dimensions, investigates the ca-
pability of text generation models to produce clin-
ical explanations about various health conditions
across several clinical dimensions ( dim). Essen-
tially, we assess how a PLM can be used as and
reason through an implicit clinical knowledge base.

We focus on threedim: risk factors (RF), treat-
ment (TREAT), and prevention (PREV), as they
are important and relevant in the context of health.
A risk factor refers to something that increases
the chance of developing a condition. For cancer,
some examples are age, family history, and smok-
ing. Treatment refers to something that helps treat
or cure a condition. For migraines, some examples
are medication, stress management, and meditation.
Prevention refers to strategies to stop or lower the
chance of getting a condition. For diabetes, some
examples are a healthy diet and regular exercise.

As an initial approach to CHARD, we use a
template infilling formulation, where given an in-

put template that lays out the structure of the de-
sired explanation, the model’s goal is to generate
a complete explanation of how the particular dim
attribute relates to the given condition. In particu-
lar, the templates end with an {explanation} span
that the models fill in by explaining the appropriate
relationship. Some examples are in Table 1.

2.2 CHARDat Dataset
Collection Process: We collect a dataset for our
task called CHARDat (where DAT is short for
data). We collect data across the three dim for 52
health conditions, listed in Appendix A. This is a
manually curated list of health conditions which
range from common conditions such as migraine
and acne to rare conditions such as Lyme dis-
ease and Paget–Schroetter. The conditions were
also selected by volume of online activity (e.g.
number of active subreddit users), treatable vs.
chronic conditions, and whether a condition can
be self-diagnosed or not. This allows us to assess
CHARD across a variety of conditions.

For each dim, we manually collect an exhaus-
tive list of dim-related attributes (e.g. risk factors)
for each condition. By attribute, we refer to a par-
ticular example of that dim (e.g. "obesity"). This
was accomplished by searching through reliable
and reputable medically-reviewed sources such as
MayoClinic, CDC, WebMD, and Healthline.

We collect the final text (with explanations) us-
ing Amazon Mechanical Turk (AMT). We ask ap-
proved AMT workers (with strong qualifications
and approval ratings on healthcare-related tasks) to
write factually accurate, informative, and relatively
concise passages given a particular condition and
dim attribute template (per HIT), while encourag-
ing them to consult the aforementioned health re-
sources. Three separate annotation studies (one per
dim) with strict quality control were conducted
to collect an annotation per example.1 Annota-
tions were regularly verified by authors, and a large
subset of CHARDat was manually examined for
medical accuracy. More details are in Appendix B.
Some examples from CHARDat are in Table 1.

Splits and Statistics: We split CHARDat
by dim into train, val, and test splits of ≈
70%/15%/15%, and combine the individual splits
per dim to form the final splits called CHAR-

1Explanations for CHARD are typically quite standard-
ized, and additional annotations were repetitive. Differences
are mainly in language, so we instead opt for paraphrasing
data augmentation techniques such as backtranslation (§3.2).
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Dataset Stats Train Val Test
(seen/unseen)

# conditions = 52 44 39 41 (37/4)
rf = 52 44 26 26 (22/4)
treat = 52 43 21 20 (16/4)
prev = 44 35 11 21 (17/4)

# sentences = 937 655 141 141 (70/71)
rf = 457 319 69 69 (32/37)
treat = 297 207 45 45 (20/25)
prev = 183 129 27 27 (18/9)

Avg length = 36.2 37.7 36.1 35 (35.9/34.2)

Table 2: CHARDat statistics. Differing #s by dim are
because there are more risk factors for most conditions, and
some do not have prevention strategies. Length is in words.

Dattr, CHARDatval, and CHARDattest, re-
spectively. The individual dim splits are called
dimtr, dimval, and dimtest, where dim is a
short-form of the particular dimension: rf,
treat, or prev. The individual dimension sub-
sets of CHARDat are called CHARDatDIM .

For each dim’s test split, we ensure that ap-
proximately half consist of examples from con-
ditions entirely unseen during training for that
dim, called dimtest−unseen. This is to assess
whether the model can generalize to unseen condi-
tions. The other half contains examples from con-
ditions seen during training called dimtest−seen,
but the specific condition and dim attribute com-
bination was unseen. The combined halves
(across dim) are called CHARDattest−unseen

and CHARDattest−seen. We do the same for the
val split to ensure consistency for model selection
purposes. CHARDat statistics are in Table 2.

3 Methodology
3.1 Models
BART and T5: We experiment using two pre-
trained seq2seq models: BART and T5 (both base
and large versions). These are suitable for our task
formulation (template infilling). T5 (Raffel et al.,
2020) has strong multitask pretraining. BART
(Lewis et al., 2020) is trained to reconstruct original
text from noised text (as a denoising autoencoder).
We use their HuggingFace codebases.

Retrieval Baseline (RETR): We use a retrieval-
based approach as a baseline. We manually query
Google using {condition + dim + dim attribute},
e.g. {asthma + risk factor + smoking}, and extract
either the featured snippet at the top of the results
page, or the text below the first link if there is no
featured snippet. If the featured snippet is a list
or table, we manually concatenate the items into a
single piece of text. An example is in Figure 1.

The extracted text approximates an explanation,

Figure 1: An example of the Google search results for the
query {asthma + risk factor + smoking} highlighting: a) the
featured snippet, b) the text below the first link.

which we then concatenate to the first part of the
associated template to form the final text, e.g. A
person with asthma has a/an smoking risk factor
because/since/as {retrieved explanation}. RETR

leverages Google’s strong search and summariza-
tion capabilities, serving as a useful baseline. Fur-
ther, Google Search is an evolving baseline that
continually challenges our CHARD models.2

3.2 Data Augmentation (DA)
Since CHARDat is relatively small, which is
mainly a function of our task and domain, i.e. there
are a limited number of non-obscure medical con-
ditions and associated dim attributes, we hypothe-
size that data augmentation (DA) techniques (Feng
et al., 2021a, 2020) may be useful.

