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Abstract

Generation-based data augmentation (DA) has
been presented in several works as a way to
improve offensive language detection. How-
ever, the effectiveness of generative DA has
been shown only in limited scenarios, and the
potential injection of biases when using gener-
ated data to classify offensive language has not
been investigated. Our aim is that of analyzing
the feasibility of generative data augmentation
more in-depth with two main focuses. First, we
investigate the robustness of models trained on
generated data in a variety of data augmenta-
tion setups, both novel and already presented
in previous work, and compare their perfor-
mance on four widely-used English offensive
language datasets that present inherent differ-
ences in terms of content and complexity. In
addition to this, we analyze models using the
HateCheck suite, a series of functional tests
created to challenge hate speech detection sys-
tems. Second, we investigate potential lexical
bias issues through a qualitative analysis of the
generated data. We find that the potential posi-
tive impact of generative data augmentation on
model performance is unreliable, and genera-
tive DA can also have unpredictable effects on
lexical bias.

 Warning: this paper contains exam-
ples that may be offensive or upsetting.

1 Introduction

Even though large language models have been
found to have a tendency to encode and propa-
gate undesirable social bias (Bender et al., 2021),
going as far as generating toxic sequences start-
ing from non-toxic prompts (Gehman et al., 2020),
the use of synthetic data for offensive language
detection has been found to be potentially help-
ful in improving models (e.g. Juuti et al. (2020);
Wullach et al. (2021); D’Sa et al. (2021)). Indeed,
data augmentation (DA) through generation has the
potential to mitigate some of the known issues of

smaller datasets, which are common in offensive
language detection, such as lack of linguistic varia-
tion and risk of overfitting (Vidgen and Derczynski,
2020). Furthermore, synthetic data can overcome
privacy issues related to the use of social media
data obtained without user consent in research ex-
periments. It can also mitigate dataset decay, an
issue affecting reproducibility, since online mes-
sages, especially abusive ones, tend to be deleted
over time, while synthetic examples do not present
this issue (Klubicka and Fernández, 2018).

While generative DA has been shown to be po-
tentially useful for the task of detecting offensive
and abusive language online in multiple works, sev-
eral aspects and implications of it remain unex-
plored. First of all, generative DA has mostly been
shown to work for offensive language detection
when starting with a single specific dataset and
using a specific generation setup, with no investi-
gation of the impact of different generation setups
on the quality of the augmented data, as well as
little exploration of cross-dataset or cross-domain
performance. The first aim of our work is therefore
that of assessing the robustness of models across
different sources of variation as follows: i) we train
and test our models using four English offensive
language datasets, testing both within dataset and
cross-dataset performance; ii) we simulate two low-
resource scenarios, in which we start with differ-
ent quantities of gold examples; iii) we compare
four different generation setups, of which two were
used in previous work and two are novel; iv) we
experiment with different thresholds for filtering
the generated data prior to using it for training.

Our second aim for this work is that of conduct-
ing a qualitative analysis on the generated data,
with a focus on lexical bias. In order to do this
we compute the correlation between tokens in of-
fensive texts using PMI1, and we test the models

1For this, we use the implementation by Ramponi and
Tonelli (2022).
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trained on augmented data on the HateCheck suite
(Röttger et al., 2021), which includes a series of
functional tests aimed at finding model weaknesses.

2 Related Work

Model-based data augmentation exploiting large
language models (LLMs) such as GPT-2 (Radford
et al., 2019) has been found effective for various
NLP tasks. One method that has been shown to be
promising is fine-tuning GPT-2 on annotated data,
and then using it to generate additional similar data.
The most common approach is prepending labels to
sequences during fine-tuning, and then using labels
as prompts for the model to generate sequences
belonging to specific classes (Anaby-Tavor et al.,
2020; Tepper et al., 2020; Kumar et al., 2020).

Similar methods have also been successfully ap-
plied to abusive language classification. For in-
stance, Juuti et al. (2020) find that DA using a
fine-tuned GPT-2 model leads to performance im-
provements in very low-resource scenarios. Liu
et al. (2020) use a conditional variant of GPT-2
based on reinforcement learning, where lexical fea-
tures for each class are extracted from the entire
dataset and then used for generation. Wullach et al.
(2021) and D’Sa et al. (2021) use GPT-2 to gener-
ate synthetic hate speech data. They find that the
addition of large amounts of synthetic data helps
classification when starting from datasets contain-
ing thousands of labeled instances. While D’Sa
et al. (2021) follow the label-prepending approach
of Anaby-Tavor et al. (2020), Wullach et al. (2021)
train a separate generative model on data belonging
to each class. Both approaches are found effective,
but they have never been comparatively evaluated.

To our knowledge, the robustness of models
trained using generation-based DA has not been
analyzed in depth. While Wullach et al. (2021) test
their models cross-dataset, results are presented in
a setup in which models are trained on 4 datasets to-
gether and tested on a fifth one. This setup presup-
poses that multiple datasets can be used at once for
training models. However, this might not always be
the case when DA is needed, so we evaluate cross-
dataset setups in which only one dataset is available
for training. In addition, to our knowledge ours is
the first work to pair a robustness analysis with a
qualitative analysis of lexical bias in the context of
generative DA for this task.

3 Data

3.1 Dataset Description

We use four English datasets annotated for offen-
sive or abusive language for training and testing
our models. These datasets have been chosen be-
cause they are widely used and they differ in terms
of content, since they were created to study differ-
ent aspects of offensive language. Intuitively, this
should allow us to assess the out-of-domain behav-
ior of models when doing cross-dataset testing.

Agreement [AG] This dataset by Leonardelli
et al. (2021) is annotated for offensive language and
agreement level among annotators. It contains over
10k tweets dealing with three widely discussed top-
ics on Twitter: the Black Lives Matter movement,
the 2020 US elections, and Covid-19. Offensive
tweets constitute 31% of the dataset.2

Founta [FO](Founta et al., 2018). This dataset
is among the most widely used abusive language
datasets in the literature, and it has been already
employed for generative data augmentation (Wul-
lach et al., 2021; D’Sa et al., 2021). It contains
around 100k Twitter posts annotated using four la-
bels: hateful (7.5%), abusive (11%), normal (59%),
and spam. In order to keep a binary classification
setup that is consistent with the other datasets we
use in our experiments, we group the hateful and
abusive classes together into one single abusive
class, following Leonardelli et al. (2021).3

OLID [OL] The Offensive Language Identifica-
tion Dataset (Zampieri et al., 2019). This dataset
consists of 14,100 Twitter posts annotated for of-
fensive language with two more fine-grained levels
of annotation regarding the target of the offense.
In our experiments we only consider the broader
binary level of annotation, for which 33% of the
dataset is labeled as offensive. The test set we
pair with this dataset is SOLID [SO] (Zampieri
et al., 2020), which was used in the OffensEval
2020 shared task and follows the same annotation
guidelines.4

SBIC [SB] The Social Bias Inference Corpus
(Sap et al., 2020) contains 40k posts from Twitter,
Reddit, and Stormfront, of which 44.8% offensive.
While this dataset provides fine-grained annota-
tions on social biases, we only consider the binary
offensive/not offensive labels in our experiments.5

2https://github.com/dhfbk/annotators-agreement-dataset
3https://zenodo.org/record/3678559
4https://sites.google.com/site/offensevalsharedtask/olid
5homes.cs.washington.edu/~msap/social-bias-frames/
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The above datasets present different characteris-
tics. We consider [FO] and [OL] rather easy to clas-
sify, since standard BERT-based approaches trained
and tested on these datasets yield results above 0.90
macro-F1 (Zhou et al., 2021; Zampieri et al., 2020).
Past works showed that, in case of [OL], classifiers
may perform very well because of the limited pres-
ence of ambiguous tweets (Leonardelli et al., 2021).
In contrast, [AG] was explicitly created to study dis-
agreement among annotators focusing on different
topics, so it contains more challenging instances.
On this dataset, the best performance reported by
the authors is ∼0.75 macro-F1 (Leonardelli et al.,
2021). Finally, [SB] includes data from different
sources, with annotations for diverse targets of hate.
The best classification result reported by the au-
thors is ∼0.80 F1 (Sap et al., 2020).

