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Abstract

The recent explosion of question-answering
(QA) datasets and models has increased the
interest in the generalization of models across
multiple domains and formats by either train-
ing on multiple datasets or combining multiple
models. Despite the promising results of multi-
dataset models, some domains or QA formats
may require specific architectures, and thus the
adaptability of these models might be limited.
In addition, current approaches for combin-
ing models disregard cues such as question-
answer compatibility. In this work, we pro-
pose to combine expert agents with a novel,
flexible, and training-efficient architecture that
considers questions, answer predictions, and
answer-prediction confidence scores to select
the best answer among a list of answer pre-
dictions. Through quantitative and qualitative
experiments, we show that our model i) cre-
ates a collaboration between agents that outper-
forms previous multi-agent and multi-dataset
approaches, ii) is highly data-efficient to train,
and iii) can be adapted to any QA format. We
release our code and a dataset of answer predic-
tions from expert agents for 16 QA datasets to
foster future research of multi-agent systems1.

1 Introduction

The large number of question answering (QA)
datasets released in the past years has been ac-
companied by models specialized in them (Rogers
et al., 2021; Dzendzik et al., 2021). These datasets
and models differ by the domain (e.g., biomedi-
cal and Wikipedia), required skills (e.g., numerical
and multi-hop), and format (e.g., extractive and
multiple-choice). This variety of tasks and overspe-
cialization of the corresponding models have led
the community towards developing simple unified
models that can generalize across domains and for-
mats through unifying dataset formats (Khashabi
et al., 2020), creating models trained on multiple

1https://github.com/UKPLab/MetaQA

Figure 1: Given a question, each expert agent provides a
prediction with a confidence score and MetaQA selects
the best answer. Correct answers in green. Wrong
answers in red.

datasets (Fisch et al., 2019; Talmor and Berant,
2019; Khashabi et al., 2020), and designing ensem-
ble methods for QA agents (Geigle et al., 2021).
All these research lines have a potential impact on
end-user applications because generalization can
help create robust systems and ease the implemen-
tation of QA models. For example, some chatbots
are composed of skill systems, where each skill is
a model trained on a specific domain (Miller et al.,
2017; Burtsev et al., 2018). More abstractly, these
research lines also share a central research question:
how to combine QA skills.

We argue that a one-size-fits-all architecture may
encounter some limitations in combining QA skills.
For instance, Raffel et al. (2020) have observed
that a single model trained on multiple tasks may
underperform the same architecture trained on a
single task. An alternative approach is to combine
multiple expert agents. Geigle et al. (2021) propose
a model that given a question and a list of datasets,
selects the dataset from which the question comes.
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This can be used to identify agents trained on a spe-
cific type of questions. However, despite achieving
a classification accuracy greater than 90%, this ap-
proach underestimates high-performing models on
out-of-domain questions.

To address the limitations of previous ap-
proaches, we propose a novel model, MetaQA, to
combine heterogeneous expert agents (i.e., differ-
ent architectures, formats, and tasks). It takes a
question, and a list of candidate answers with con-
fidence scores as input and selects the best answer
(Figure 1). We modify the embedding mechanism
of the Transformer encoder (Vaswani et al., 2017)
to embed the confidence score of each candidate
answer. In addition, we use a multi-task training
objective that makes the model learn two comple-
mentary tasks: selecting the best candidate answer
and identifying agents trained on the domain of the
input question.

Our approach learns to match questions with
answers, an immensely easier task than the end-
to-end QA of multi-dataset models. This makes
MetaQA remarkably data efficient as it only uses
16% of the training data of multi-dataset models.

We compile a list of 16 QA datasets that en-
compass different domains, formats, and reasoning
skills to conduct experiments. Through quantitative
experiments, we show that our MetaQA i) estab-
lishes a successful collaboration between agents, ii)
outperforms multi-agent and multi-dataset models,
iii) excels in minority domains, and iv) is highly
efficient to train. Our contributions are:

• A new approach for multi-skill QA that estab-
lishes a collaboration between agents.

• A model called MetaQA that utilizes question,
answer, and confidence scores to select the
best candidate answer for a given question.

• Extensive analyses showing the successful col-
laboration between agents and the training ef-
ficiency of our approach.

• A dataset of (QA Agents, Questions, and an-
swer predictions) triples that cover different
QA formats, domains, and skills to foster fu-
ture developments of multi-agent models.

2 Related Work

Currently, there are two approaches for multi-skill
QA: multi-agent and multi-dataset models.

Multi-agent models consists of combining mul-
tiple expert agents. A well-known method is the
Mixture of Experts. It requires training a set of
models and combining their outputs with a gat-
ing mechanism (Jacobs et al., 1991). However,
this approach would require jointly training mul-
tiple agents, which can be extremely expensive,
and sharing a common output space to combine
the agents. These limitations make it unfeasible
to implement in our setup, where many heteroge-
neous agents are combined (i.e., agents with dif-
ferent architectures, target tasks, and output for-
mats such as integers for multiple-choice or answer
spans for span extraction). Inspired by topic clas-
sification, Geigle et al. (2021) proposed mapping
questions to QA datasets (topics) to identify agents
trained on that type of questions. Although related
to us, their work does not attempt to achieve any
agent collaboration. Moreover, because of their
topic-classification approach, agents that are effec-
tive in out-of-domain questions are underestimated.
Lastly, Friedman et al. (2021) average the weights
of adapters (Houlsby et al., 2019) trained on single
datasets to obtain a multi-dataset model. However,
their architecture is limited to span extraction.

