
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 3609–3619
May 2-6, 2023 ©2023 Association for Computational Linguistics

Contrastive Learning with Keyword-based Data Augmentation for Code
Search and Code Question Answering

Shinwoo Park1, Youngwook Kim2 and Yo-Sub Han2

1Department of Artificial Intelligence, Yonsei University, Seoul, Republic of Korea
2Department of Computer Science, Yonsei University, Seoul, Republic of Korea

{pshkhh, youngwook, emmous}@yonsei.ac.kr

Abstract

The semantic code search is to find code snip-
pets from the collection of candidate code snip-
pets with respect to a user query that describes
functionality. Recent work on code search
proposes data augmentation of queries for
contrastive learning. This data augmentation
approach modifies random words in queries.
When a user web query for searching code snip-
pet is too brief, the important word that repre-
sents the search intent of the query could be
undesirably modified. A code snippet has infor-
mative components such as function name and
documentation that describe its functionality.
We propose to utilize these code components
to identify important words and preserve them
in the data augmentation step. We present Key-
DAC (Keyword-based Data Augmentation for
Contrastive learning) that identifies important
words for code search from queries and code
components based on term matching. KeyDAC
augments query-code pairs while preserving
keywords, and then leverages generated train-
ing instances for contrastive learning. We use
KeyDAC to fine-tune various pre-trained lan-
guage models and evaluate the performance of
code search and code question answering via
CoSQA and WebQueryTest. The experimen-
tal results confirm that KeyDAC substantially
outperforms the current state-of-the-art perfor-
mance, and achieves the new state-of-the-arts
for both tasks.

1 Introduction

Software developers or students who major in com-
puter science often write natural language queries
to search for code snippets with desired function-
ality from the web search engine. The retrieved
code snippets are reused or referred to improve pro-
ductivity of software development. Semantic code
search is a well-known code-related downstream
task that measures the semantic relevance between
a given natural language query and a collection of
code snippets to retrieve the most relevant code

snippet. CodeXGLUE (Lu et al., 2021), a bench-
mark for 10 code tasks, provides two test sets—
CodeSearchNet AdvTest and WebQueryTest—for
an open challenge code search. CodeSearchNet
AdvTest from the CodeSearchNet (Husain et al.,
2019) corpus is for a retrieval scenario in which one
needs to find a Python code function that matches
the search intent of the query best. The queries in
CodeSearchNet AdvTest are not real user queries.
Instead, they are documentations such as comments
or summaries written by developers. WebQuery-
Test is a code question answering task that asks
whether a Python code function has functionality
described by the real user web query collected from
the search logs of a commercial search engine.
Recently, Huang et al. (2021) introduce CoSQA
that consists of pairs of real user web queries and
Python code snippets. Then, they use CoSQA as
a benchmark for code search to resemble the real
world scenario where developers write natural lan-
guage queries to find code snippets.

Huang et al. (2021) propose CoCLR, a con-
trastive learning method using a query-rewritten
data augmentation, to improve the code search
performance. CoCLR modifies the random words
in queries to augment training query-code pair in-
stances. However, besides the user queries, there
are useful components that describe the function-
ality of code snippets. Since a function name and
documentation describe functionality of the corre-
sponding code function, we propose to use these
components as well for data augmentation. Further-
more, we suggest considering the relative impor-
tance of words in query and code function. Note
that the data augmentation used in the previous
code search method treats all words equally. Xie
et al. (2020) use TF-IDF to calculate the relative im-
portance of words in a sentence, then replace unim-
portant words to augment training sentences. We
adapt this idea and define the relative importance
in code search based on term matching between a

3609

Augmenting query

Augmenting code snippet

Preserving keywords

Augmenting query

Augmenting code snippet

Preserving keywords

python get modified date

python get modified date

 Training query-code pair

CoCLR Data Augmentation

KeyDAC Data Augmentation

Query:

Query:

Code:

Augmented data by CoCLR

Augmented data by KeyDAC

Query: python get modified date

Code: def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 mtime = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(mtime)
 return dt.replace(tzinfo=pytz.utc) def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime"""

 modified = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(modified)
 return dt.replace(tzinfo=pytz.utc)