3.2 Data Splits and Preprocessing

We use the default train/test splits of each dataset,
where available. For [FO], which has no default
splits, we randomly partition the data into train and
test using an 80/20 split. For all datasets, we re-
place URLs and user mentions with URL and @USER
respectively. We then remove all duplicates. We
also remove the substring “RT:” from the begin-
ning of sequences in the [FO] dataset, since it is
extremely common and it could be a confounder
for the model. In addition to this, it has been found
to be associated with hate speech in this dataset
(Ramponi and Tonelli, 2022). Since there is a par-
tial overlap between [SB] and [FO], we remove
instances that are present in the test set of either
dataset from the training data of the other, to ensure
fair cross-dataset evaluation.

4 Methods

We aim at comparing the performance of different
data augmentation setups, both novel and already
employed in previous work. We test them in within-
dataset and cross-dataset scenarios, to assess the
impact of synthetic data on model robustness across
setups. Below is an overview of the process we
follow, whose specifics are detailed in Section 5.

1. We randomly undersample the training data,
obtaining the data subset X consisting of n
examples (Sec. 5.1).

2. We fine-tune the pre-trained classification
model C on X , obtaining CX , which is used
as a baseline and filtering classifier.

3. Depending on the type of generation input
(Sec. 5.2) the pre-trained generation model G
is fine-tuned on the available training data X ,
obtaining GX .

4. The generative model GX is used to generate
synthetic examples.

5. The examples generated by GX are pre-
processed and then filtered based on the prob-
ability assigned to them by the classification
model CX (Sec. 5.3).

6. The generated data is merged with the gold
data X to create the augmented dataset Xaug.

7. The classifier C is fine-tuned on the aug-
mented dataset Xaug to create CXaug .

Model choice We focus on the generation of syn-
thetic data using GPT-2 large (774M parameters)
(Radford et al., 2019). 6 Some recent works exploit
the generative capabilities of GPT-3 for the creation
of new datasets, either in human-in-the-loop setups
(Liu et al., 2022) or in very resource-intensive sce-
narios (Hartvigsen et al., 2022a). We choose to
experiment with GPT-2 because it is freely accessi-
ble and it can be easily fine-tuned, and we aim for
our results to be comparable with those of previous
work where this DA method was found effective
for this task (e.g. Juuti et al. (2020) and Wullach
et al. (2021)).

Model Details For classification, we run our ex-
periments with the BERT base uncased model
(110M parameters) (Devlin et al., 2019) and with
RoBERTa base (125M parameters) (Liu et al.,
2019). We use the Huggingface implementation
(Wolf et al., 2020) for all models. In both cases we
use the default Huggingface TrainingArguments
class hyperparameters, with batch size set to 32.

For generation, we fine-tune GPT-2 large, fol-
lowing Wullach et al. (2021). We use the default
Huggingface hyperparameters, setting the batch
size to 2, adding learning rate warm-up with a ratio
of 0.02 and weight decay of 0.01. Classifiers and
generative models are trained for 3 epochs. For
fine-tuning GPT-2, the input texts are grouped into
documents of maximum length 512 tokens and sep-
arated using end-of-sequence tokens.

After fine-tuning, the generation step is similar
for all models. We use top p decoding (Holtzman

6We performed preliminary experiments using GPT-2
small (117M parameters) as well, finding that overall the gen-
erated data had a similar impact on classification performance.
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et al., 2020) with p = 0.9 and we set the minimum
and maximum lengths of generated sequences to 5
and 100 tokens respectively. We also blacklist the
sequence “@USER” so that it will not be generated,
since it is a very frequent token combination in the
normalized training data.

In all setups, we aim at augmenting the gold data
with 2,000 synthetic examples. This number is
chosen to at least double the available training data
in all setups, and it is kept constant for easier model
comparison. We generate 6,000 sequences for each
setup, to ensure that enough acceptable sequences
will be generated. This estimate is based on the
approach of Wullach et al. (2021), who preserve
roughly 1/3 of the generated texts after filtering.

All experiments are run on a NVIDIA Quadro
RTX 5000 GPU in ∼80 hours total, including both
training and inference for all setups.

5 Experimental Setting

We structure our experiments along three axes of
variation, with the aim of assessing their impact on
model performance. The explored dimensions are
further detailed in the following subsections.

• Number of training instances. In order to
simulate two low-resource scenarios where
different amounts of gold data are available,
we train both classification and generative
models with different amounts of labeled in-
stances. Our aim is that of assessing how
much the usefulness of generative DA changes
when starting with datasets of different sizes.

• Prompting. Different methods can be used
for steering the generation towards one label
or the other. We use two methods found in
previous works, as well as two novel methods,
to assess whether certain prompting methods
lead to differences in synthetic data quality.

• Classifier filtering thresholds. Since prompt-
ing methods are not always enough to steer
the model into generating correct sequence-
label pairs (Kumar et al., 2020), classifiers can
be used to confirm or discard the label assign-
ments made by the generative model (Anaby-
Tavor et al., 2020; Wullach et al., 2021). In our
experiments, we feed the generated sequences
to a classifier (our baseline) and use the proba-
bility given by the classifier to each generated
sequence to either accept the label assigned by
the generator or discard the sequence entirely.

We experiment with two probability thresh-
olds, in order to assess whether the confidence
of the classifier is associated with generated
data quality.

Each model is tested on its own test data (within-
dataset) and on the test data for the other datasets
(cross-dataset).

5.1 Number of Training Instances
Each experiment is performed on varying amounts
of training data, randomly sampling n = 500 or
2,000 examples from each dataset, equally split
between the two labels. We use 500 examples
as the smallest sample size for our experiments
since the smallest dataset size for this task found
by Vidgen and Derczynski (2020) is 469 examples.
We use 2,000 examples as the larger sample size
given that it is still a relatively small dataset size
for deep learning approaches and it reflects the size
of many offensive language detection datasets.

We balance the sampling by class to avoid im-
balance between gold and augmented data, con-
sistently keeping this proportion even across all
experiments. For the [AG] dataset, sampling is
stratified by agreement level as well. Balancing
the classes might make our setup less “realistic”,
given that it does not reflect the actual label distri-
bution of each dataset. However, it is a way for us
to control the impact of class balance differences
between datasets on cross-dataset performance. It
also helps to avoid differences in class balance be-
tween the gold data and the generated data, which
could cause differences in model performance be-
tween setups regardless of the actual quality of the
generated data.

Out of the available data, 1/5 (n = 500) or 1/10
(n = 2, 000) is held out for validation.

5.2 Prompting
We fine-tune GPT-2 using four data formatting se-
tups. Two of the setups have been employed in
previous works, while two are novel and aim at ex-
ploring the ability of the model to leverage natural
language task descriptions for label assignment.

Label tag prompting (tag-prompt). Following
the prompting type in Anaby-Tavor et al. (2020),
we fine-tune the generator G by pre-pending the
label y to each training sequence x, dividing the
two with the separator “[SEP]”. In this setup, the
inputs are concatenated into documents as follows:

“y1 [SEP] x1 [EOS] y2 [SEP] ...”
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At generation time, the model is prompted with
the desired label y followed by the separation token,
and it is expected to generate a sequence belonging
to the y class.

Label in natural language prompting (nl-
prompt). This is the first input setup we propose.
It is inspired by the findings of Schick and Schütze
(2021), in which natural language descriptions of
tasks are found to be helpful for few-shot classifica-
tion tasks. In this setup, the generator G is trained
on sequences so that the label y is contextualized
within the text using natural language. The train-
ing documents for fine-tuning the generators are
structured as:

“This message is y1. x1 [EOS] This ...”

Where y corresponds to offensive or not offensive
depending on the label. At generation time, the
model is prompted with “This message is y”, where
y is the desired label. The sequence produced after
the prompt is expected to belong to the y class.

Cloze question prompting (cloze-prompt).
Again inspired by the findings in Schick and
Schütze (2021), we propose another setup that
exploits the capability of large language models
of learning from patterns in natural language. In
this case, however, the prompt relies on the auto-
regressive nature of GPT-2, in which the proba-
bility of each token is modeled on the previous
tokens. The main aim behind this setup is assess-
ing whether placing the label information at the
beginning or at the end of the sequence affects the
quality of the generated data. In this setup, each
sequence x is followed by the cloze question “Is
that offensive?” and the label is placed at the end
of the sequence, in the form of a Yes/No answer.

“x1. Is that offensive? {Y/N} [EOS] ...”