Multi-dataset models consist of training a
model on various datasets to generalize it to mul-
tiple domains. Talmor and Berant (2019) conduct
extensive analyses of the generalization of QA mod-
els. However, they only experiment on extractive
tasks and, due to their model architecture (BERT
for span extraction), it is not possible to extend it to
other tasks such as abstractive or visual QA. Fisch
et al. (2019) created a competition on QA gen-
eralization using 18 datasets. These datasets are
from very different domains, such as Wikipedia and
biomedicine, among others. However, they also fo-
cus only on extractive datasets. Lastly, Khashabi
et al. (2020) shows that the different QA formats
can complement each other to achieve a better gen-
eralization. They use an encoder-decoder architec-
ture and transform the questions into a common
format. However, we argue that their approach
is limited because some questions may require a
specific skill that must be modeled in a particular
manner (e.g., numerical reasoning), and this is not
possible with their simple encoder-decoder.

3 Model

We propose a new model, shown in Figure 2, to
combine k QA agents m. Each agent mi is trained
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Figure 2: MetaQA architecture. The Agent Selection
Network, AgSeN, assigns scores to each agent based on
the similarity between the agent’s training set domains
and the question domain. Answer Selection, AnsSel,
selects the correct answers. confk is the confidence
score from the agent k for answer k.

on domain domi and predicts an answer Ansi.
Without loss of generalizability, we assume that
each agent is trained on a different domain and
each question belongs to one of these domains. We
define two complementary tasks: i) a priori agent
selection (Agent Selection Networks, AgSeN, in
Figure 2) and ii) answer selection (AnsSel network
in Figure 2). The division of the problem into these
two learnable tasks is vital to ensure that MetaQA
considers out-of-domain agents, which can also
give correct answers. More formally, MetaQA
computes the probability of returning an answer
a as follows:

p(a|q) = argmax
i

pθ1(ai|mi, q)pθ2(mi|q) (1)

where pθ2(mi|q) is the a priori probability of
selecting agent mi and pθ1(ai|mi, q) is the proba-
bility of selecting the answer from agent mi for the
question q. In other words, θ2 is the agent selection
network, and θ1 is the answer selection network.

To achieve this, the backbone of our architecture
relies on an encoder Transformer (Vaswani et al.,
2017) whose input is the concatenation of the ques-
tion with the candidate answers from each agent.
Each answer is separated by a new token [ANS]
that informs the model of the beginning of a new
answer candidate.

We devise a new embedding for the Transformer
encoder to include the confidence score of the pre-

dictions of each agent (Figure 3). While the origi-
nal encoder uses the token ti, position pi, and seg-
ment si embeddings, we add an agent confidence
embedding ci to these three.

xi = ti + pi + si + ci (2)

The new ci is obtained with a feed-forward net-
work f that takes an answer confidence confi and
creates an embedding ci.

ci =

{
f(confj), if i ∈ Idx([ANS] Ansj)
f(0), otherwise

(3)

where Idx is a function that given a list of tokens
returns their indexes in the encoder input.

Figure 3: Description of our novel embedding system
including confidence scores from the agents.

We leverage two types of embeddings from the
output of the encoder. The first one is the em-
bedding of the [CLS] token. This embedding
captures information about the domain of the input
question. It is used as the input to k independent
feed-forward networks called Agent Selection Net-
work (AgSeN) to identify the agent with the highest
likelihood of giving a correct answer. This predic-
tion is based on the similarity between the domain
of the question and the domain of the training set of
the agents. More specifically, it tries to identify the
agent trained on the dataset from which the ques-
tion comes in a similar way as TWEAC (Geigle
et al., 2021). The second type of embedding used is
the embedding of the [ANS] tokens, which con-
tain the cues needed to identify the correct answers
to the input question. These [ANS] embeddings
are concatenated with the score of each correspond-
ing agent ScAgi and input into a final feed-forward
network, called Answer Selection (AnsSel), that se-
lects the correct answers according to the score
of their agents and the semantics of the candidate
answers.
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3.1 Training
As previously mentioned, our model learns two
complementary tasks: i) a priori agent selection
and ii) answer selection. Thus, to learn these two
tasks, we define the following loss function:

ℓ =
α1

k

k∑

i=0

ℓAgSeNi + α2ℓAnsSel (4)

ℓAnsSel =
1

k

k∑

i=0

CE( ˆAnsi, yi) (5)

where ℓAgSeNi is the loss of one AgSeN net-
work and ℓAnsSel the loss of the AnsSel network.
ℓAnsSel is the average of the cross-entropy loss CE
of each answer prediction ˆAnsi = {0, 1}. Lastly,
AgSeN networks use the Binary Cross Entropy.

We obtain the labels of AnsSel, yi, by comparing
the string prediction of each agent with the correct
answer. If the F1 score is higher than a thresh-
old, θ, we consider the prediction as correct. As
for AgSeNi, its training label is 1 when the input
question is from the training set of the ith agent.

4 Experimental Setup

4.1 Datasets
We have collected a series of QA datasets cov-
ering different formats, domains, and reasoning
skills. In particular, we use four formats: extrac-
tive, multiple-choice, abstractive, and multimodal.