As noted by Feng et al. (2021a), text genera-
tion and specialized domains (such as healthcare)
both present several challenges for DA. In our case,
many explanations contain clinical or health jar-
gon which makes techniques that leverage lexical
databases such as WordNet, e.g. synonym replace-
ment (Feng et al., 2020), challenging or impossible.

We decide to use backtranslation (BT) (Sennrich
et al., 2016) to augment examples in CHARDattr,
a popular and easy DA technique which translates a
sentence into another language and back to the orig-
inal language.3 This usually results in a slightly
altered version (paraphrase) of the original text.
BT is effective here as healthcare-related terms are
preserved relatively well, and the resulting para-
phrased explanation remains relatively intact.

We use UDA (Xie et al., 2020) for BT, which
translates sentences from English to French, then
back to English. UDA is a DA method that uses
unsupervised data through consistency training on
(x,DA(x)) pairs. An advantage of UDA’s BT is
that we can control for the degree of variation using

2We will release our current baseline data.
3This is sometimes referred to as round-trip translation.
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Tmp Text
0 A person with acne has an avoid irritants prevention because using oily

or irritating personal care products clog your pores causing acne.
0.5 if you use oily or irritant personal care products, you block pores and

cause acne.
0.7 using oily or irritating personal care products, you block acne pores.
0.9 use oily and irritating disinfectant products freezing your pores to

cause the Acne restructurs.
0 A person with MultipleSclerosis has a stress management prevention

because stress is more likely to exacerbate the symptoms of MS and
bring about a flare or relapse.

0.5 stress is more likely to exacerbate MS symptoms and lead to an out-
break or relapse

0.7 stress is more likely to exacerbate symptoms of MS and trigger a flare
or relapse.

0.9 severe mourning problems occurred at Vancouver Hospital (Prince
Edward Island), British Columbia. (...)

Table 3: Examples of original (tmp=0) and BT text. The
explanation portion (which is backtranslated) is italicized.

Backtranslation Temperature (tmp)
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80

0.4 0.5 0.6 0.7 0.8 0.9

ROUGE-1 ROUGE-2 ROUGE-L BERTScore

ROUGE and BERTScore vs. Backtranslation Temperature

Figure 2: Graph showing how avg. ROUGE and BERTScore
of BT vs. original text vary by BT tmp on CHARDattr .

a temperature (tmp) parameter, where higher val-
ues (e.g. 0.9) result in more varied paraphrases. We
only backtranslate the explanation portion of ex-
amples (concatenating them back to the preceding
part) as we wish to keep the preceding part intact.

From the examples in Table 3, we can see that
higher tmp typically results in more varied text,
albeit with issues with content preservation and
fluency. For the second example, the tmp=0.9 BT
is completely unrelated to the original text. This is
not entirely undesirable, as some noise may make
our trained models more robust. From Figure 2, we
see that the average ROUGE and BERTScore of
backtranslated CHARDattr text compared to the
original text decrease as tmp increases, as expected.

3.3 Evaluation Metrics
We use several standard text generation evaluation
metrics including reference-based token and se-
mantic comparison metrics used in works like Lin
et al. (2020) such as ROUGE (Lin and Hovy, 2003),
CIDEr (Vedantam et al., 2015), and SPICE (Ander-
son et al., 2016). SPICE translates text to semantic
scene graphs and calculates an F-score over graph
tuples. CIDEr captures sentence similarity, gram-

maticality, saliency, importance, and accuracy.4

We also use average word length (Len),
BERTScore (Zhang et al., 2019), and Perplex-
ity (PPL). BERTScore serves as a more seman-
tic similarity measure by assessing BERT (Devlin
et al., 2019) embeddings similarity between indi-
vidual tokens. We multiply by 100 when reporting
BERTScore. PPL approximately measures fluency,
where lower values represent higher fluency. We
use GPT-2 (Radford et al., 2019) for PPL. Higher
is better for all metrics other than PPL and Len.

4 Experimental Setup
4.1 Model Finetuning and Generation
For the standard (non-augmented) CHARD mod-
els, we train and evaluate four versions of each on
CHARDat, CHARDatRF , CHARDatTREAT ,
and CHARDatPREV , respectively. The first of
these is a combined model that learns to handle all
three dim at once depending on the dim given at
inference, while the latter three are models trained
on each individual dim. We predict that while the
latter three may perform better on their particular
dim, the first model is more effective overall as it
accomplishes our goal of having a single PLM that
can store knowledge and reason through several
dim. It is thus more adaptable and generalizable.

For training the CHARD models, we keep most
hyperparameters static, other than learning rate
(LR) which is tuned per individual model. For each
model, we select the epoch that corresponds to
highest ROUGE-2 on CHARDatval, and decode
using beam search. See Appendix C for more.

4.2 Data Augmentation Experiments
We try several backtranslation DA experiments.

2x DA with Different Tmp: Our first set of ex-
periments involves 2x DA (backtranslating each
CHARDattr explanation once, to 2x the original
training data) using different BT tmp which we call
BT-set: {0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We predict
that the optimal tmp lies in the 0.6-0.7 range, as the
text is modified to a reasonable degree.

Different DA Amounts (2x-10x): We also try
further DA amounts: 3x, 4x, 5x, 7x, and 10x
the original amount of training data. We explore
whether the amount of augmentation affects per-
formance, and hypothesize that performance will

4Matching metrics are sufficient as CHARD explanations
are standardized (space for explanations is low) since our
inputs present a particular condition and dim attribute combo.
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increase to a certain point and decline afterward.
This is because the advantages of DA may taper
off since the augmented data are variations of the
original, and models may overfit past a point.