At generation time, the model receives no
prompting, and it is expected to generate both the
sequence and the cloze question / answer pair in
the correct format. This type of prompting is more
prone than the previously listed ones to generating
sequences that will eventually be discarded, since it
is expected to not only correctly generate sequences
and assign them to a label, but also to produce a
cloze question that follows a specific format.

One model per label (1/label). This setup re-
quires no actual prompting to steer the generation,
since it involves one model for each label rather
than one model for all labels. Following Juuti
et al. (2020) and Wullach et al. (2021), the training
dataset X is divided into Xo and Xn based on the

offensive or non-offensive labels. The generative
model G is then fine-tuned on Xo and Xn sepa-
rately, producing two models for the generation
of new data: Go and Gn. In this setup, the mes-
sages are simply concatenated into documents and
separated by end of sequence ([EOS]) tokens:

“x1 [EOS] x2 [EOS] x3 ...”

At generation time, each model is expected to
generate sequences belonging to the class it was
fine-tuned on.

5.3 Classifier Filtering Thresholds

After generation, the synthetic sequences are
stripped of any prompting and automatically as-
signed the label that emerged during generation.
We discard any sequence that is ≤ 5 characters
long, and normalize the generated data following
the steps described in Section 3.2.

Then, we feed the sequences into the baseline
classifier trained on the same gold data as the gen-
erative model that produced them. Depending on
the label probability assigned by the classifier to
the generated sequences, these are accepted consid-
ering the following thresholds:

• The label predicted by the classifier matches
the label assigned during the generation phase
(label probability p > 0.5)

• The classifier predicts the same label assigned
during generation with p > 0.7 7

After filtering, we randomly select 2,000 generated
examples from the accepted ones in each setup.

5.4 Baselines

As baselines, we employ a BERT-base-uncased
and a RoBERTa-base classifier trained on the same
gold data used to fine-tune GPT-2 in each setup.

We also report the performance of classifiers
trained using simple oversampling as a DA strat-
egy, in which a number of randomly selected train-
ing examples appear multiple times during training.
We match the number of oversampled instances
with the number of synthetic examples we use for
augmenting the training data in each setup, split
evenly across labels. Using oversampling as a base-
line allows us to compare more resource-intensive
DA methods such as the ones we are evaluating
with a simpler strategy.

7This is the same threshold used by Wullach et al. (2021).
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Gold data: 500 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.655 (0.603) 0.805 (0.743) 0.543 (0.537) 0.807 (0.734)

Oversampling 0.725 (0.623)∗ 0.882 (0.768) 0.554 (0.566) 0.875 (0.757)∗

tag-prompt 0.700 (0.638)∗ 0.859 (0.810)∗ 0.547 (0.524) 0.862 (0.804)∗

nl-prompt 0.694 (0.638)∗ 0.863 (0.820)∗ 0.560 (0.546) 0.863 (0.806)∗

cloze-prompt 0.692 (0.634)∗ 0.860 (0.815)∗ 0.545 (0.524) 0.859 (0.803)∗
Filtering:
p > 0.5

1/label 0.716 (0.656)∗ 0.872 (0.834)∗ 0.572 (0.567) 0.874 (0.823)∗

Train: FOUNTA AG FO SB SO
No augmentation 0.683 (0.622) 0.904 (0.874) 0.540 (0.504) 0.888 (0.844)

Oversampling 0.637 (0.585) 0.900 (0.876) 0.589 (0.591)∗ 0.896 (0.841)

tag-prompt 0.679 (0.620) 0.909 (0.881) 0.567 (0.542) 0.897 (0.857)

nl-prompt 0.660 (0.611) 0.909 (0.882) 0.589 (0.575)∗ 0.895 (0.854)

cloze-prompt 0.688 (0.626) 0.913 (0.884)∗ 0.559 (0.527) 0.891 (0.850)

Filtering:
p > 0.5

1/label 0.683 (0.624) 0.910 (0.882) 0.579 (0.563)∗ 0.893 (0.851)

Train: SBIC AG FO SB SO
No augmentation 0.556 (0.413) 0.646 (0.472) 0.746 (0.780) 0.714 (0.570)

Oversampling 0.591 (0.481)∗ 0.700 (0.540)∗ 0.780 (0.801)∗ 0.766 (0.643)∗

tag-prompt 0.561 (0.447) 0.679 (0.531) 0.765 (0.805)∗ 0.744 (0.618)

nl-prompt 0.578 (0.449) 0.687 (0.540) 0.763 (0.803)∗ 0.746 (0.622)

cloze-prompt 0.574 (0.438) 0.663 (0.497) 0.762 (0.799)∗ 0.737 (0.604)

Filtering:
p > 0.5

1/label 0.584 (0.477)∗ 0.676 (0.524) 0.771 (0.805)∗ 0.757 (0.636)∗

Train: OLID AG FO SB SO
No augmentation 0.568 (0.515) 0.766 (0.676) 0.585 (0.588) 0.797 (0.707)

Oversampling 0.584 (0.570) 0.838 (0.792)∗ 0.637 (0.717)∗ 0.865 (0.804)∗

tag-prompt 0.578 (0.567) 0.812 (0.755) 0.610 (0.644) 0.845 (0.786)

nl-prompt 0.581 (0.564) 0.811 (0.763) 0.615 (0.652) 0.838 (0.781)

cloze-prompt 0.586 (0.565) 0.816 (0.763) 0.618 (0.656) 0.843 (0.783)

Filtering:
p > 0.5

1/label 0.575 (0.584) 0.831 (0.791) 0.631 (0.697) 0.855 (0.810)

Table 1: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-tuned on augmented data, starting
with 500 gold examples. F1 scores for the minority class are in parentheses. Grey cells contain within-dataset
results, while the others contain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.

6 Results

In this section we report the results of our experi-
ments. Each experiment is run 10 times, with dif-
ferent random seeds. The metric we use to evaluate
models is macro-F1 score.

In order to reliably compare the distributions of
results across runs, we use Almost Stochastic Order
(ASO) (Dror et al., 2019; Del Barrio et al., 2018) in
its implementation by Ulmer et al. (2022). Follow-
ing their findings, we use τ = 0.2 as a threshold
for statistical significance.8

Table 1 and Table 2 show the results obtained by
RoBERTa-base models fine-tuned on augmented
data when starting with 500 and 2,000 gold exam-
ples respectively. While for the setup in which we
start with 2,000 annotated examples (Table 2) we
use both filtering thresholds (p > 0.5 and p > 0.7),

8This threshold has a Type I error rate comparable to that
of a p-value threshold of 0.05 (Ulmer et al., 2022).

for the setup in which we start with 500 exam-
ples we report the results for models trained on
generated data filtered with the p > 0.5 threshold
only. The reason for this is that with less data, the
confidence of the model is much lower, and not
all 10 runs can generate enough examples that are
classified with a confidence score higher than 0.7.

Impact of number of training instances Over-
all, it appears that data augmentation is more ef-
fective in very low-resource scenarios, such as the
setting with 500 examples. The fact that DA is
more useful as the amount of available data lowers
is in line with what has been observed for other
tasks, as well as in multiclass setups, albeit with a
much lower number of examples per class (Anaby-
Tavor et al., 2020; Kumar et al., 2020). In the setup
where 2,000 gold examples are available, there are
very few significant improvements in performance
when using generative data augmentation.
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Gold data: 2,000 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.770 (0.708) 0.900 (0.861) 0.568 (0.580) 0.895 (0.840)

Oversampling 0.761 (0.684) 0.894 (0.848) 0.592 (0.580)∗ 0.877 (0.830)

tag-prompt 0.773 (0.714) 0.900 (0.868) 0.582 (0.563)∗ 0.890 (0.840)

nl-prompt 0.771 (0.712) 0.900 (0.867) 0.576 (0.555) 0.895 (0.850)

cloze-prompt 0.771 (0.713) 0.900 (0.868) 0.576 (0.555) 0.896 (0.850)

Filtering:
p > 0.5

1/label 0.769 (0.712) 0.893 (0.861) 0.594 (0.585)∗ 0.885 (0.837)

tag-prompt 0.766 (0.708) 0.895 (0.861) 0.590 (0.580)∗ 0.887 (0.840)

nl-prompt 0.771 (0.714) 0.898 (0.866) 0.586 (0.572)∗ 0.892 (0.847)

cloze-prompt 0.769 (0.712) 0.897 (0.864) 0.586 (0.570)∗ 0.891 (0.846)