For extractive, we use the MRQA 2019 shared
task collection (Fisch et al., 2019), QAMR
(Michael et al., 2018), and DuoRC (Saha et al.,
2018). We include these two additional datasets
to add more diversity. In detail, QAMR re-
quires predicate-argument understanding, a skill
that agents should have to solve most QA datasets.
As for DuoRC, it is the only dataset in our col-
lection on the film domain, and this allows us to
study transfer learning from other domains. The
multiple-choice datasets require boolean reason-
ing, commonsense, and passage summarization
skills. Lastly, we include abstractive QA following
(Khashabi et al., 2020) and a multimodal dataset
to show that our approach can solve any type of
question while multi-dataset models are limited to
certain formats.

Most of these datasets do not have the labels of
the test set publicly available, except for RACE and
NarrativeQA. Since we need to do hyperparameter
tuning and hypothesis testing to compare models,

we divide the public dev set into an in-house dev
set and test sets following (Joshi et al., 2020). Then,
we conduct hyperparameter tuning on the dev set
and hypothesis testing on the test set. A summary
of the datasets is available in Appendix A.1.

4.2 Expert Agents

To guarantee a fair comparison with MultiQA, we
have trained all the agents for extractive datasets us-
ing the same architecture as MultiQA, span-BERT,
a BERT model pretrained for span extraction tasks
that clearly outperforms BERT on the MRQA 2019
shared task (Joshi et al., 2020). More details on
the implementation are provided in Appendix A.3.
For the remaining datasets, we use agents that are
publicly available on HuggingFace or Github with
a performance close to the current state of the art.
A summary of them is provided in Appendix A.2.

4.3 Baselines

We compare our approach with three types of mod-
els: i) multi-agent systems, ii) multi-dataset mod-
els, and iii) expert agents. The first family is repre-
sented by our main baseline, TWEAC, a model that
maps questions to topics (or types of questions) to
identify agents trained on that type of data (Geigle
et al., 2021) and the simple max-voting ensemble.
The second family of models is composed of Mul-
tiQA (Talmor and Berant, 2019) and UnifiedQA
(Khashabi et al., 2020). MultiQA is a transformer
encoder with a span-extraction layer trained on
multiple extractive QA datasets. Because of this
span-extraction layer, it can only solve extractive
QA tasks. UnifiedQA, on the other hand, can solve
any QA task that can be converted into text-to-text
(i.e., extractive, abstractive, and multiple-choice)
thanks to its architecture, an encoder-decoder trans-
former. Lastly, we include the expert agents to
analyze whether MetaQA closes the gap to them
compared to the baselines.

4.4 Evaluation

Since MetaQA may select more than one answer,
we select the answer with the highest confidence
score by MetaQA as the decision of the model
to evaluate it. We evaluate our model and the
baselines using the official metrics of each dataset,
i.e., macro-average F1 for extractive, accuracy for
multiple-choice, and rouge-L for abstractive. In
the particular case of DROP, the official metric is
macro-average F1, and thus, we also use it. The
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Dataset MetaQA TWEAC Exp. Agent UnifiedQA MultiQA Voting

SQuAD 91.98±0.11† 89.09±0.36 92.92 90.81 93.14±0.18 90.73
NewsQA 71.71±0.21† 66.86±0.75 73.68 65.57 73.59±0.60 66.60
HotpotQA 79.27±0.15† 74.96±0.59 80.60 77.92 81.68±0.22 71.71
SearchQA 81.98±0.25†‡ 80.41±0.22 81.04 81.61 80.45±1.82 68.87
TriviaQA-web 80.63±0.26†‡ 76.55±0.15 79.34 72.34 77.76±4.15 75.73
NQ 81.20±0.18† 78.06±0.37 81.97 75.58 82.57±0.30 72.25
DuoRC 51.24±0.20†‡ 44.28±0.23 43.77 34.65 46.99±0.15 50.94
QAMR 83.78±0.14† 78.77±0.48 84.00 82.70 84.62±0.14 73.07

BoolQ 73.14±0.23† 72.20±0.03 72.17 81.34 n.a. 73.88
CSQA 78.66±0.19† 77.18±0.18 78.56 58.43 n.a. 68.41
HellaSWAG 73.19±1.01 77.12±0.30 77.14 36.01 n.a. 69.33
RACE 84.71±0.05† 83.02±0.27 84.78 69.65 n.a. 67.30
SIQA 74.17±0.64 75.39±0.05 75.44 61.62 n.a. 70.01

DROP 73.04±1.98† 69.12±0.36 74.61 42.45 n.a. 26.18
NarrativeQA 67.19±0.00 67.19±0.00 67.19 57.82 n.a. 67.19

HybridQA 50.94±0.00 50.94±0.00 50.94 n.a n.a 50.94

Table 1: MetaQA (ours) and the baselines on the test set of each dataset. Best results in bold. † represents that
MetaQA is statistically significant better than TWEAC. ‡ represents that MetaQA is statistically significant better
than MultiQA. n.a means that the system cannot model the dataset.

reported results are the means and standard devia-
tions of the models trained with five different seeds
except for UnifiedQA, which would be too expen-
sive to compute. We use a two-tailed T-Test to
compare the models with a p-value of 0.05.