DA Amount Strategies (best-tmp vs. diff-tmp):
We also investigate two strategies for selecting each
successive iteration of augmented examples. The
first is best-tmp, where all the augmented data
comes from BT of the tmp that performed best
for 2x DA (e.g. all from 0.7).5

The second is diff-tmp, where each successive
iteration is the tmp that performed next best (e.g.
2x is the best tmp, 3x is additionally the second-
best tmp, etc.). For the highest DA amounts (e.g.
10x), when the six tmp values in BT-set have been
exhausted, we go back to the best tmp and repeat.

Base vs. Large Models: For the base models
(BART-base and T5-base), we try all aforemen-
tioned tmp, DA amounts, and amount strategies.
For the large models, we try the top three temper-
atures (for 2x DA) and amount strategy that per-
formed best on the corresponding base model, and
only 3x, 5x, 7x, and 10x DA amounts.

Note that BT tmp and DA amounts are both
hyperparameters, so while we train models corre-
sponding to different values of them, the final cho-
sen models correspond to the ones that performed
best on CHARDatval. We then use these final
models to generate on CHARDattest. We report
the results of the overall best models in §5.

4.3 Human Evaluation
We conduct human evaluation using AMT.6 We ask
two approved annotators (with strong qualifications
and approval ratings on healthcare-related tasks)
to each evaluate all 141 CHARDattest examples.
Our evaluation uses pairwise comparison of the
outputs from two methods, split into three studies
per dim: RETR vs. best CHARD model, RETR

vs. human, and human vs. best CHARD model.
We ask annotators to choose which amongst the

two outputs (presented in a random order per exam-
ple) has better 1) medical accuracy (MedAcc), 2)
informativeness (Inform), and 3) readability (Read).
Medical accuracy refers to which explanation is
more clinically correct for the given dim attribute
and condition. Informativeness refers to which is
more complete and explains in sufficient detail (in-
cluding why?). Readability refers to which is more

5This is possible because UDA uses sampling, so even for
the same tmp, the backtranslations differ each time.

6See Appendix D for further human evaluation details.

Metric RETR BART-base BART-large T5-base T5-large
ROUGE-1 43.30 51.37 51.54 50.00 50.66
ROUGE-2 28.18 39.35 40.27 38.31 37.74
ROUGE-L 39.03 49.55 49.88 48.07 48.05
BLEU-1 32.20 31.20 28.40 32.60 34.30
BLEU-2 25.20 27.10 24.90 28.10 29.20
BLEU-3 21.50 24.70 22.90 25.50 26.40
BLEU-4 18.50 23.00 21.30 23.60 24.30

METEOR 24.40 22.10 22.10 21.80 22.10
CIDEr 2.36 8.56 6.90 8.71 9.03
SPICE 35.10 50.50 50.70 49.10 49.20

BERTScore 39.54 60.04 60.78 59.80 59.00
PPL 65.27 61.00 87.45 56.78 52.52
Len 52.80 20.16 18.60 21.35 22.23

Table 4: Avg. auto eval results of RETR and the best models
(for BART and T5) on CHARDattest. Bold corresponds to
best performance. For human text, PPL = 67.86, Len = 35.04.

Metric test split (full) test-seen test-unseen
ROUGE-1 50.66 49.42 51.93
ROUGE-2 37.74 37.04 38.35
ROUGE-L 48.05 46.98 49.12
BLEU-1 34.30 33.50 35.20
BLEU-2 29.20 28.60 29.90
BLEU-3 26.40 25.90 27.00
BLEU-4 24.30 23.80 24.80

METEOR 22.10 21.60 22.60
CIDEr 9.03 10.31 7.59
SPICE 49.20 48.60 49.80

BERTScore 59.00 57.79 60.18
PPL 52.52 51.06 53.96
Len 22.23 22.73 21.73

Table 5: Avg. auto eval results of T5-large onCHARDattest

and the test-seen and test-unseen halves.

readable, which includes fluency (natural-sounding
English) and conciseness/brevity (not overly long).

There are 3 choices for each evaluation aspect -
O1: first is better, O2: second is better, O3: both
are indistinguishable. To aggregate multiple anno-
tations per example, we find the overall fraction of
responses towards each outcome value.

5 Results and Analysis
We report automatic results on CHARDattest of
the best models (for BART-base, BART-large, T5-
base, T5-large) trained on CHARDat compared
to RETR in Table 4. The best models are tmp=0.9
2x DA for BART (base and large), 5x DA with diff-
tmp for T5-base, and tmp=0.6 2x DA for T5-large.

Our best overall CHARD model is T5-large
based on automatic results and qualitative analy-
sis. We break down results of T5-large on CHAR-
Dattest−seen and CHARDattest−unseen in Table
5. We show results of T5-large compared to T5-
largeDIM (models trained on the individual dim)
in Table 6. We conduct human evaluation with
T5-large, and the results are in Table 7.