Filtering:
p > 0.7

1/label 0.768 (0.713) 0.894 (0.862) 0.596 (0.586)∗ 0.886 (0.838)

Train: FOUNTA AG FO SB SO
No augmentation 0.635 (0.619) 0.910 (0.883) 0.611 (0.612) 0.904 (0.866)

Oversampling 0.628 (0.604) 0.907 (0.883) 0.615 (0.618) 0.901 (0.859)

tag-prompt 0.645 (0.620) 0.911 (0.883) 0.614 (0.618) 0.901 (0.863)

nl-prompt 0.635 (0.616) 0.911 (0.885) 0.625 (0.633) 0.905 (0.868)

cloze-prompt 0.644 (0.619) 0.915 (0.888) 0.607 (0.607) 0.906 (0.870)

Filtering:
p > 0.5

1/label 0.633 (0.613) 0.910 (0.881) 0.612 (0.615) 0.902 (0.864)

tag-prompt 0.650 (0.623) 0.913 (0.885) 0.619 (0.624) 0.903 (0.865)

nl-prompt 0.645 (0.619) 0.914 (0.887) 0.615 (0.617) 0.908 (0.872)

cloze-prompt 0.640 (0.619) 0.913 (0.885) 0.621 (0.625) 0.904 (0.866)

Filtering:
p > 0.7

1/label 0.647 (0.619) 0.914 (0.886) 0.612 (0.614) 0.907 (0.871)

Train: SBIC AG FO SB SO
No augmentation 0.608 (0.555) 0.737 (0.618) 0.813 (0.844) 0.804 (0.712)

Oversampling 0.591 (0.526) 0.722 (0.590) 0.810 (0.829) 0.789 (0.683)

tag-prompt 0.603 (0.550) 0.725 (0.597) 0.812 (0.840) 0.803 (0.708)

nl-prompt 0.604 (0.547) 0.730 (0.605) 0.814 (0.844) 0.802 (0.708)

cloze-prompt 0.608 (0.552) 0.729 (0.607) 0.814 (0.844) 0.806 (0.714)

Filtering:
p > 0.5

1/label 0.606 (0.548) 0.725 (0.598) 0.811 (0.840) 0.800 (0.704)

tag-prompt 0.608 (0.560) 0.733 (0.611) 0.811 (0.841) 0.807 (0.716)

nl-prompt 0.618 (0.546) 0.724 (0.593) 0.814 (0.842) 0.801 (0.703)

cloze-prompt 0.611 (0.555) 0.735 (0.615) 0.813 (0.844) 0.807 (0.714)

Filtering:
p > 0.7

1/label 0.609 (0.558) 0.733 (0.612) 0.814 (0.844) 0.804 (0.709)

Train: OLID AG FO SB SO
No augmentation 0.584 (0.599) 0.874 (0.841) 0.633 (0.668) 0.897 (0.859)

Oversampling 0.576 (0.580) 0.858 (0.824) 0.637 (0.709) 0.887 (0.845)

tag-prompt 0.570 (0.593) 0.867 (0.832) 0.636 (0.681) 0.891 (0.852)

nl-prompt 0.586 (0.598) 0.875 (0.841) 0.641 (0.681) 0.895 (0.856)

cloze-prompt 0.592 (0.603) 0.878 (0.845) 0.638 (0.672) 0.897 (0.861)

Filtering:
p > 0.5

1/label 0.573 (0.594) 0.871 (0.839) 0.644 (0.687) 0.892 (0.855)

tag-prompt 0.578 (0.597) 0.864 (0.831) 0.634 (0.675) 0.892 (0.853)

nl-prompt 0.581 (0.597) 0.873 (0.841) 0.642 (0.681) 0.896 (0.858)

cloze-prompt 0.582 (0.597) 0.871 (0.839) 0.638 (0.676) 0.895 (0.857)

Filtering:
p > 0.7

1/label 0.579 (0.597) 0.872 (0.839) 0.643 (0.684) 0.895 (0.858)

Table 2: Average macro-F1 scores (over 10 runs) obtained by RoBERTa-base fine-tuned on augmented data, starting
with 2,000 gold examples. F1 scores for the minority class are in parentheses. Grey cells contain within-dataset
results, while the others contain cross-dataset results. Asterisks denote statistically significant results (compared to
no augmentation). The best result for each train-test dataset combination is in bold.

Impact of prompting and filtering Interestingly,
no prompting type seems to clearly outperform the
others across setups. For instance, augmenting the
Agreement [AG] dataset starting with 500 gold ex-
amples has a positive effect on performance across
all prompting types both when tested on the in-

domain test data and when tested on [FO] and
[SO], while when tested on [SB] none of the setups
lead to significant improvements in performance.
This seems to indicate that dataset characteristics
have a greater impact than the prompting setup on
whether generative DA can be effective. However,
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looking at Table 2, the situation is reversed: the
model trained on [AG] only significantly benefits
from data augmentation when tested on [SB] across
most setups. A filtering threshold of 0.7 does seem
to help improve performance at least marginally,
but only on this dataset combination out of all the
ones we tested. Overall, it appears that whether DA
will have a positive impact on classification might
not depend on the generation setup in our case.

Overall findings The most important pattern that
emerges from our results is that generative DA
using GPT-2 does not appear to reliably improve
model performance, both in and out of domain. It
apparently can significantly improve model perfor-
mance, especially for some dataset combinations
and with very low amounts of data. However, this
improvement is not consistent, so based on our re-
sults we would advise against considering this type
of DA a reliable method for improving offensive
language classifiers in similar setups.

Another important aspect that emerges from our
results is that oversampling is a very strong base-
line, especially for the setup with 500 available
annotated examples, even though it is often over-
looked. To our knowledge, it was used as a base-
line only in Juuti et al. (2020) for generative DA
on this task, while most other works report the per-
formance on augmented data only. Interestingly,
oversampling does not only improve within-dataset
performance, but it also has a significant positive
impact on cross-dataset performance. Since it re-
quires a fraction of the computational resources
needed for generative DA, it may be preferable
when ∼500 gold examples are available. We hy-
pothesize that one of the reasons why oversampling
can perform well is that at least a subset of the
datasets share superficial features that might be am-
plified in the oversampling process, such as specific
terms that are associated with offensiveness across
datasets.

In general, although it does not reliably improve
model performance, generative DA does not seem
to significantly decrease performance either. Wul-
lach et al. (2021) believe that generative DA could
improve lexical diversity, leading to better general-
ization. In Section 7.1, we analyze the generated
data to assess whether it could lead to benefits with
regards to fairness, perhaps due to more representa-
tion of minorities given the higher lexical variety.

The results for BERT-based models are in gen-
eral in line with those for RoBERTa-based mod-

els, although BERT-based models tend to perform
worse regardless of setup. Again, with BERT mod-
els, oversampling seems to be just as reliable to
improve both within-dataset and cross-dataset per-
formance. Since the overall findings are similar to
those of RoBERTa-based models, we do not report
BERT results in this section, but in Appendix A.

7 Qualitative Analysis

In order to estimate the quality of the generated
examples and the impact of the prompting method,
we randomly select a subset of 10 generated exam-
ples for every dataset / data size combination for
manual analysis. We find that there are some clear
differences between the prompting setups, and that
the methods that exploit prompting in natural lan-
guage (nl-prompt and cloze-prompt) tend to gener-
ate the most realistic examples. Tag-prompt tends
to often generate strings of random special charac-
ters, resulting in very low quality data, while the
1/label setup often results in sequences that appear
out of domain. Some examples of the generated
texts can be found in Appendix B.

7.1 Lexical Artifacts Analysis

To investigate the lexical variation between the gold
data and the generated data, we use pointwise mu-
tual information (PMI), following Ramponi and
Tonelli (2022). In particular, we analyze the most
informative tokens for the offensive class in each
dataset, looking at how certain tokens become less
or more informative in the generated data.

The first tendency that can be noticed when look-
ing at how the ranking of tokens’ informativeness
changes between gold and generated data is that
for some of the datasets the changes are more evi-
dent (i.e. for [AG] and [SB]). For example, in the
gold [SB] data, the word fucking is ranked as the
10,203rd most informative word for the offensive
class. In data augmented using the tag-prompt type
on the generative model trained on 2,000 instances,
however, the same word is ranked 4th. This means
that the model has generated a very large amount
of offensive messages containing this word, while
it was not prominent in the gold data it was fine-
tuned on. This happens for both the setup starting
with 500 gold examples and with 2,000.