Figure 1: Comparison of data augmentation approaches for semantic code search. Example query-code pair is from
CoSQA (Huang et al., 2021) training dataset. Keywords are marked in yellow and red slash line denotes the deletion
of a word. Both CoCLR (Huang et al., 2021) and KeyDAC apply data augmentation to query. In contrast to CoCLR,
KeyDAC also augments code snippet (deleting UTC in documentation and renaming variable mtime to modified,
which is one of keywords). While CoCLR can delete the keyword date, KeyDAC preserves keywords.

paired query and code snippet.
We present KeyDAC, Keyword-based Data

Augmentation for Contrastive learning that identi-
fies keywords from a given query-code pair based
on term matching. KeyDAC applies data augmenta-
tion both on natural language (NL) sequences (i.e.,
query, function name, and documentation) and
programming language (PL) sequences (i.e., code
statements), and generates more training query-
code pair instances while preserving keywords.
Figure 1 shows an example training query-code
pair instance from CoSQA training dataset and
compares the results of two data augmentation ap-
proaches, CoCLR and KeyDAC. The query asks
how to get modified date. In this case, important
words closely related to the search intent are mod-
ified and date. Since CoCLR modifies random
words in query, date could be modified in data
augmentation process. The augmented query by
CoCLR is python get modified (keyword date is
deleted) which does not represent clear search in-
tent. On the other hand, KeyDAC preserves key-
words in the data augmentation step. In addition,
KeyDAC augments code snippet by deleting unim-
portant word UTC in documentation, and renam-
ing the variable in the code statements using key-
words (mtime to modified). We evaluate the effec-
tiveness of KeyDAC on CoSQA and open challenge
WebQueryTest.1 We use KeyDAC to fine-tune var-
ious pre-trained language models. KeyDAC brings
substantial performance gain, resulting in new state-
of-the-art performance both on code search and

1The leaderboard of WebQueryTest is available at https:
//microsoft.github.io/CodeXGLUE/

code question answering tasks. Our main contribu-
tions are as follows:

• We propose KeyDAC—data augmentation
mechanism for contrastive learning, which
identifies important words from training
query-code pairs and augments them while
preserving identified keywords.

• We demonstrate that KeyDAC outperforms
the current SOTA for the code search task on
CoSQA benchmark.

• We achieve a new record, with a substantial
improvement, for the open challenge code QA,
WebQueryTest.

2 Related Work

2.1 Code Search Methods
Some researchers proposed information retrieval-
based approaches using term matching between
queries and code snippets (Lu et al., 2015; Lv et al.,
2015). However, since these traditional approaches
focused on lexical information, they often fail to
understand the semantic relationship between the
query and the code snippet. Recently, many re-
searchers started to address the problem through
deep learning-based approaches (Cambronero et al.,
2019; Li et al., 2020) that learn the semantic rep-
resentation of the query and code. Later, pre-
trained models for programming languages were
proposed and showed an improvement on code
search tasks. CodeBERT (Feng et al., 2020) is a
bimodal pre-trained model for NL and PL, which
was pre-trained with masked language modeling

3610

https://microsoft.github.io/CodeXGLUE/
https://microsoft.github.io/CodeXGLUE/

(MLM) and replaced token detection (RTD). Feng
et al. (2020) showed that CodeBERT outperformed
both RoBERTa and RoBERTa pre-trained on code
datasets. GraphCodeBERT (Guo et al., 2020) fur-
ther improved the performance by pre-training us-
ing data flow as a semantic-level structure of code.

2.2 Contrastive Learning for Code Search

Contrastive learning encourages the distance be-
tween similar instances to be minimized and the
distance between dissimilar instances to be maxi-
mized in the representation space. Recently, con-
trastive learning showed its effectiveness and be-
came popular in self-supervised learning (Chen
et al., 2020; Meng et al., 2021; Gao et al., 2021).
Such effectiveness of contrastive learning in vari-
ous fields promoted adapting contrastive learning
for code search. As a pre-training approach for
source code, Corder (Bui et al., 2021) transformed
a code snippet into different versions and mini-
mized the distance between them in the represen-
tation space. Corder used program transformation
operators, including dead code insertion and per-
mutation of code statements. The experiment re-
sults confirmed that pre-training with contrastive
learning was effective in improving performance
on several code-related tasks such as code-to-code
search, text-to-code search, and code summariza-
tion. As a fine-tuning approach for code search,
CoCLR (Huang et al., 2021) used contrastive learn-
ing with query-rewritten data augmentation and
in-batch negative samples. For query-rewriting,
CoCLR modified random words in a query as fol-
lows: deleting random words, switching the po-
sition of two random words, or copying random
words. They showed that CoCLR improved code
search performance of CodeBERT. However, these
contrastive learning approaches utilize either query
or code in the data augmentation process and do
not consider the relative importance of words. We
propose to consider the importance of each word
differently and preserve keywords for data augmen-
tation.