Graphs displaying models’ ROUGE-2 on
CHARDatval for 2x DA across various BT tmp
and different DA amounts can be found in Figures
3 and 4, respectively. Tables 8 and 9 contain quali-
tative examples, with more in Appendix E.
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Risk Factors (RFtest) Treatment (TREATtest) Prevention (PREVtest)
Metric T5-large T5-largeRF T5-large T5-largeTREAT T5-large T5-largePREV

ROUGE-1 52.74 53.17 49.42 47.38 47.73 50.00
ROUGE-2 40.52 41.88 36.12 36.69 33.00 36.10
ROUGE-L 50.40 51.03 46.60 45.54 44.43 48.19
BLEU-1 34.80 34.70 31.10 25.70 30.80 29.80
BLEU-2 30.40 30.90 26.30 22.40 25.10 25.00
BLEU-3 27.90 28.60 23.90 20.70 21.90 22.00
BLEU-4 26.10 26.90 22.10 19.30 19.30 19.30

METEOR 23.00 24.20 20.70 19.20 20.50 20.80
CIDEr 13.50 10.57 5.06 5.98 5.88 5.83
SPICE 49.90 51.50 46.60 45.30 46.50 46.60

BERTScore 60.40 61.03 58.07 56.60 56.90 59.09
PPL 40.90 58.92 52.13 86.15 84.06 110.66
Len 22.30 20.28 22.09 19.82 22.27 20.52

Table 6: Breakdown of the avg. auto eval results of T5-large compared to T5-largeDIM models (trained on the three individual
dim) on the respective dim subsets of CHARDattest. Bold corresponds to best performance per dim.
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Figure 3: Graph showing how avg. ROUGE-2 on CHAR-
Datval varies by backtranslation temperature for 2x DA.

Methods Aspect O1 O2 O3

RETR vs. Human
MedAcc 0.45 0.53 0.02
Inform 0.45 0.53 0.02
Read 0.22 0.69 0.09

Human vs. T5
MedAcc 0.72 0.24 0.04
Inform 0.72 0.25 0.03
Read 0.41 0.49 0.10

RETR vs. T5
MedAcc 0.73 0.25 0.02
Inform 0.73 0.26 0.01
Read 0.35 0.62 0.03

Table 7: Avg. human eval results on CHARDattest. O1:
first method wins, O2: second method wins, O3: indistinguish-
able. Bold corresponds to higher fractional outcome. T5 refers
to T5-large. See §4.3 and Appendix D for further details.

5.1 Automatic Evaluation Results

From Table 4, we see that all CHARD models
perform better than RETR across most metrics.
RETR’s average outputs are much longer than those
of our models and humans. Among our models, T5-
large and BART-large perform best, demonstrating
that larger models are more adept. T5-large per-
forms best overall (combined with the qual analysis
in §5.3), with the longest average outputs among
our models. Some of our models achieve better
average fluency (PPL) compared to humans, but
the outputs are generally noticeably shorter.

From Table 5, we see that T5-large surprisingly
performs better on the test-unseen half. It appears
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Figure 4: Graph showing how avg. ROUGE-2 on CHAR-
Datval varies by DA amount. 1x essentially refers to no DA.

Method Text
Input (1) A person with Hyperhidrosis has a medication treatment because {explanation}
Human A person with Hyperhidrosis has a medication treatment because anticholinergics

medicines such as glycopyrrolate, oxybutynin, benztropine, propantheline etc are
helping to prevent the stimulation of sweat glands and, thus, decreasing sweating.

RETR A person with Hyperhidrosis has a medication treatment because the most common
medications used to manage excessive sweating are anticholinergics, including but
not limited to: Glycopyrrolate (Robinul). Oxybutynin (Ditropan). Benztropine.
Propantheline bromide.

T5-L A person with Hyperhidrosis has a medication treatment because medications such
as ibuprofen, phenytoin, and phenobarbital can help reduce the amount of sweating
in the body.

T5-B A person with Hyperhidrosis has a medication treatment because it helps to reduce
the amount of blood in the body and reduces the risk of a blood clot.

Input (2) A person with Alzheimers has an engage in activity prevention because {explanation}
Human A person with Alzheimers has an engage in activity prevention because engaging in

activity will increase nerve connections in the brain or release hormones that increase
nerve cell creation and this helps preserve nerve cells in the brain and mental function

T5-L A person with Alzheimers has an engage in activity prevention because activities such
as walking, jogging, swimming, and playing games can help prevent Alzheimer’s

BART-B A person with Alzheimers has an engage in activity prevention because a person with
Alzheimer’s disease is more likely to develop dementia

Input (3) A person with Prostatitis has an infection risk factor because {explanation}
Human A person with Prostatitis has an infection risk factor because the condition is caused

by common strains of bacteria which spread from other parts of the urinary or
reproductive systems to infect and inflame the prostate resulting in prostatitis.

T5-L A person with Prostatitis has an infection risk factor because infections of the prostate,
urethra, and genital tract can lead to prostatitis.

Table 8: Qual examples for CHARDattest−seen: human,
RETR, T5-large (L), T5-base (B), BART-base (B).

that the model can generalize decently to unseen
conditions when trained on CHARDat. This may
partially be due to similar explanations for partic-
ular dim attributes across conditions, e.g. why
sleep helps treat some conditions may be similar.

From Table 6, we see that for most dim (namely
RF and PREV), the model trained on that specific
dim performs better on that dim. However, our
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Method Text
Input (4) A person with Costochondritis has a fix improper posture prevention because {expla-

nation}
Human A person with Costochondritis has an fix improper posture prevention because bad

posture puts stress on joints and tissues, causing joint stiffness, weakened muscles,
and inflammation that is so common in Costochondritis.

RETR A person with Costochondritis has a fix improper posture prevention because what
can I do to relieve costochondritis? Lifestyle and home remedies. Nonprescription
pain relievers. Acetaminophen (Tylenol, others) ibuprofen (Advil, Motrin IB, others)
or naproxen sodium (Aleve, others) (...)

T5-L A person with Costochondritis has a fix improper posture prevention because poor
posture can lead to pain and stiffness.

Input (5) A person with rheumatoid has a diet risk factor because {explanation}
Human A person with rheumatoid has a diet risk factor because unhealthy food choices can

increase inflammation from rheumatoid
RETR A person with rheumatoid has a diet risk factor because the results of this study

revealed that high intakes of carbohydrates (e.g., potatoes) might be associated with
increased RA risks.

T5-L A person with rheumatoid has a diet risk factor because people who eat a high-fat
diet are at a higher risk of developing the disease.