While the prominence of a potentially predictive
word for offensive language, like fucking, is a good
sign of the quality of the generated data, since it
means that the generation process can usefully aug-
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ment existing data, this happens also with tokens
that should not be predictive for this task, defined
by Ramponi and Tonelli (2022) as spurious lexical
artifacts. For example, across several generation
setups, we can notice the increased importance for
the offensive label of identity terms, such as girl,
gay, woman, jews, but also words that hold no
inherent association with abusive language, such
as people or difference. The higher importance of
some identity terms could be associated with biases
that were already present in the pre-trained gener-
ative model, and which were amplified during the
generation process. In order to better understand
the impact of these differences in token informa-
tiveness, we turn to the HateCheck functional tests
in Section 7.2. For further details, the full lists of
top 11 informative tokens for each dataset, both
gold and generated, is reported in Appendix C.

7.2 HateCheck Analysis

We explore some of the weaknesses of classifiers
trained on gold and augmented data through the
HateCheck suite (Röttger et al., 2021), consisting
of a series of functional tests aimed at exploring
the weak points of hate speech models.9

Overall, data augmentation has little impact on
the performance of models on HateCheck, espe-
cially on models trained starting with 2,000 gold
instances. Similarly to the results reported in Sec-
tion 6, oversampling tends to lead to similar or
better improvements than generative DA, again de-
pending on the starting dataset. However, this im-
provement is focused only on some functional tests,
leading to worse performance on other tests.

For instance, two interesting tests are those on
non-hateful slurs, including test 8, non-hateful
homonyms of slurs (e.g. “Female canines are called
bitches”), and test 9, reclaimed slurs (e.g. “The Q
in LGBTQ stands for queer”). For models trained
on 500 gold instances, the performance consistently
drops on these two tests for all augmentation setups
and oversampling across all datasets. This suggests
that models trained using oversampling or gener-
ative data augmentation may start overfitting and
relying on the presence of specific terms such as
slurs for the classification of offensive language.

9Since our models are aimed at detecting offensive lan-
guage in general and HateCheck is focused on hate speech, a
narrower phenomenon, not all tests are entirely informative
in our case, such as test number 11, testing the performance
on non-hateful profanities. In general, however, the labels of
HateCheck tests are aligned with our task.

For models trained on 2,000 gold instances, the
performance on these two tests is somewhat stable,
with no improvements or decreases in performance.

Another interesting test for examining whether
generative DA increases the reliance of classifiers
on specific words is test 15, negated hateful state-
ment, e.g. “I would never hurt any woman”. The
performance for this test tends to be overall sta-
ble or lower than the baseline, mostly decreasing
with oversampling and in the setup starting from
500 annotated instances. This again indicates that
models trained on augmented data in the setups we
used show potentially harmful weaknesses, since
they tend to misclassify sequences based on simple
patterns such as the presence of specific words.

While models trained on augmented data tend to
perform worse on non-hateful sequences contain-
ing identity terms and slurs, they do show improve-
ments for those tests that benefit from being able to
find these terms, such as test 7, hate expressed us-
ing slur, or test 10, hate expressed using profanity,
further confirming that augmentation tends to steer
models into overfitting identity terms and slurs.

Further details on the performances of models on
each HateCheck test and on the targets contained
in the tests are found in Appendix D.

8 Conclusions

In this work, we presented an evaluation of both
existing and novel data augmentation setups based
on generative large language models for offensive
language detection. We investigated the robustness
of such models, testing them in within-dataset and
cross-dataset scenarios, and performed a qualitative
analysis on the augmented data.

We found that while generative DA can posi-
tively impact model performance in some cases,
especially when low amounts of gold data are avail-
able, this positive effect is not consistent across
setups, making generative DA unreliable in the
setups we tested. In addition to this, we found
that generative DA can potentially introduce lexi-
cal bias from the pre-trained generative model into
the augmented data, as well as increase the reliance
of models on identity terms and slurs, which could
have unintended effects on classification.

Overall, although it might improve classification
performance in some cases, we advise against using
generative DA for this task, since it is computation-
ally intensive and it does not appear to consistently
make models perform better or be more robust.
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Limitations

The main limitation of this work is its focus on
English, leaving out other languages that may ben-
efit more from a thorough evaluation of data aug-
mentation methods because they have fewer re-
sources. We selected English for this work be-
cause it allowed us to evaluate the system perfor-
mance on four datasets with different characteris-
tics and a number of configurations, thanks also to
the availability of language-specific GPT2, BERT
and RoBERTa. We are aware that generation-based
data augmentation would be potentially more use-
ful in real low-resource scenarios, and we plan
on investigating in the future whether our findings
hold for other languages.

Furthermore, this work deals only with one type
of data augmentation, i.e. the one using fine-tuned
generators, while there are others that we left out
because of space limits and that may be investi-
gated in the future. For example, we might com-
pare generative DA with rule-based augmentation,
synonym-based approaches and backtranslation,
among others, and investigate whether different
data augmentation approaches present differences
in terms of robustness or lexical biases. In addition,
we only experiment with one generative model,
while we could in the future compare generative
DA using GPT-2 with other kinds of generative
models, especially more advanced ones.

Another aspect left unexplored in our work is
whether this type of data augmentation could help
models dedicated to this task that are widely avail-
able, such as HateBERT (Caselli et al., 2021)
or ToxiGen-RoBERTa (Hartvigsen et al., 2022b).
While in this work we focus on scenarios in which
little data is available, experimenting with these
models could yield interesting results in future
work with a broader scope.

Ethics Statement

In our experiments, we compare different setups
in which large language models are exploited in
order to artificially create more data to train models
aimed at detecting offensive language. In this case,
synthetic data has two main potential advantages:
first, it limits the amount of data gathered from
online spaces without user consent, and second, it
reduces the amount of manual annotation required
to create labeled datasets for offensive language
detection, which can have a negative psychological
impact on annotators (Riedl et al., 2020).

While using generative models to augment data
can in some cases be beneficial for classification
performance, the sequences generated by these
models can exhibit unpredictable characteristics
that exacerbate existing bias or produce new forms
of it. Given that the improvements provided by
generative DA are inconsistent, there are no clear
advantages to this method when considering its po-
tential risks. As a consequence, we advise against
deploying models trained on generated data in prac-
tice.

Since the main contribution of our work is not
a novel model or algorithm, but rather an evalu-
ation of different approaches for generative data
augmentation, we share as much information as
we can for the reproducibility of our experiments,
but we choose not to release the code openly to the
public, in order to limit potential misuse of mod-
els that can generate offensive language. We also
choose not to publicly release the generated data
for various reasons. As shown by our results, the
generated examples are not reliable for improving
existing systems, so their utility is limited. Further-
more, the generated texts are not curated, which
could result in including personal user information
or harmful statements targeting specific individuals
being generated. We will, however, share the data
upon request to other interested researchers.

Acknowledgements

This work has been partly supported by the
PROTECTOR European project (ISFP-2020-AG-
PROTECT) on “Protecting places of worship”
(101034216) and the STAND BY ME 2.0 project
(CERV-2021-DAPHNE) on “Stop gender-based vi-
olence by addressing masculinities and changing
behaviour of young people through human rights
education” (101049386).

References
Ateret Anaby-Tavor, Boaz Carmeli, Esther Goldbraich,

Amir Kantor, George Kour, Segev Shlomov, Naama
Tepper, and Naama Zwerdling. 2020. Do Not Have
Enough Data? Deep Learning to the Rescue! In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 7383–7390.

Emily M. Bender, Timnit Gebru, Angelina McMillan-
Major, and Shmargaret Shmitchell. 2021. On the
dangers of stochastic parrots: Can language mod-
els be too big? In Proceedings of the 2021 ACM
Conference on Fairness, Accountability, and Trans-

3368

https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1609/aaai.v34i05.6233
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922


parency, FAccT ’21, page 610–623, New York, NY,
USA. Association for Computing Machinery.

Tommaso Caselli, Valerio Basile, Jelena Mitrović, and
Michael Granitzer. 2021. HateBERT: Retraining
BERT for abusive language detection in English. In
Proceedings of the 5th Workshop on Online Abuse
and Harms (WOAH 2021), pages 17–25, Online. As-
sociation for Computational Linguistics.