3 Approach

KeyDAC identifies keywords from positive query-
code pairs (i.e., a code snippet meets the demand of
a query) in a training dataset based on term match-
ing. Then KeyDAC applies keyword-based data
augmentation to both query and code snippet. Us-
ing augmented training data, KeyDAC deploys con-

def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 mtime = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(mtime)
 return dt.replace(tzinfo=pytz.utc)

3) Identified keywords

python get modified dateQuery:

Code:

python get

Function Name:

Documentation:

last_modified_date

Last modified

Keywords:

modified dateQuery:

timestamp as a UTC datetime

Term Matching

1) Training query-code pair from CoSQA dataset

2) Identifying keywords from three NL sequences

last modified date

Figure 2: An example of identifying keywords from a
pair of real user query and code function. Given a train-
ing query-code pair, we identify keywords based on term
matching from three NL sequences (i.e., query, function
name, and documentation). The identified keywords are
related to the functionality of the code function.

trastive learning to fine-tune pre-trained encoders
for the code search task.

3.1 Data Augmentation with Keywords

A code function ci has the following three main
components:

• function name in the function header (NL)

• function-level documentation (NL)

• code statements in the function body (PL)

The previous approaches consider these three com-
ponents as PL sequences. On the other hand, we
consider the function name and the documentation
as NL sequences, since 1) those two code compo-
nents describe the functionality of the code snippet;
2) modifying the function name or documentation
does not produce any syntax errors.
Identifying Keywords Since a user query demands
certain functionality of the code snippet, KeyDAC
utilizes two NL descriptions of code function, such
as the function name and documentation, to identify
keywords. Specifically, KeyDAC identifies com-
mon words from three NL sequences (i.e., query,
function name, and documentation) based on term
matching. Figure 2 gives an example of how Key-
DAC identifies keywords from the paired query
and code function. The identified keywords from
the example are: last, modified and date. These

3611

def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 mtime = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(mtime)
 return dt.replace(tzinfo=pytz.utc)

python get modified date

(c) The process of keyword-based data augmentation

(d) Augmented training query-code pair

Query:

Code:

(a) Training query-code pair

(b) Identified keywords

Query:

Code:

python get modified date

def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 mtime = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(mtime)
 return dt.replace(tzinfo=pytz.utc)

Randomly selected unimportant word: UTC

Target variable: mtime

Randomly selected unimportant word: python

def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 modified = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(modified)
 return dt.replace(tzinfo=pytz.utc)

python get modified date

Renaming

Deleting

Deleting
Doing Nothing

python get

Function Name:

Documentation:

last_modified_date

Last modified

Keywords:

modified dateQuery:

timestamp as a UTC datetime

Term Matching

last modified date

Figure 3: An illustration of keyword-based data augmentation. For NL sequences, keywords (i.e., last, modified, and
date) are preserved (highlighted in bold) while unimportant words (i.e., python in query and UTC in documentation)
are deleted (red slash lines) (NL: Rewriting). For PL sequences, variable mtime is renamed using a keyword
modified (PL: Variable Renaming).

identified keywords are related to the functionality
of code function.