5 Results and Discussions

In this section, we answer the questions: i) is
MetaQA able to combine multiple agents without
undermining the performance of each one (§5.1),
ii) is it robust on out-of-domain scenarios? (§5.2),
iii) how does agent collaboration work? (§5.3), iv)
how data-efficient is MetaQA? (§5.4), and v) what
is the effect of each module of MetaQA? (§5.5).

5.1 Comparison with the Baselines
5.1.1 TWEAC
MetaQA outperforms TWEAC in all datasets ex-
cept HellaSWAG and SIQA, as shown in Table 1.
On average, MetaQA achieves an average perfor-
mance boost of 2.23 with respect to TWEAC, and
more importantly, the performance boost is greater
than 4 points on HotpotQA, DuoRC, NewsQA,
QAMR, and TriviaQA. Particularly, there is an as-
tonishing 6.8 points performance boost on DuoRC.

The reason for these results is that TWEAC only
aims to identify the agent trained on the domain of

the question while we retrieve the best answer pre-
diction, even if it comes from out-of-domain mod-
els. For instance, in DuoRC, MetaQA selects the
in-domain agent only for 43% of its questions, i.e.,
most of the questions are assigned to agents that
are not trained on DuoRC. In this way, MetaQA
establishes a collaboration between agents.

We also observe that the gap between MetaQA
and TWEAC is more significant on extractive QA
than on multiple-choice. This is expected due to
our selection of multiple-choice datasets. The sub-
stantial differences in the format of these datasets
limit the potential agent collaboration. For instance,
BoolQ is the only boolean dataset, and therefore,
it can only be used to solve boolean questions,
which do not appear in the other multiple-choice
datasets. Also, SIQA, a commonsense reasoning
dataset, uses a short context passage while CSQA
(commonsense too) does not have any context,
and hence, an agent trained for CSQA cannot be
used successfully on SIQA. These characteristics
of the setup make the upper-bound performance of
MetaQA to be the same as the expert agents. Yet,
even with these limitations, MetaQA outperforms
TWEAC in three of the five datasets. Also, the ex-
pert agents only significantly outperform MetaQA
on 2/5 datasets. Lastly, the performance in Narra-
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tiveQA and HybridQA is the same because there is
only one agent per dataset.

5.1.2 UnifiedQA
MetaQA outperforms UnifiedQA by striking 10.49.
In the case of extractive QA, the gap is 5.08, while
in multiple-choice is 15.36. We attribute this to
the limitations of UnifiedQA’s architecture. For
example, the performance in DROP is clearly far
from our MetaQA. The reason for this is that while
the expert agent used by MetaQA is designed for
numerical reasoning, UnifiedQA does not have any
mechanism to achieve this, and since it is designed
as a general model for text-to-text generation, it
cannot be augmented with special reasoning mod-
ules. The same phenomenon occurs in the multiple-
choice datasets and in some minority domains in ex-
tractive QA (i.e., NewsQA and DuoRC). The only
exception is in BoolQ, where UnifiedQA achieves
the best results. However, this is because T5 (Raf-
fel et al., 2020), on which UnifiedQA is trained, is
already one of the SOTA models, while the agent
we use has lower performance and was the only
publicly available model in HuggingFace’s Model
Hub at the time of experimentation.

5.1.3 MultiQA
MetaQA outperforms MultiQA by a small margin
of 0.12, despite being much more flexible (i.e., com-
patible with any QA format instead of only extrac-
tive QA (§4.3). Moreover, our model was trained
on only 13% of its training set, as later discussed
in §5.4. Furthermore, we observe that MultiQA
mostly outperforms expert agents on Wikipedia-
based datasets (i.e., SQuAD, HotpotQA, NQ, and
QAMR). This might suggest that MultiQA is over-
fitted to Wikipedia due to its training on multi-
ple datasets using Wikipedia paragraphs2 and that
would explain why it struggles with other minor-
ity domains. On the other hand, MetaQA excels
in minority domains where it achieves striking
4.25 points performance boost on DuoRC, 2.87
on TriviaQA-web, 1.53 on SearchQA, and over-
all outperforms MultiQA by an average of 2.88.
These results show the superior ability of MetaQA
to avoid overfitting to a specific domain.

5.1.4 Max-Voting
Lastly, MetaQA also outperforms max-voting by
an average of 8.35. In the case of easy datasets such

2MultiQA is trained on question and contexts (Wikipedia
paragraphs). However, MetaQA does not have access to these
paragraphs as shown in Figure 2.

as SQuAD, the performance is similar because all
expert agents excel in this dataset, so any approach
to combine the agents would yield similar results.
More interestingly, the performance of Max-Voting
is clearly far from MetaQA in DROP. We attribute
this to the low performance of the extractive agents
on this dataset and their similar wrong answers.

5.2 Leave-One-Out Ablation
In this experiment, we analyze whether the com-
bination of expert agents can successfully solve
an out-of-domain (OOD) dataset. We conduct a
leave-one-out ablation test in both MetaQA and the
baselines. In the case of MetaQA, we remove the
expert agent of the target dataset, retrain MetaQA
again without this dataset, and evaluate it on the
target dataset. Similarly, we retrain TWEAC, Uni-
fiedQA, and MultiQA without the target dataset
and evaluate the model on the target dataset. Lastly,
we also use the Max-Voting baseline without the
agent trained on the target dataset. We trained
MetaQA five times with different random seeds for
each target dataset and report their average results.
However, we could not do this for the other models
due to their much higher computation costs.