Eustasio Del Barrio, Juan A Cuesta-Albertos, and Car-
los Matrán. 2018. An optimal transportation ap-
proach for assessing almost stochastic order. In
The Mathematics of the Uncertain, pages 33–44.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Rotem Dror, Segev Shlomov, and Roi Reichart. 2019.
Deep dominance - how to properly compare deep
neural models. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2773–2785, Florence, Italy. Associa-
tion for Computational Linguistics.

Ashwin Geet D’Sa, Irina Illina, Dominique Fohr, Diet-
rich Klakow, and Dana Ruiter. 2021. Exploring Con-
ditional Language Model Based Data Augmentation
Approaches for Hate Speech&#xa0;Classification.
In Text, Speech, and Dialogue: 24th International
Conference, TSD 2021, Olomouc, Czech Republic,
September 6–9, 2021, Proceedings, pages 135–146,
Berlin, Heidelberg. Springer-Verlag.

Antigoni Founta, Constantinos Djouvas, Despoina
Chatzakou, Ilias Leontiadis, Jeremy Blackburn, Gi-
anluca Stringhini, Athena Vakali, Michael Sirivianos,
and Nicolas Kourtellis. 2018. Large Scale Crowd-
sourcing and Characterization of Twitter Abusive
Behavior. In Proceedings of the International AAAI
Conference on Web and Social Media, volume 12.

Samuel Gehman, Suchin Gururangan, Maarten Sap,
Yejin Choi, and Noah A Smith. 2020. RealToxic-
ityPrompts: Evaluating Neural Toxic Degeneration
in Language Models. pages 3356–3369.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022a.
ToxiGen: A Large-Scale Machine-Generated Dataset
for Adversarial and Implicit Hate Speech Detection.
arXiv:2203.09509 [cs].

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi,
Maarten Sap, Dipankar Ray, and Ece Kamar. 2022b.
ToxiGen: A large-scale machine-generated dataset
for adversarial and implicit hate speech detection.

In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3309–3326, Dublin, Ireland.
Association for Computational Linguistics.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The Curious Case of Neural Text
Degeneration. In arXiv:1904.09751 [Cs].

Mika Juuti, Tommi Gröndahl, Adrian Flanagan, and
N. Asokan. 2020. A little goes a long way: Improv-
ing toxic language classification despite data scarcity.
In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pages 2991–3009, Online.
Association for Computational Linguistics.

Filip Klubicka and Raquel Fernández. 2018. Examin-
ing a hate speech corpus for hate speech detection
and popularity prediction. In Proceedings of 4REAL
Workshop - Workshop on Replicability and Repro-
ducibility of Research Results in Science and Tech-
nology of Language.

Varun Kumar, Ashutosh Choudhary, and Eunah Cho.
2020. Data Augmentation using Pre-trained Trans-
former Models. In Proceedings of the 2nd Workshop
on Life-long Learning for Spoken Language Systems,
pages 18–26, Suzhou, China. Association for Com-
putational Linguistics.

Elisa Leonardelli, Stefano Menini, Alessio
Palmero Aprosio, Marco Guerini, and Sara
Tonelli. 2021. Agreeing to disagree: Annotating
offensive language datasets with annotators’ dis-
agreement. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 10528–10539, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Alisa Liu, Swabha Swayamdipta, Noah A. Smith, and
Yejin Choi. 2022. WANLI: Worker and AI Collabora-
tion for Natural Language Inference Dataset Creation.
arXiv:2201.05955 [cs].

Ruibo Liu, Guangxuan Xu, Chenyan Jia, Weicheng
Ma, Lili Wang, and Soroush Vosoughi. 2020. Data
Boost: Text Data Augmentation Through Reinforce-
ment Learning Guided Conditional Generation. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 9031–9041, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, M. Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa:
A Robustly Optimized BERT Pretraining Approach.
ArXiv.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
Models are Unsupervised Multitask Learners.

3369

https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/2021.woah-1.3
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1266
https://doi.org/10.18653/v1/P19-1266
https://doi.org/10.1007/978-3-030-83527-9_12
https://doi.org/10.1007/978-3-030-83527-9_12
https://doi.org/10.1007/978-3-030-83527-9_12
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
https://doi.org/10.18653/v1/2020.findings-emnlp.301
http://arxiv.org/abs/2203.09509
http://arxiv.org/abs/2203.09509
https://doi.org/10.18653/v1/2022.acl-long.234
https://doi.org/10.18653/v1/2022.acl-long.234
http://arxiv.org/abs/1904.09751
http://arxiv.org/abs/1904.09751
https://doi.org/10.18653/v1/2020.findings-emnlp.269
https://doi.org/10.18653/v1/2020.findings-emnlp.269
https://doi.org/10.18653/v1/2021.emnlp-main.822
https://doi.org/10.18653/v1/2021.emnlp-main.822
https://doi.org/10.18653/v1/2021.emnlp-main.822
http://arxiv.org/abs/2201.05955
http://arxiv.org/abs/2201.05955
https://doi.org/10.18653/v1/2020.emnlp-main.726
https://doi.org/10.18653/v1/2020.emnlp-main.726
https://doi.org/10.18653/v1/2020.emnlp-main.726


Alan Ramponi and Sara Tonelli. 2022. Features or spu-
rious artifacts? data-centric baselines for fair and
robust hate speech detection. In Proceedings of the
2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 3027–3040, Seat-
tle, United States. Association for Computational
Linguistics.

Martin J Riedl, Gina M Masullo, and Kelsey N Whipple.
2020. The downsides of digital labor: Exploring the
toll incivility takes on online comment moderators.
Computers in Human Behavior, 107:106262.

Paul Röttger, Bertie Vidgen, Dong Nguyen, Zeerak
Waseem, Helen Margetts, and Janet Pierrehumbert.
2021. HateCheck: Functional tests for hate speech
detection models. In Proceedings of the 59th An-
nual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 41–58, Online. Association for
Computational Linguistics.

Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Juraf-
sky, Noah A. Smith, and Yejin Choi. 2020. Social
Bias Frames: Reasoning about Social and Power Im-
plications of Language. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 5477–5490, Online. Association
for Computational Linguistics.

Timo Schick and Hinrich Schütze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255–269, Online. Association for Computa-
tional Linguistics.

Naama Tepper, Esther Goldbraich, Naama Zwerdling,
George Kour, Ateret Anaby Tavor, and Boaz Carmeli.
2020. Balancing via Generation for Multi-Class Text
Classification Improvement. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 1440–1452, Online. Association for Computa-
tional Linguistics.

Dennis Ulmer, Christian Hardmeier, and Jes Frellsen.
2022. deep-significance-easy and meaningful statisti-
cal significance testing in the age of neural networks.
arXiv preprint arXiv:2204.06815.

Bertie Vidgen and Leon Derczynski. 2020. Direc-
tions in abusive language training data, a system-
atic review: Garbage in, garbage out. PLOS ONE,
15(12):e0243300.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.

In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Tomer Wullach, Amir Adler, and Einat Minkov. 2021.
Fight fire with fire: Fine-tuning hate detectors using
large samples of generated hate speech. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 4699–4705, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1415–1420, Minneapolis, Minnesota.
Association for Computational Linguistics.

Marcos Zampieri, Preslav Nakov, Sara Rosenthal, Pepa
Atanasova, Georgi Karadzhov, Hamdy Mubarak,
Leon Derczynski, Zeses Pitenis, and Çağrı Çöl-
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A BERT-Based Models Results

In this section, we present the results of BERT-
based models in the setup where we start with 500
gold examples in Table 3 and with 2,000 gold ex-
amples in Table 4.