Using the identified keywords, KeyDAC applies
data augmentation to NL and PL sequences in dif-
ferent ways. In the following, we demonstrate
keyword-based data augmentation in detail.
NL: Rewriting KeyDAC rewrites three NL se-
quences by modifying unimportant words while
preserving keywords by choosing one of the fol-
lowing four ways: 1) deleting one randomly se-
lected unimportant word (Delete); 2) switching
the position of two randomly selected unimportant
words (Switch); 3) copying one randomly selected
unimportant word (Copy); 4) doing nothing (None).
In Figure 3 (d), KeyDAC deletes an unimportant
word python in the query and UTC in the documen-
tation, while preserving keywords last, modified
and date. PL: Variable Renaming Software devel-
opers sometimes name a variable in abbreviation
form; in other words, there can be a lexical gap be-
tween query and variable name (e.g., in Figure 3 (a),
the variable mtime represents the meaning of modi-
fied time). We propose to rename variables using
keywords to bridge the lexical gap between query
and code snippet. We first parse a code function ci
into an abstract syntax tree (AST) that represents
the syntactic structure of ci. Then we identify vari-
ables from terminal nodes of the resulting AST.
Then KeyDAC renames the variables that appear
most frequently in code statements using keywords.
If there is a keyword that matches the target vari-
able name (mtime) with the first letter, KeyDAC
uses that keyword (modified). If not, KeyDAC ran-
domly chooses one from keywords (i.e., last, modi-
fied, and date). In Figure 3 (d), KeyDAC renames

mtime to modified.

3.2 Siamese Network for Code Search Task
We adopt siamese network architecture, which has
a shared encoder to map a query and code snip-
pet to fixed-sized embeddings. Each query qi and
code function ci are encoded by a shared encoder
Encoder (e.g., CodeBERT). We take the represen-
tation of [CLS] token from the last hidden layer of
Encoder. Then we compute the cosine similarity
sim(qi,ci) between a query-code pair (qi, ci) as:

sim(qi,ci) = ⟨Encoder(qi), Encoder(ci)⟩, (1)

where 〈·〉 indicates cosine similarity operation. We
use binary cross-entropy as the training objective:

Lbce = −[yi · log sim(qi,ci)

+ (1− yi) log(1− sim(qi,ci))], (2)

where yi is the ground truth label of (qi, ci).

3.3 Contrastive Learning
KeyDAC uses contrastive learning to optimize the
parameters of Encoder. This contrastive learning
aims to maximize the similarity of the query qi and
code function ci with label of yi = 1 while mini-
mizing the similarity of the query with unrelated
code snippets.

Given the query-code pair (qi, ci) in a batch of
size N , we consider the other N − 1 code snippets
as unrelated. The contrastive loss with in-batch
negative samples is defined as:

Lib = − 1

N − 1

N∑

j=1
j ̸=i

log
(
1− sim(qi,cj)

)
. (3)

3612

 def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 mtime = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(mtime)
 return dt.replace(tzinfo=pytz.utc)

python get modified date

Query

Encoder EncoderShared
Weights

 def split_len(s, length):

 def timespan(start_time):
Code Snippet def last_modified_date(filename):

 """ Last modified timestamp as a UTC datetime """

 modified = os.path.getmtime(filename)
 dt = datetime.datetime.utcfromtimestamp(modified)
 return dt.replace(tzinfo=pytz.utc)

python get modified date

1. Keyword-based Data Augmentation for Contrastive Learning

(Eq. 2)
(Eq. 3)

2. Fine-tuning Siamese Network
using Contrastive Learning

In-batch Negative

Figure 4: The fine-tuning process of siamese network
using KeyDAC. The boxes, colored in dark gray, indi-
cate the in-batch negative samples. The black solid line
denotes the binary cross-entropy loss and black dashed
lines denote the contrastive loss with in-batch negative.

The overall training objective is:

L = Lbce + Lib. (4)

Figure 4 illustrates the fine-tuning process of
siamese network with shared encoder using Key-
DAC. A black solid line denotes the binary cross-
entropy loss (Equation 2), and black dashed lines
denote the contrastive loss with in-batch negative
samples (Equation 3).

4 Experiments

4.1 Tasks

We evaluate the performance for two tasks, code
search and code question answering.
Code Search aims to retrieve the most relevant
code function c∗ in a collection of H code snippets
C = c1, . . . , cH according to a real user web query
qi. Following CoSQA, we use Mean Reciprocal
Rank (MRR) as evaluation metric.
Code Question Answering is a form of binary
classification and, thus, predicts a label of 1 or
0; the label indicates whether the code function
ci matches the search intent of the query qi. The
WebQueryTest uses accuracy score as its official
evaluation metric.