Table 2 shows that OOD MetaQA outperforms
OOD TWEAC in all datasets by an average of 6.31.
The larger gap in OOD than in in-domain scenar-
ios (Table 1) supports our hypothesis: the topic-
classification approach of TWEAC disregards high-
performing models in OOD, and our solution of
establishing a collaboration between the agents is
able to combine skills.

OOD MetaQA also outperforms OOD Uni-
fiedQA by a striking average of 8.13 points. In
addition, in four datasets (TriviaQA-web, DuoRC,
CommonsSenseQA, and HellaSWAG), the ablated
MetaQA even outperforms the full UnifiedQA
trained on those datasets. This further supports our
approach of combining multiple agents, instead of
datasets, in scenarios with a wide variety of do-
mains and formats, where flexibility is key.

In the particular case of MultiQA, as discussed
in §5.1.3, half of its training sets are based on
Wikipedia paragraphs. Therefore, removing a
Wikipedia-based dataset such as HotpotQA does
not remove Wikipedia contents from its training
set3. As a consequence, this compromises the OOD
setup. However, even under this pseudo-OOD

3This is not the case for MetaQA because our input is only
the questions, answer predictions, and confidence scores, not
the Wikipedia paragraphs.
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Dataset NewsQA HotpotQA SearchQA TriviaQA NQ DuoRC QAMR CSQA HellaSWAG SIQA DROP ∆

MetaQA 71.46 79.37 81.87 80.65 81.08 51.01 83.87 78.40 72.14 73.90 74.96 -
UnifiedQA 65.57 77.92 81.61 72.34 75.58 34.65 82.70 58.43 36.01 61.62 42.45 -

OOD MetaQA 62.26 69.41 66.59 75.02 67.51 50.51 72.20 58.59 52.13 59.28 22.14 -
OOD TWEAC 57.65 43.98 57.93 66.62 65.37 47.32 69.59 47.46 50.59 59.16 20.53 -6.31
OOD UnifiedQA 60.12 62.21 63.02 69.33 61.49 32.84 70.07 50.57 29.35 44.93 22.30 -8.12
OOD MultiQA* 63.36 69.44 67.94 76.09 68.52 49.89 72.53 n.a. n.a. n.a. n.a. 0.61
OOD Max Voting 63.25 67.59 61.76 73.81 68.27 50.48 68.92 58.94 64.03 63.22 22.46 0.64

Table 2: Results of leave-one-out ablation. Out-of-domain (OOD) models are trained on all the datasets except the
target dataset. Best OOD results in bold. Underlined results reflect OOD MetaQA outperforming full UnifiedQA. ∆
is the average performance gap to OOD MetaQA. * MultiQA uses a pseudo-OOD setup, see remarks in §5.2.

Dataset Question In-domain Agent OOD Agent

DuoRC Who does Rocky Balboa work for as an enforcer? Adrian Tony Gazzo (NewsQA Agent)
TriviaQA-web Who played the character Mr Chips in the 2002 TV

adaptation of Goodbye Mr Chips?
Timothy Carroll MartinClunes (DuoRC Agent)

SearchQA This short story, written around 1820, contains the
line "If I can but reach that bridge... I am safe"

Legend Legend of Sleepy Hollow (Triv-
iaQA Agent)

Table 3: Examples of questions where our MetaQA system disregard the in-domain agent due to their incorrect
predictions (in red) and selects and an out-of-domain (OOD) agent that returns the right answer (in green).

setup, MultiQA only outperforms MetaQA by a
slight margin of 0.61.

Lastly, we analyze the Max Voting baseline in
this scenario. Although prior works disregard this
baseline, the results in Table 2 show that OOD Max
Voting outperforms all the other baselines and has a
similar performance to OOD MetaQA. Its average
gain with respect to OOD MetaQA is 0.64. How-
ever, this is not the overall trend. OOD MetaQA
outperforms OOD Max Voting in 5/8 extractive
QA datasets by a considerable margin of 3.19. On
the other hand, multiple-choice datasets, especially
the difference in HellaSWAG, incline the average
towards OOD Max Voting. Despite the promising
claims of prior works (Talmor and Berant, 2019;
Khashabi et al., 2020) about OOD performance,
these results suggest that aggregating a wide range
of QA skills for different formats and domains in
out-of-domain scenarios is still an open problem
and non-neural baselines have strong results. Sim-
ilar results have also been observed in retrieval
methods, where non-neural baselines outperform
supervised methods on OOD scenarios (Thakur
et al., 2021).

5.3 Qualitative Analysis

We further analyze the behavior of our proposed
model by inspecting its predictions. In particular,
we investigate the collaboration between the agents
for DuoRC, SearchQA, and TriviaQA, where this
collaboration is particularly strong.

In DuoRC, the most helpful out-of-domain
(OOD) agent is NewsQA, with a chosen rate of
18.2% in the test set. This might be due to the
question types of DuoRC and NewsQA. DuoRC’s
questions are crowdsourced and are predominately
who-questions (42% of the training set as shown
in Appendix 6). NewsQA’s questions are also
crowdsourced and have a high proportion of who-
questions (24%). The other datasets with a high
amount of who-questions are NQ and SearchQA.
However, the questions of these two datasets are
very different in style to DuoRC (i.e., real user
queries and trivia from a TV show). An example
of this DuoRC-NewsQA agents collaboration is
shown in the first row of Table 3.