Gold data: 500 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.630 0.716 0.550 0.700
Oversampling 0.696∗ 0.823∗ 0.573 0.825∗

tag-prompt 0.663 0.775∗ 0.562 0.774
nl-prompt 0.654 0.752 0.584 0.767
cloze-prompt 0.665∗ 0.773∗ 0.554 0.780∗

Filtering:
p > 0.5

1/label 0.688∗ 0.798∗ 0.575 0.797∗

Train: FOUNTA AG FO SB SO
No augmentation 0.619 0.890 0.613 0.847
Oversampling 0.638 0.906∗ 0.598 0.885∗

tag-prompt 0.636 0.904 0.600 0.876∗

nl-prompt 0.614 0.900 0.641 0.874∗

cloze-prompt 0.632 0.900 0.606 0.857
Filtering:
p > 0.5

1/label 0.629 0.899 0.633 0.878∗

Train: SBIC AG FO SB SO
No augmentation 0.566 0.629 0.747 0.727
Oversampling 0.579∗ 0.682 0.766∗ 0.756

tag-prompt 0.575 0.679 0.754 0.755
nl-prompt 0.576 0.677 0.757 0.754
cloze-prompt 0.566 0.656 0.754 0.738

Filtering:
p > 0.5

1/label 0.574 0.664 0.762∗ 0.743
Train: OLID AG FO SB SO
No augmentation 0.555 0.757 0.635 0.770
Oversampling 0.555 0.832∗ 0.653 0.852∗

tag-prompt 0.554 0.795 0.641 0.813
nl-prompt 0.559 0.810∗ 0.658∗ 0.832∗

cloze-prompt 0.562 0.803∗ 0.648 0.823
Filtering:
p > 0.5

1/label 0.537 0.805∗ 0.648 0.821∗

Table 3: Average macro-F1 scores (over 10 runs) ob-
tained by BERT-base-uncased fine-tuned on augmented
data, starting with 500 gold examples. Grey cells con-
tain within-dataset results, while the others contain
cross-dataset results. Asterisks denote statistically sig-
nificant results (compared to no augmentation). The
best result for each train-test dataset combination is in
bold.

Gold data: 2,000 examples Test
Train: AGREEMENT AG FO SB SO
No augmentation 0.756 0.894 0.573 0.891
Oversampling 0.746 0.884 0.592 0.880

tag-prompt 0.759 0.900 0.567 0.893
nl-prompt 0.761 0.901∗ 0.567 0.900∗
cloze-prompt 0.756 0.901∗ 0.572 0.899∗

Filtering:
p > 0.5

1/label 0.749 0.892 0.584 0.891
tag-prompt 0.760 0.899 0.578 0.893
nl-prompt 0.760 0.899 0.572 0.897∗

cloze-prompt 0.762 0.902∗ 0.572 0.898∗
Filtering:
p > 0.7

1/label 0.753 0.897 0.593∗ 0.893
Train: FOUNTA AG FO SB SO
No augmentation 0.616 0.913 0.628 0.905
Oversampling 0.635∗ 0.911 0.617 0.899

tag-prompt 0.634∗ 0.914 0.621 0.905
nl-prompt 0.632 0.914 0.627 0.905
cloze-prompt 0.617 0.914 0.630 0.903

Filtering:
p > 0.5

1/label 0.629 0.914 0.628 0.904
tag-prompt 0.636∗ 0.913 0.624 0.905
nl-prompt 0.634 0.915 0.629 0.904
cloze-prompt 0.633 0.914 0.630 0.907

Filtering:
p > 0.7

1/label 0.629 0.913 0.627 0.903
Train: SBIC AG FO SB SO
No augmentation 0.589 0.743 0.806 0.807
Oversampling 0.588 0.716 0.799 0.786

tag-prompt 0.584 0.742 0.806 0.809
nl-prompt 0.594 0.734 0.807 0.802
cloze-prompt 0.593 0.735 0.806 0.802

Filtering:
p > 0.5

1/label 0.586 0.739 0.804 0.800
tag-prompt 0.582 0.743 0.809 0.806
nl-prompt 0.588 0.734 0.806 0.803
cloze-prompt 0.598 0.742 0.807 0.807

Filtering:
p > 0.7

1/label 0.591 0.732 0.806 0.803
Train: OLID AG FO SB SO
No augmentation 0.562 0.874 0.653 0.897
Oversampling 0.549 0.859 0.661 0.885

tag-prompt 0.555 0.862 0.662 0.890
nl-prompt 0.553 0.868 0.668∗ 0.893
cloze-prompt 0.568 0.875 0.659 0.897

Filtering:
p > 0.5

1/label 0.541 0.858 0.669∗ 0.885
tag-prompt 0.555 0.862 0.663 0.892
nl-prompt 0.561 0.873 0.665∗ 0.896
cloze-prompt 0.575 0.879 0.658 0.898

Filtering:
p > 0.7

1/label 0.548 0.863 0.671 0.889

Table 4: Average macro-F1 scores (over 10 runs) ob-
tained by BERT-base-uncased fine-tuned on augmented
data, starting with 2,000 gold examples. Grey cells
contain within-dataset results, while the others contain
cross-dataset results. Asterisks denote statistically sig-
nificant results (compared to no augmentation). The
best result for each train-test dataset combination is in
bold.
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prompting dataset generated text label

tag-prompt

[AG] #SEP #BlackLivesMatter #BIDEN #MAGA URL 0
[FO] ∼∼∼@USER 0
[SB] ∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼∼ [...] 0
[OL] ***********@USER You’re fucking awesome 0

nl-prompt

[AG] @USER It is time to end this corrupt criminal republic #DemocRATting #Black-
LivesMatter URL

0

[FO] ?????????????????????????????????? 1
[SB] I hate all of you who call yourself patriots. You are useless. 1
[OL] @USER @USER you are not a Christian..you are a hypocrite 1

cloze-prompt

[AG] ”I love how the media is pushing the idea that the protesters are racist 0
[FO] USER: hey, u should really try and figure out what is going on in the world of 4chan 0
[SB] If you can’t get a girl to like you, you’re a loser... 1
[OL] @USER @USER He is the worst 0

1/label

[AG]

Coronavirus was first identified in 1984 in the U.S. as a contaminant of the popular
oral flu vaccine.
Because of the severity of this illness, the CDC in the early 90s ordered the removal
of all Coronaviruses from vaccines and in 1998 [...]

0

[FO]
#6a8a2a color RGB value is (135,180,225).
#6b98f6 color hex is (130,180,.25).
the number is on its way to being determined so I don’t need to change it [...]

0

[SB]

"The best way to get ahead in life is to keep learning" - Steve Jobs
"As a scientist, the thing I am most excited about is the possibility that we will be
able to engineer a cure for cancer - by using a synthetic biology-based approach" -
Dr. Aubrey de Grey, M.D.[...]

0

[OL] EVERYBODY, EVERYBODY is talking about the fact that President Trump is being
sued by the media. Yes, you read that correctly. Media. Lawsuit. #MAGA #Trump
#ToriesOut #ToryOut’sOut#POTUSOut #MAGADump #MAGAMAG #MAGA-
ZINEAU’S MAGA NEWSLETTER @USER @USER The way he [...]

0

Table 5: Examples of sequences generated by GPT-2 large models trained on 500 gold examples for every
combination of prompting and dataset.

B Examples of Generated Texts

Examples of sequences generated by the models
can be found in Table 5 for generative models
trained on 500 labeled instances and in Table 6 for
models trained on 2,000 labeled instances. Some
texts have been truncated (signaled by “[...]”) due
to space constraints. The labels reported in Tables 5
and 6 are those assigned by the RoBERTa baseline.
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prompting dataset generated text label

tag-prompt

[AG] URL #Elections2020 0
[FO] !!!! &#128580;&#127907;&amp;&gt; I fucking hate you URL 1
[SB] phone 7, apple iphones 8, iphONES 8, android ips 8, blackberry ips, ixp8 iph, [...] 0
[OL] URL You guys are pathetic 1

nl-prompt

[AG] @USER Because the Democrats lie, cheat, steal and intentionally create the chaos in
our country. They are beyond evil!

0

[FO] ????????? @USER We are listening..if you have any ideas please send us a tweet at
URL

0

[SB] You’re never too young to dream, you just gotta work it. 0
[OL] You and your friends are fucking delusional. There are far worse far right wing nut

jobs out there than antifa. Try to keep your stupid comment to yourself
1

cloze-prompt

[AG] The most disgusting thing about this is that the person spreading this filth is a member
of the media. They are enabling the filth.

0

[FO] @USER @USER Yeah, that would be a pretty crazy idea! I’m sure that would cause
an uproar and a few angry people would object

1

[SB] Do you think these fake news articles on vaccines and autism are getting too much
play on social media?

0

[OL] @USER @USER @USER @USER He is just one more nut job in Congress. 1

1/label

[AG]
The family of a missing teen has filed a $5 million lawsuit against the city of Madison,
alleging that officials didn’t do enough to find their son when he went missing in
September 2010. [...]