BART-L A person with rheumatoid has a diet risk factor because a diet rich in red meat, dairy
products, and dairy products can cause inflammation

Input (6) A person with depression has a life-changing event risk factor because {explanation}
Human A person with depression has a life-changing event risk factor because approximately

70% of first depression episodes and 40% of recurrent episodes of depression are
preceded by a severe life event

RETR A person with depression has a life-changing event risk factor because psychological
and Psychosocial Risk Factors for Recurrence · by SL Burcusa · 2007 · Cited by 1085
— These factors include age at onset of the first episode, lifetime number of

T5-L A person with depression has a life-changing event risk factor because a major life
event, such as the death of a loved one, can increase the risk of depression.

Table 9: Qual examples for CHARDattest−unseen: human,
RETR, T5-large (L), BART-large (L).

general T5-large model performs better on TREAT.
It may be that training on CHARDat has allowed
the model to learn from data of other dim, improv-
ing its overall knowledge and generation capabili-
ties (an advantage of a single combined model).

From Figure 3, we see that the BART models
generally increase in performance with higher BT
tmp (upward trend), whereas T5 fluctuates. This
may be due several reasons, e.g. differences in the
architecture and pretraining strategies of the mod-
els, allowing BART to leverage noisy data more
effectively. From Figure 4, we see that performance
generally increases for each model up to a certain
point (e.g. 2x or 3x DA), and then decreases after-
ward, aligning with our hypothesis from §4.2.

5.2 Human Evaluation Results
From Table 7, we see that both RETR and T5-large
are outperformed by humans, although RETR is
relatively close in informativeness and medical ac-
curacy, and T5-large slightly outperforms on read-
ability. RETR outperforms T5-large on medical
accuracy and informativeness, which is somewhat
expected as it uses Google Search. It is worse than
T5-large on readability, as our models generate
more fluent, concise, and readable text (see §5.3).

5.3 Qualitative Analysis
We examine the qualitative examples in Tables 8
and 9. Firstly, we see that RETR is able to generally
perform well by extracting relevant information
(ex.1 - a list of medications for Hyperhidrosis, ex.5
- that carbohydrates increase RA risk), which is
expected using Google Search. However, it some-

times extracts a lengthy amount of irrelevant infor-
mation. For ex.4, RETR extracts a difficult-to-read
list of different TREAT strategies, which is for the
wrong dim, and does not narrow down on an ex-
planation for the specific dim attribute in the input.
For ex.6, it extracts the info and beginning of a
passage from a scientific article, ending abruptly
and not explaining the given dim attribute.

Our models, specifically T5-large, are generally
able to output more concise, readable, and some-
times relevant explanations compared to RETR. For
ex.1, T5-large outputs a list of medications, albeit
not for Hyperhidrosis - showing weaknesses in
medical accuracy. Other than ibuprofen, the other
medications are not in CHARDattr, showing
that these were likely already known to T5-large
through pretraining. For ex.2, it generates a reason-
able list of activities to help prevent Alzheimer’s,
and for ex.3, it lists correct body parts where an
infection can occur to cause Prostatitis. It can gen-
eralize well to unseen conditions, as shown through
ex.4-6. It reasons that poor posture can lead to pain
and stiffness, high-fat diets can increase the chance
of rheumatoid, and that a major life event ("death
of a loved one") can cause depression. These gener-
alization capabilities are likely from a combination
of pretraining and CHARDattr.

Compared to humans, T5-large’s outputs are
lacking. Human explanations are typically longer
and more informative, explaining the exact reason
(why?) a specific dim attribute relates to the given
condition. For ex.2, it explains how activities can
help "preserve nerve cells in the brain and mental
function", whereas T5-large simply lists activities.
This similarly occurs for ex.3-5. Human explana-
tions are also typically more medically accurate,
e.g. for ex.1, the listed medications are correct.
However, we do see that some of T5-large’s outputs
(for ex.1,2,4) are more readable. Further, T5-large
sometimes presents more information, e.g. an ex-
act list of activities for ex.2, a specific type of diet
("high-fat") for ex.5 (human just says "unhealthy"),
and an example of a life-changing event for ex.6.

BART-large also performs decently. In ex.5, it
lists several specific and correct types of foods
("red meat, dairy products"). The base models
perform much worse. For ex.1, T5-base talks about
medication reducing "blood clots", unrelated to
Hyperhydrosis. For ex.2, BART-base writes an ex-
planation completely irrelevant to the input dim.
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6 Directions for Improvement
We see that our models are decent and generate
readable text, but can improve on medical accuracy
and informativeness. While they are not nearly
ready for real-world use, they show potential.

As stated, the purpose of CHARD is to assess
the capabilities of PLMs to act as implicit clinical
knowledge bases that can reason through several
dimensions. How can we improve our models, and
possibly our dataset and task formulation?

Dataset and task formulation: We introduce
CHARD and initially frame the task using a tem-
plate infilling approach which is more constrained.
More flexible formulations may better leverage the
knowledge and generation capabilities of PLMs.

Our current approach involves generating expla-
nations about a single condition and dim attribute
at a time. We can possibly improve CHARDat
by annotating for more complicated input queries.
This is because a PLM may be more effective at an-
swering more complicated queries, e.g. comparing
and contrasting conditions and dim and multi-hop
reasoning. It is likely easier to make complicated
inferences and connections over the abstract PLM
embedding space than over retrieved text passages.

Further, we can expand CHARDat to include
more dimensions and topics in the health domain.
These improvements may allow for the training of
a single system that is able to make complicated
clinical inferences across various topics and dim.