In TriviaQA-web, the second most commonly
used agent is trained on DuoRC. We randomly sam-
pled 50 QA pairs where DuoRC is the selected
agent and returns the right answer. In 20% of the
cases, the question was about a movie or book plot,
which indicates that our MetaQA successfully rec-
ognizes that this OOD agent is able to respond to
this type of question. An example of this collabo-
ration is shown in the second row in Table 3.

In SearchQA, the most helpful OOD agent is
TriviaQA (5% chosen rate). This might be due
to their similarities (Table 8). Within the pool of
instances where the in-domain agent fails and the
TriviaQA agent provides the right answer, we ran-
domly analyzed 50 instances and discovered that
in 84% of the cases, the in-domain agent returns
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a partially correct answer, and in those cases, the
OOD agent was able to identify the exact answer.
This is another example of the successful agent col-
laboration achieved by our MetaQA. Even though
the in-domain agent almost has the correct answer,
MetaQA selects an OOD agent that gives a better
answer, as shown in the last row on Table 3.

5.4 Efficiency of MetaQA

We trained MetaQA with bins of QA instances for
each dataset and observed that the training con-
verges with only 10K instances/per dataset (i.e.,
160K instances, including all datasets). This is
only 16% of the data needed to train UnifiedQA
(900K instances excluding HybridQA) and 13% of
the data needed to train MetaQA (600K of extrac-
tive QA instances). The reason for this large saving
is that MetaQA only has to learn how to match
questions with answers because it reuses publicly
available agents. On the other hand, multi-dataset
models need to learn how to solve questions (i.e.,
language understanding, reasoning skills, etc.), a
much more complex task.

As for inference time, if all the agents fit on
memory4, multi-datasets models and our MetaQA
would have comparable running times. For exam-
ple, compared to MultiQA, since our extractive
agents use the same architecture as MultiQA, run-
ning the agents would take the same amount of
time as running MultiQA. Then, we would need
to select the answer. However, our MetaQA only
takes 0.05s/question to select the best candidate
answer. This makes it fast enough to not be notice-
able by the users. On the other hand, if the agents
do not fit in memory at the same time, it would be
necessary to run them sequentially. Yet, this might
not be a problem because it is possible to predict
in advance which agents are more likely to give a
correct answer to a given question (Geigle et al.,
2021; Garg and Moschitti, 2021), which we leave
as future work. This would allow us to skip some
agents at run-time and improve the running time
dramatically in low-memory scenarios.

5.5 Ablation Study

Lastly, we quantitatively measure the impact of
each feature of MetaQA on its overall performance.
The first row of Table 4 shows that removing the
loss of the Agent Selection Network (AgSeN) hurts

4In our hardware and with our experimental setup, all
agents and MetaQA fit on our GPU memory.

the performance of MetaQA. This manifests that
our intuition of considering in-domain agents with-
out falling into the argumentum ad verecundiam
fallacy is correct. Lastly, the second row shows that
the confidence embeddings provide key informa-
tion to MetaQA to select an answer. For instance,
an in-domain agent could have a prediction with
low confidence because it does not know the an-
swer, while an out-of-domain agent could have the
correct answer and be certain about it.

Model Avg. Downgrade

−ℓAgSeN -0.45
− Conf. Emb. -0.46

Table 4: Average performance loss across all datasets
of each ablated model compared to the full model.

6 Conclusions

In this work, we propose an alternative to multi-
dataset models for multi-skill QA. We propose to
combine expert agents to create a collaborative sys-
tem for question answering (QA) called MetaQA.
It considers questions, answer predictions, and con-
fidence scores from the agents to select the best
answer to a question. Through quantitative experi-
ments, we show that our model avoids the limita-
tions of multi-dataset models and outperforms the
baselines thanks to the agent collaboration estab-
lished. Additionally, since MetaQA learns to match
questions with answers instead of end-to-end QA,
it is highly data-efficient to train. We leave as fu-
ture work: i) combining partially correct answer
predictions to generate a better one, ii) adding new
agents without retraining MetaQA by fixing most
of the weights and only training the weights of the
new Agent Selection Network, and iii) identifying
a priori agents that are likely to give an incorrect
answer to skip them at run-time.

Ethics Discussion

The proposed model, MetaQA, cannot generate un-
fair, biased, or harmful content given that the expert
agents it aggregates are fair because MetaQA does
not generate content. Rather it selects from Expert
Agents. The datasets we use are well-known to be
safe for research purposes and do not contain any
personal information or offensive content. We also
comply with the licenses and intended uses of each
dataset. The licenses of each dataset are shown
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in Appendix A.1. We are not held responsible for
errors, false or offensive content generated by the
agents. MetaQA should be used at the users’ discre-
tion. Future work should address how to identify
unfair or false content to avoid selecting it.

Limitations

The main limitation of MetaQA is that when no
agent has a correct answer, it returns an incorrect
answer. Table 5 describes how often this scenario
occurs. In extractive datasets, without the out-
liers (i.e., SQuAD and DuoRC), we observe this
to be 18% on average per dataset. This percentage
drops to 8.35% in multiple-choice datasets (without
BoolQ, another outlier). As for NarrativeQA and
HybridQA, there are many unsolvable questions
because we only use one agent for each of them
and these agents have a relatively low performance.