0

[FO]
$4.99
Featuring all the fan favorites including:
• Exclusive and classic illustrations from some of comics’ most beloved artists [..]

0

[SB]
Beef and broccoli are the perfect meal for when you are hungry and not hungry. But I
think they would probably turn to dust in an instant if you tried to eat them.Blessings
are spread in the name of the Lord, and His name is exalted. [...]

0

[OL] WWF @USER We are all outraged that this clown is using his access to the office to
threaten &amp; bully. You &amp#Array; you &amp"#Array"; yourself should be
ashamed of yourself.@USER you are so right on this issue but I have to agree that
we conservatives are becoming too emotional. [...]

1

Table 6: Examples of sequences generated by GPT-2 large models trained on 2,000 gold examples for every
combination of prompting and dataset.

C Lexical Artifacts

In this section, we present the lists of top-11 infor-
mative tokens for the offensive class, both on gold
and on generated data. Lists for data in the setup
where we start with 500 annotated instances can
be found in Table 7, and those for the setup with
2,000 gold instances are in Table 8.
 Content warning: Tables 7 and 8 contain

uncensored profanities and slurs. 10

10These are left uncensored for increased readability, since
special characters are already used to signal boundaries of
sub-word tokens, and to avoid confusion with words that are
self-censored by the users.

D HateCheck

Table 9 and Table 10 present the results on Hate-
Check tests and targets for models in the 500 gold
examples setup. Table 11 and Table 12 present
the results on the functional tests and targets for
models in the setup in which we start with 2,000
annotated examples.
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AGREEMENT
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fuck 0 fuck 2 fucking 2 fucking 0 fuck
1 shit 2 fucking 0 fuck 1 shit 2 fucking
2 fucking 1 shit 1 shit 0 fuck 1 shit
3 ass 31 racist 5 dumb 6 stupid 6 stupid
4 idiot 5 dumb 6 stupid 31 racist 3 ass
5 dumb 6 stupid 31 racist 5 dumb 7 ##s
6 stupid 3 ass 7 ##s 3 ass 11 guy
7 ##s 25 mor 3 ass 302 disgusting 17 piece
8 bitch 13 trump 4 idiot 4 idiot 5 dumb
9 ##er 4 idiot 302 disgusting 18 user 4 idiot
10 bullshit 423 people 17 piece 25 mor 31 racist

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 4 fuck 3 bitch 4 fuck 4 fuck
2 user 2 user 4 fuck 2 user 6 hate
3 bitch 6 hate 6 hate 6 hate 11 shit
4 fuck 3 bitch 11 shit 3 bitch 1 fucked
5 ass 5 ass 10 stupid 5 ass 10 stupid
6 hate 1 fucked 8 idiot 1 fucked 3 bitch
7 128 11 shit 5 ass 10 stupid 5 ass
8 idiot 10 stupid 1 fucked 11 shit 8 idiot
9 ##gga 8 idiot 43 sick 8 idiot 43 sick
10 stupid 43 sick 41 ##tar 43 sick 34 kill

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 black 0 black 0 black 0 black 0 black
1 bitch 4 white 4 white 3 difference 29 woman
2 ##es 9264 [SEP] 38 people 12 girl 5 sex
3 difference 38 people 3 difference 4 white 8 women
4 white 11 ##s 12 girl 29 woman 38 people
5 sex 3 difference 31 person 5 sex 4 white
6 ho 5382 fucking 29 woman 80 guy 12 girl
7 ##gga 31 person 17 ##gger 31 person 57 racist
8 women 29 woman 5382 fucking 38 people 14 gay
9 jew 8 women 7 ##gga 8 women 80 guy
10 fuck 10 fuck 8 women 5382 fucking 44 kill

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 shit 0 shit 0 shit 19 disgusting 0 shit
1 fuck 16 people 6 liberals 6 liberals 7 stupid
2 ass 19 disgusting 1 fuck 16 people 1 fuck
3 fucking 6 liberals 19 disgusting 0 shit 3 fucking
4 ##s 28 hate 52 sick 7 stupid 16 people
5 bitch 18 racist 7 stupid 9 idiot 52 sick
6 liberals 7 stupid 3 fucking 28 hate 19 disgusting
7 stupid 52 sick 16 people 22 liar 99 wrong
8 control 22 liar 28 hate 1 fuck 29 disgrace
9 idiot 1 fuck 9 idiot 18 racist 31 bad
10 dumb 10 dumb 22 liar 10 dumb 97 women

Table 7: Top tokens for the offensive class in the gold data and in the generated data when starting with 500
examples, computed using the PMI implementation of Ramponi and Tonelli (2022). The indices refer to the ranking
of importance of the tokens in the gold data, while the order of the tokens reflect their informativeness for the
offensive class in the generated data.
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AGREEMENT
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fuck 0 fuck 18 ##ass 2 fucking 0 fuck
1 shit 2 fucking 52 ##est 0 fuck 1 shit
2 fucking 1 shit 16 ##on 1 shit 2 fucking
3 ass 23 racist 418 ##path 950 user 14 mag
4 ##s 7 dumb 4 ##s 6 idiot 23 racist
5 stupid 6 idiot 3 ass 5 stupid 6 idiot
6 idiot 89 liar 10 asshole 23 racist 22 ##a
7 dumb 5 stupid 12 bitch 7 dumb 5 stupid
8 piece 135 ##trum 9 bullshit 89 liar 7 dumb
9 bullshit 14 mag 105 bunch 8 piece 8 piece
10 asshole 1284 ##p 1049 complete 3 ass 13 guy

FOUNTA
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 fucking 0 fucking 0 fucking 0 fucking 0 fucking
1 fucked 6 hate 1 fucked 1 fucked 4 fuck
2 user 1 fucked 4 fuck 2 user 1 fucked
3 bitch 4 fuck 3 bitch 6 hate 6 hate
4 fuck 3 bitch 9 shit 4 fuck 3 bitch
5 ass 16339 [SEP] 6 hate 3 bitch 5 ass
6 hate 5 ass 5 ass 5 ass 9 shit
7 ##gga 8 shit 11 stupid 10 idiot 11 stupid
8 128 7 ##gga 20 sick 11 stupid 10 idiot
9 shit 2 user 7 ##gga 9 shit 20 sick
10 idiot 11 stupid 19 mad 7 ##gga 8 128

SBIC
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 black 0 black 0 black 0 black 0 black
1 bitch 15008 [SEP] 3 white 3 white 3 white
2 difference 10 ##s 1 bitch 2 difference 5 sex
3 white 10203 fucking 14 ##gger 15 woman 2 difference
4 ##es 1 bitch 12 jews 8 women 8 women
5 sex 763 offensive 7 ##gga 12 jews 15 woman
6 ho 3 white 2 difference 5 sex 9 fuck
7 ##gga 5 sex 10 ##s 11 jew 43 racist
8 women 9 fuck 11 jew 19 girl 16 ##ist
9 fuck 43 racist 15 woman 1 bitch 1 bitch
10 ##s 4 ##es 8 women 14 ##gger 11 jew

OLID
gold data tag-prompt nl-prompt cloze-prompt 1/label

index token index token index token index token index token
0 shit 11 liberals 11 liberals 11 liberals 0 shit
1 fuck 12 disgusting 1 fuck 0 shit 12 disgusting
2 ass 7 people 0 shit 12 disgusting 6 stupid
3 fucking 0 shit 12 disgusting 6 stupid 7 people
4 bitch 13 racist 53 disgrace 18 liar 1 fuck
5 ##s 6 stupid 6 stupid 53 disgrace 14 sick
6 stupid 53 disgrace 14 sick 26 ##yp 13 racist
7 people 26 ##yp 18 liar 14 sick 18 liar
8 idiot 29 ##oc 3 fucking 29 ##oc 3 fucking
9 dumb 14 sick 7 people 32 lying 26 ##yp
10 user 16 fake 5 ##s 1 fuck 29 ##oc

Table 8: Top tokens for the offensive class in the gold data and in the generated data when starting with 2,000
examples, computed using the PMI implementation of Ramponi and Tonelli (2022). The indices refer to the ranking
of importance of the tokens in the gold data, while the order of the tokens reflect their informativeness for the
offensive class in the generated data.
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