Model improvements: We can explore models
such as GPT-3 (Brown et al., 2020) and PALM
(Chowdhery et al., 2022) for CHARD that are
larger with stronger pretraining. We can also inves-
tigate enhancing PLMs with information retrieval,
e.g. using a retrieval approach to obtain relevant
scientific literature as evidence, combined with a
text summarization system to digest the content.
Our model can then conduct its clinical reasoning
on this digested content. Users can potentially take
advantage of such a system to automatically ver-
ify the medical accuracy of generated explanations,
and then improve the generation model itself using
this feedback loop (i.e. a self-improving system).

7 Related Work
Constrained Text Generation: There have been
several works on constrained text generation. For
creative text generation, Gangal et al. (2022) intro-
duce narrative reordering (NAREOR) to edit the
temporality of narratives. Keh et al. (2022) and

Keh et al. (2023) explore the generation of person-
ifications and tongue twisters, respectively. Don-
ahue et al. (2020) introduce and investigate the task
of infilling. Feng et al. (2019) propose Semantic
Text Exchange to adjust topic-level text seman-
tics using infilling. Rajagopal et al. (2021) investi-
gate cross-domain reasoning using a prompt-tuning
setup. Our work distinctly investigates template in-
filling for clinical reasoning along dimensions.

Commonsense Reasoning for Models: One
large commonsense KG is COMET, which trains
on KG edges to learn connections between words
and phrases. COSMIC (Ghosal et al., 2020) uses
COMET to inject commonsense into models. Com-
monGen (Lin et al., 2020) assesses the common-
sense reasoning of text generation models. Several
works investigate CommonGen, including SAP-
PHIRE (Feng et al., 2021b) and VisCTG (Feng
et al., 2022), the latter of which uses visual ground-
ing. Unlike these works, CHARD distinctly inves-
tigates reasoning for the clinical/health domain.

Reasoning for Clinical/Health Domain: Most
existing work here involves retrieval or extraction.
MIMICause (Khetan et al., 2022) extracts causal
medical information from electronic health records
to help understand narratives in clinical texts. Ahne
et al. (2022) extract a causal graph and reason about
diabetes distress for better understanding the opin-
ions, feelings, and observations of the diabetes on-
line community from a causality perspective.

For generation, Moramarco et al. (2021) inves-
tigate the use of LMs to simplify medical text.
Abaho et al. (2022) probe factual knowledge from
LMs to elicit answers related to treatment out-
comes. CHARD has a different goal: rather than
simply probe for factual knowledge, we assess how
LMs can act as and reason through an implicit
knowledge base. Meng et al. (2022) investigate
probing biomedical knowledge by introducing a
benchmark, MedLAMA, that focuses on 19 rela-
tions. CHARD instead focuses on clinical knowl-
edge reasoning along different dimensions.

8 Conclusion and Future Work
In conclusion, we proposed and investigated
the task of CHARD: Clinical Health-Aware
Reasoning across Dimensions, to explore the capa-
bility of text generation models to act as implicit
clinical knowledge bases and generate explanations
across several health dimensions. We presented a
dataset, CHARDat, and conducted experiments
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with BART and T5. Extensive evaluation and qual-
itative analysis demonstrated that our models are
decent, especially for generating concise and read-
able text, but can be improved on medical accuracy
and informativeness, and that CHARD is chal-
lenging with much potential for further exploration.
We highly encourage the research community to
further investigate and improve upon CHARD.

Future directions are discussed in §6. Some addi-
tional ideas include trying more data augmentation
strategies and decoding strategies for text infilling.

Limitations

We discuss some limitations of our work and poten-
tial directions for improvement in §6. Specifically,
our template-infilling approach is less flexible, and
we can expand to more complicated input queries
to better leverage the power of PLMs in future
work. Further, CHARDat focuses on three main
clinical dimensions, which can be expanded upon
to include more dimensions and topics in the future.
Our seq2seq models are also relatively weaker com-
pared to GPT-3, PALM, and recent larger PLMs,
which may perform more effectively on CHARD.
We are also investigating a completely generative
approach, and combining generation with retrieval
in interesting ways may be more effective. Over-
all, our current CHARD models have room to
improve on medical accuracy and informativeness,
and are not nearly ready for real-world use.

However, we note again that we are the first to
propose CHARD, and our work is the first step
towards longer-term goals regarding clinical rea-
soning using PLMs. We are after more of the com-
monsense medical reasoning for now, rather than
very deep medical knowledge. In this paper, we
see how far one can get with a standard task formu-
lation, NLP methods, seq2seq models, and AMT
annotations. As they say, "walk before you run"!

Ethics

We collected CHARDat and conducted our hu-
man evaluation studies using AMT, in a manner
consistent with terms of use of any sources and
intellectual property and privacy rights of AMT
crowd workers.

Our collected dataset, CHARDat, consists of
general clinical information, where explanations
are impersonal. We also manually examined a large
subset of the data, and ensured there were no issues
with respect to privacy and other ethical concerns,

e.g. offensive words, profanities, racism, gender
bias, and other malicious language.

We acknowledge the weaknesses of CHARD
models and the potential risks if they are used for
real-world purposes. We will never use our models
or encourage their use for real-world purposes, at
least in their current state, and also emphasize this
in the paper. As we noted, we propose CHARD
and conduct our initial experiments purely for in-
vestigation purposes and to test our hypotheses.
Our paper presents an important contribution to
the ML, NLP, and healthcare communities, and we
encourage researchers to further improve upon it.

Our task, models, dataset, and accompanying
publication are intended only for research purposes
and to assess the capabilities of text generators.
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A Full List of Health Conditions

See Table 10 for a list of all health conditions in
CHARDat.