Dataset % Unsolvable

SQuAD 3.92
NewsQA 26.88
HotpotQA 19.93
SearchQA 13.97
NQ 19.15
TriviaQA-web 12.25
QAMR 15.81
DuoRC 47.41

BoolQ 1.47
SIQA 8.90
HellaSWAG 8.90
CSQA 9.00
RACE 6.61

DROP 21.77
NarrativeQA 55.71
HybridQA 56.09

Table 5: Percentage of unsolvable questions for our
MetaQA with the selected agents, i.e., none of the agents
can give a correct answer.

Also, if the agents do not fit in memory at the
same time, it would be necessary to run them se-
quentially, which would increase the inference time.
Yet, it might be possible to overcome this limitation
because it is possible to predict in advance which
agents are more likely to give a correct answer to a
given question (Geigle et al., 2021; Garg and Mos-
chitti, 2021). This would allow us to skip some
agents at run-time and improve the running time
dramatically in low-memory scenarios.
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A Appendix

A.1 Datasets
Table 8 summarizes the characteristics of the
datasets, contains the size of the train, validation,
and test splits of each dataset, and their licenses.
In the case of RACE, the authors did not provide
any license but specified that it could only be used
for non-commercial research purposes. In the case
of CommonSenseQA and SIQA there is no license
specified, but they are freely available to download.
Therefore, our use of these datasets complies with
their licenses and intended uses.

A.2 Expert Agents
Table 9 provides the links to download the ex-
pert agents used in this work. In the case of Nar-
rativeQA and HybridQA, we only employ one
agent because of the difficulty of obtaining oth-
ers. Both of these datasets use uncommon modal-
ities (abstractive and table+text). Therefore, it is
not straightforward to adapt other models to these
datasets.

A.3 Implementation
Our model was implemented using PyTorch
(Paszke et al., 2019) and HuggingFace’s Trans-
formers library (Wolf et al., 2020). Both MetaQA
and MultiQA were implemented using Span-BERT
large (335M parameters), while UnifiedQA uses
T5-base (220M parameters, the closest to the 335M
of our MetaQA). The score embedder for MetaQA
is implemented as a linear layer with an input size
of 1 and an output size of 1024 (i.e., the hidden
size of Span-BERT Large). α1 and α2 in Eq. 4 are
set to 0.5 and 1 respectively. The Agent Selection
Networks are implemented as a linear layer with an
input size of 1024 and an output size of 1. Lastly,
the Answer Selection Network (AnsSel) is also
implemented as a linear layer with an input size
of number-of-agents × 1025 (Span-BERT’s hid-
den size + 1 from the output of the agent selection
network). The threshold θ to determine whether
a candidate answer is correct or not to create the
labels to train AnsSel is set to 0.7.

MetaQA was trained for one epoch using a batch
size of six, a weight decay of 0.01, a learning rate
of 5e-5, and 500 warmup steps.

All the extractive agents and MultiQA were
trained using the same architecture, Span-BERT
large, for two epochs and with the same hyperpa-
rameters: batch size of 16, learning rate of 3e-5,

max length of 512, and doc stride of 128.
UnifiedQA was trained for two epochs using a

batch size of four, a learning rate of 5e-5, and a
weight decay of 0.01. It was evaluated on the dev
set every 100K steps.

Lastly, the max-voting baseline assumes that two
answers are the same if the F1 score is higher than
a threshold (0.9). We tuned this parameter on the
dev set searching in the range [0.5, 0.6, ..., 1.0]. We
used the implementation of HuggingFace’s SQuAD
F1 metric5. In the case that two answers have the
same amount of votes, we select the one with the
highest confidence score given by an agent.

Any other parameter used the default value in
HuggingFace’s Transformers library. Each model
was trained five times with different random seeds
to do hypothesis testing except for UnifiedQA,
which would be too expensive to compute.

We used the implementation of HuggingFace’s
Dataset library (Lhoest et al., 2021) for the eval-
uation using EM and F1 metrics, while for the
ROGUE metric we used the official implementa-
tion6.

All the experiments were conducted in a
SLURM cluster where each job was assigned to
different computer nodes with different CPUs and
GPUs. Therefore, comparing the running time of
each model is not possible.

A.4 Adding New Agents

Augmenting MetaQA with a new agent only re-
quires adding one more AgSeN network and in-
creasing the output space of the AnsSel network.
Thus, it requires retraining the whole architecture
(including the Transformer encoder). However, as
discussed in §5.4, the training efficiency is one of
the strengths of our system.

A.5 MetaQA on a Single Dataset

We conduct an additional experiment to analyze
the behavior of MetaQA with multiple expert
agents trained in a single dataset. We train
MetaQA for three NewsQA agents: RoBERTA-
base, XtremeDistil (Mukherjee and Hassan Awadal-
lah, 2020), and SpanBERT, and evaluate it on
NewsQA. As observed in Table 7, MetaQA per-
forms on par with the agents. However, the per-
formance gap is smaller than in the main use case
(§5.1). This is attributed to the similarities between

5https://huggingface.co/metrics/squad
6https://pypi.org/project/rouge-score/
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Dataset what where who when why which how

SQuAD 56.71 4.55 10.82 7.47 1.48 7.73 11.23
NewsQA 49.52 8.54 24.46 5.01 0.11 3.17 9.19
HotpotQA 37.98 4.61 22.99 2.22 0.05 29.39 2.76
SearchQA 7.55 9.5 32.53 28.66 0.72 18.32 2.72
NQ 16.58 13.05 40.02 20.35 0.63 3.25 6.11
TriviaQA-web 30.16 1.56 15.07 0.72 0.02 50.03 2.44
QAMR 61.75 5.23 17.92 4.59 0.66 3.04 6.82
DuoRC 35.16 9.68 42.32 2.06 2.44 1.89 6.45

Table 6: Statistics of wh-words per dataset.

Model F1 Score

MetaQA 73.73
SpanBERT 73.68
RoBERTa 73.15
XtremeDistil 64.16

Table 7: MetaQA trained only on NewsQA agents.

the models. These three models are all Transform-
ers and trained on the same dataset, so it is natural
that they are similar. An approach such as MetaQA
excels when the agents are very different, as in Ta-
ble 1, where the agents were trained on different
datasets and therefore have different skills.

A.6 Wh-word Statistics
Table 6 shows the percentage of wh-words per
dataset.
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Dataset Characteristics Train Dev Test License

E
xt

ra
ct

iv
e

SQuAD (Rajpurkar et al., 2016) Crowdsourced questions on Wikipedia 6573 5253 5254 MIT
NewsQA (Trischler et al., 2017) Crowdsourced questions about News 74160 2106 2106 MIT
HotpotQA (Yang et al., 2018) Crowdsourced multi-hop questions on Wikipedia 72928 2950 2951 MIT
SearchQA (Dunn et al., 2017) Web Snippets, Trivia questions from J! Archive 117384 8490 8490 MIT
NQ (Kwiatkowski et al., 2019) Wikipedia, real user queries on Google Search 104071 6418 6418 MIT
TriviaQA-web (Joshi et al., 2017) Web Snippets, crowdsorced trivia questions 61688 3892 3893 MIT
QAMR (Michael et al., 2018) Wikipedia, predicate-argument understanding 50615 18908 18770 MIT
DuoRC (Saha et al., 2018) Movie Plots from IMDb and Wikipedia 58752 13111 13449 MIT

M
ul

tip
le

-C
ho

ic
e RACE (Lai et al., 2017) Exams requiring passage summarization and attitude

analysis
87866 4887 4934 NA

CSQA (Talmor et al., 2019) Web Snippets, common-sense reasoning 9741 611 610 NA
BoolQ (Clark et al., 2019) Wikipedia, Yes/No questions 9427 1635 1635 CC BY-SA 3.0
HellaSWAG (Zellers et al., 2019) Completing sentences using common sense 39905 5021 5021 MIT
SIQA (Sap et al., 2019) Common sense in social interactions 33410 977 977 NA

A
bs

. DROP (Dua et al., 2019) Wikipedia, numerical reasoning 77409 4767 4768 CC BY-SA 4.0
NarrativeQA (Kočiský et al., 2018) Books, Movie Scripts 32747 3461 10557 Apache 2.0

M
M HybridQA (Chen et al., 2020) Wikipedia tables and paragraphs 62682 1733 1733 MIT

Table 8: Summary of the datasets used. Abs. stands for abstractive and MM for multi-modal.

# Expert Agents Used for Link

1 Span-BERT Large (Joshi et al., 2020) for
SQuAD

all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_SQuAD

2 Span-BERT Large for NewsQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_NewsQA

3 Span-BERT Large for HotpotQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_HotpotQA

4 Span-BERT Large for SearchQA all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_SearchQA

5 Span-BERT Large for NQ all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_NaturalQuestionsShort

6 Span-BERT Large for TriviaQA-web all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_TriviaQA-web

7 Span-BERT Large for QAMR all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_QAMR

8 Span-BERT Large for DuoRC all extractive + DROP https://huggingface.co/haritzpuerto/spanbert-large-
cased_DuoRC

9 RoBERTa Large (Liu et al., 2019) for
RACE

all multiple choice https://huggingface.co/LIAMF-USP/roberta-large-finetuned-
race

10 RoBERTa Large for HellaSWAG all multiple choice https://huggingface.co/prajjwal1/roberta_hellaswag
11 RoBERTa Large for SIQA all multiple choice https://huggingface.co/haritzpuerto/roberta_large_social_i_qa
12 AlBERT xxlarge-v2 (Lan et al., 2020) for

CSQA
all multiple choice https://huggingface.co/danlou/albert-xxlarge-v2-finetuned-

csqa
13 BERT Large-wwm (Devlin et al., 2019)

for BoolQ
BoolQ https://huggingface.co/lewtun/bert-large-uncased-wwm-

finetuned-boolq
14 TASE (Segal et al., 2020) for DROP DROP https://github.com/eladsegal/tag-based-multi-span-extraction
15 Adapter BART Large (Pfeiffer et al., 2020)

for NarrativeQA
NarrativeQA https://huggingface.co/AdapterHub/narrativeqa

16 Hybrider (Chen et al., 2020) for HybridQA HybridQA https://github.com/wenhuchen/HybridQA

Table 9: List of the expert agents, datasets in which they are used, and links to download.
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