B CHARDat Annotation Details

Human annotation for CHARDat was done via
paid crowdworkers on AMT, who were from An-
glophone countries. They were selected through a
series of qualification tests on a small subset of the
samples, and have a history of high approval rates
(> 95%) and good performance on related tasks.
Based on initial annotations and performance on
the qualification tests, workers were only re-hired
if their performance was sufficient over time and
they reliably followed the given instructions. The
annotators were paid variable amounts (with peri-
odic bonuses over time) depending on their perfor-
mance and consistency, and the pay for all workers
exceeds the minimum wage for the USA.

The workers were asked to write passages (that
include explanations) that are as specific and factu-
ally accurate as possible, describing how a specific
dimension attribute relates to the given condition.
Each HIT (annotation page) contains a single con-
dition + dimension attribute combination, and they
write a single passage that fills in the given template
with an explanation. In the instructions, we de-
scribe each dimension in detail, and include several
examples of correct and incorrect passages (regard-
ing medical/factual accuracy, brevity/readability,
and informativeness). We also encourage them to
consult useful and trusted clinical resources such
as MayoClinic, CDC, WebMD, and Healthline, if
necessary, while writing the explanation.

Annotations were manually examined by the au-
thors as they came in, and annotators were asked
to improve their explanations if necessary. Annota-
tors with consistently poor annotations were asked
to stop annotating, and their completed annotations
were re-annotated by others. At the end of the data
collection process, the authors manually examined
a large subset of CHARDat, ensuring sufficiently
high quality of annotations in terms of medical ac-
curacy, informativeness, and readability.

C Further Model Finetuning and
Generation Details

T5-large consists of 770M params, T5-base 220M
params, BART-large 406M params, and BART-
base 139M params. For all models, we use beam

search with a beam size of 5, decoder early stop-
ping, a decoder length penalty of 0.6, and a de-
coder minimum length of 1. We set the maximum
encoder and decoder lengths depending on values
that can fit all examples in CHARDattr, which
ended up being 32 and 128 (for encoder and de-
coder, respectively) for the BART models, and 35
and 128 for the T5 models. Models are trained
using fp16, and Adam optimizer with epsilon=1e-
08. We use a training seed of 42 for all models,
and a random seed of 42 for all other scripts that
involved randomization. Decoding is done using
beam search with a beam width of 5.

For model training, we use a batch size of either
64 or 32 for T5-base and BART-base, and either 8
or 16 for BART and T5-large (depending on GPU
memory). For T5-base and BART-base, we use 400
warmup steps, 500 for BART-large, and 1200 for
T5-large. We train all models up to a reasonable
number of epochs (e.g. 20 to 30 for base models
and 10 to 15 for large models). The learning rates
for CHARD models were determined by trying a
range of values (e.g. from 1e-8 to 5e-1), and finding
ones which led to good convergence behavior. For
the best-performing models, learning rates are as
follows: BART-base = 5e-06, BART-large = 1e-05,
T5-base = 1e-03, T5-large = 1e-05.

Training was done using single GTX 1080 Ti,
TITAN RTX, RTX 2080 Ti, and GTX TITAN X
GPUs. Model training time varied depending on
the model type+size and amount of data augmenta-
tion, and varied between 5 minutes to 3 hours.

D Further Human Evaluation Details

Human evaluation was done via paid crowdwork-
ers on AMT, who were from Anglophone countries.
They were selected through qualification tests and
have a history of high approval rates (> 95%) and
good performance on related tasks. Each exam-
ple was evaluated by 2 annotators. The time given
for each AMT task instance or HIT was 1 hour
maximum for an approximately 1-minute task. Suf-
ficient time to read instructions, as calibrated by
authors, was also considered. Annotators were paid
20 cents per HIT. This rate ($12/hr) exceeds the
minimum wage for the USA ($7.25/hr) and consti-
tutes fair pay. Workers who performed well were
also paid periodic bonuses based on the timeliness
and quality of their annotations.

The human evaluation was split into 9 studies: 3
pairwise method comparisons (RETR vs. T5-large,
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Dysthymia cfs ibs Narcolepsy bulimia
Hypothyroidism Costochondritis psychosis CysticFibrosis POTS

MultipleSclerosis Gastroparesis gout adhd diabetes
CrohnsDisease lupus rheumatoid Sinusitis thyroidcancer
Hyperhidrosis gerd AnkylosingSpondylitis endometriosis schizophrenia

asthma bipolar depression pcos covid19
acne anxiety dementia ptsd dystonia

Epilepsy ErectileDysfunction Herpes insomnia Anemia
LymeDisease migraine ocd parkinsons Alzheimers

hpv Prostatitis backpain Sciatica Fibromyalgia
bpd PagetSchroetter

Table 10: A list of all 52 health conditions used in CHARDat.

RETR vs. human, and human vs. T5-large) by 3 di-
mensions (risk factors, treatment, and prevention).
Each HIT or task page presented a given condi-
tion, the associated dimension attribute, and two
explanations (from the two methods of the study)
in a random order. They are asked to select among
the three choices (first explanation is better, second
explanation is better, hard to prefer one over the
other) for the three evaluation aspects of medical
accuracy, informativeness, and readability. In the
instructions, we describe the clinical dimension and
each evaluation aspect in detail with positive and
negative examples of each, and encouraged them
to consult useful and trusted clinical resources such
as MayoClinic, CDC, WebMD, and Healthline, if
necessary, while evaluating the explanations.

E Further Qualitative Examples

See Tables 11 and 12 for more qualitative examples
on CHARDattest.
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Method Text
Input A person with Hyperhidrosis has a/an infection risk factor because/since/as {explanation}
Human A person with Hyperhidrosis has an infection risk factor because some kinds of infections like tuberculosis, HIV,

bone infection cause hyperhidrosis
RETR A person with Hyperhidrosis has a/an infection risk factor because/since/as this increases the risk of skin conditions

such as athlete’s foot and more severe conditions such as bacterial infections or pitted keratolysis. Study results
report a nearly 30% greater risk of skin infections in patients with hyperhidrosis compared with healthy controls.

T5-L A person with Hyperhidrosis has an infection risk factor because infections such as staph, typhoid, hepatitis and
polio can cause excessive sweating.

T5-B A person with Hyperhidrosis has an infection risk factor because a person who has a viral infection is more likely
to have a virus infection.

BART-L A person with Hyperhidrosis has an infection risk factor because infection can cause hyperhidrosis
BART-B A person with Hyperhidrosis has an infection risk factor because a person with hyperhidrosis is more likely to have

an infection.
Input A person with AnkylosingSpondylitis has a/an age risk factor because/since/as {explanation}
Human A person with AnkylosingSpondylitis has an age risk factor because about 80 percent of people first develop

ankylosing spondylitis symptoms under age 30
RETR A person with AnkylosingSpondylitis has a/an age risk factor because/since/as about 80 percent of people first

develop ankylosing spondylitis symptoms under age 30
T5-L A person with AnkylosingSpondylitis has an age risk factor because people over 50 years of age are at a higher risk

of developing the disease
T5-B A person with AnkylosingSpondylitis has an age risk factor because older adults are more likely to develop

ankylosis.
BART-L A person with AnkylosingSpondylitis has an age risk factor because the risk of developing ankylosis increases with

age
BART-B A person with AnkylosingSpondylitis has an age risk factor because older people are more likely to develop the

disease
Input A person with rheumatoid has a/an regular exercise treatment because/since/as {explanation}
Human A person with rheumatoid has a/an regular exercise treatment because it helps reduce the disability often associated

with rheumatoid arthritis and boosts strength and flexibility
RETR A person with rheumatoid has a/an regular exercise treatment because/since/as but exercise is one of the key

treatments to help reduce the disability often associated with rheumatoid arthritis. Regular exercise can boost
strength and flexibility in people who have rheumatoid arthritis. Stronger muscles can better support your joints,
while improved flexibility can aid joint function.

T5-L A person with rheumatoid has a regular exercise treatment because exercise can help reduce inflammation and
improve blood flow to the joints.

T5-B A person with rheumatoid has a regular exercise treatment because regular exercise can help reduce the symptoms
of the disease.

BART-L A person with rheumatoid has a regular exercise treatment because exercise can help reduce inflammation and pain
BART-B A person with rheumatoid has a regular exercise treatment because regular exercise can help reduce inflammation

and inflammation in the body.

Table 11: More qual examples for CHARDattest: human, RETR, T5-large (L), T5-base (B), BART-large (L), BART-base (B)
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Method Text
Input A person with thyroidcancer has a/an chemotherapy treatment because/since/as {explanation}
Human A person with thyroidcancer has a chemotherapy treatment because Chemotherapy (chemo) uses anti-cancer drugs

that are injected into a vein or are taken by mouth. Chemotherapy is systemic therapy, which means that the drug
enters the bloodstream and travels throughout the body to reach and destroy cancer cells and stops cancer growth.

RETR A person with thyroidcancer has a/an chemotherapy treatment because/since/as chemotherapy is seldom helpful for
most types of thyroid cancer, but fortunately it is not needed in most cases. It is often combined with external beam
radiation therapy for anaplastic thyroid cancer and is sometimes used for other advanced cancers that no longer
respond to other treatments.

T5-L A person with thyroidcancer has a chemotherapy treatment because chemotherapy destroys the cells that cause the
cancer.

T5-B A person with thyroidcancer has a chemotherapy treatment because chemotherapy reduces the risk of thyroid
cancer.

BART-L A person with thyroidcancer has a chemotherapy treatment because chemotherapy can slow down the growth of
thyroid cancer

BART-B A person with thyroidcancer has a chemotherapy treatment because chemotherapy can help reduce the risk of
thyroid cancer

Input A person with depression has a/an medical conditions risk factor because/since/as {explanation}
Human A person with depression has a medical conditions risk factor because the pain and stress that come with certain

conditions, including cancer, stroke, or heart disease, can take a toll on a person’s mental state resulting in
depression.

RETR A person with depression has a/an medical conditions risk factor because/since/as more commonly studied were
the connections between depression and cardiovascular disease, metabolic syndrome, biochemical alterations,
diabetes, dementia, cognitive impairment, Alzheimer’s disease, somatization and chronic pain, asthma, arthritis,
and hyperlipidemia.

T5-L A person with depression has a medical conditions risk factor because depression can be caused by a number of
medical conditions, such as diabetes, heart disease, high blood pressure, high cholesterol and high blood sugar.

T5-B A person with depression has a medical conditions risk factor because medical conditions such as diabetes, heart
disease, diabetes, AIDS, and other conditions that cause depression, such as cancer, are linked to depression.

BART-L A person with depression has a medical conditions risk factor because depression can be caused by a variety of
medical conditions.

BART-B A person with depression has a medical conditions risk factor because depression can be a cause of depression.
Input A person with depression has a/an grief risk factor because/since/as {explanation}
Human A person with depression has a grief risk factor because grief associated with loss of dear one greatly increases the

risk of psychiatric complications such as depression
RETR A person with depression has a/an grief risk factor because/since/as risk Factors · Genetics: A history of depression

in your family may make it more likely for you to get it. · Death or loss: Sadness and grief are ...
T5-L A person with depression has a grief risk factor because people who have experienced a loss of a loved one are

more likely to develop depression.
T5-B A person with depression has a grief risk factor because grief is the most common cause of depression.
BART-L A person with depression has a grief risk factor because grief can cause depression
BART-B A person with depression has a grief risk factor because grief is associated with depression.

Table 12: More qual examples for CHARDattest: human, RETR, T5-large (L), T5-base (B), BART-large (L), BART-base (B)
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