4.2 Datasets

We use CoSQA (Huang et al., 2021) and Web-
QueryTest (Lu et al., 2021) to evaluate the effec-
tiveness of KeyDAC. The queries in both datasets
are real user queries. Table 1 shows the data statis-
tics. Each number denotes the number of paired
queries and code snippets.
Code Search: We follow the same dataset split as
CoSQA. The number of candidate code snippets is
6,267 (H = 6, 267).
Code Question Answering: Each instance of We-
bQueryTest is a pair of a real user web query and a
Python code function. Following CoSQA, we train
the models using the CoSQA dataset, then use Web-
QueryTest as the test dataset. Since WebQueryTest
is an open challenge, we submit model predictions
to the CodeXGLUE official leaderboard, and report
the evaluated results.

4.3 Baseline Approaches

• In-batch: Contrastive learning method us-
ing in-batch negative (without data augmenta-
tion).

• CoCLR: Contrastive learning method with
query-rewritten data augmentation and in-
batch negative.

Huang et al. (2021) report that switching the posi-
tion of two random words in queries for the data
augmentation in CoCLR achieves the best perfor-
mance. Thus, we use switch as the query-rewriting
operation for CoCLR in the experiments (Table 2).

4.4 Experiment Setup

We set the batch size N as 32, the learning rate as
1e-5 and the fine-tuning epoch as 10. We use the
Adam optimizer (Kingma and Ba, 2014) to train
the models. We conduct all experiments on an
NVIDIA RTX3090 GPU with 24GB memory.

We use the following pre-trained models2:

• RoBERTa (Liu et al., 2019) is pre-trained
on a large natural language text corpus with
masked language modeling (MLM) objective.

• CodeBERT (Feng et al., 2020) is pre-trained
on six programming languages with MLM
and replaced token detection objectives.

2We use HuggingFace’s implementation for these models.
(https://huggingface.co/)

3613

https://huggingface.co/

Dataset Task Metric Train Valid Test

CoSQA (Huang et al., 2021)
Code Search MRR 19,604 500 500

Code Question Answering Accuracy 20,000 604 1,046∗

Table 1: Dataset statistics. * This is the number of test data in the WebQueryTest open challenge.

Model Approach Code Search Code Question Answering3

RoBERTa (Liu et al., 2019)
In-batch 58.37 ± 0.48 58.89
CoCLR 61.00 ± 0.98 60.70

KeyDAC 67.09 ± 0.37 60.99

CodeBERT (Feng et al., 2020)
In-batch 66.72 ± 0.35 57.36
CoCLR 68.42 ± 0.44 60.03

KeyDAC 72.76 ± 0.93 62.90

GraphCodeBERT (Guo et al., 2020)
In-batch 71.34 ± 0.46 63.73±1.28
CoCLR 71.78 ± 0.69 63.47±1.31

KeyDAC 74.93 ± 0.42 65.51±0.77

UniXcoder (Guo et al., 2022)
In-batch 71.87 ± 0.59 62.58±1.06
CoCLR 71.52 ± 0.85 62.10±0.52

KeyDAC 74.71 ± 0.45 64.14±0.78

Table 2: Results on code search and code question answering tasks. The best results for each model are highlighted
in bold.

• GraphCodeBERT (Guo et al., 2020) lever-
ages data flow of code for two structure-aware
pre-training tasks, including edge prediction
and node alignment.

• UniXcoder (Guo et al., 2022) is a unified pre-
trained model which uses code documentation
and AST for contrastive pre-training. We use
encoder of UniXcoder.

We deploy contrastive learning approaches to fine-
tune the aforementioned pre-trained language mod-
els.

4.5 Results

Table 2 compares different contrastive learning ap-
proaches to code search and code question answer-
ing. We report the mean performance with standard
deviation in 5 runs for code search task.3 Remark
that the in-batch negative contrastive learning ap-
proach (In-batch) does not use data augmentation.
We highlight the best results for each pre-trained
model in bold.

The results show that KeyDAC consistently
outperforms contrastive learning with in-batch

3For code QA task, we submit the prediction results
of 3 random seeds for the two best models and the pre-
diction results of 1 random seed for the others, since the
CodeXGLUE guideline discourages excessive submissions to
avoid P-hacking.

negative only (In-batch) and contrastive learn-
ing with query-rewritten data augmentation (Co-
CLR). GraphCodeBERT fine-tuned using KeyDAC
achieves the highest performance both on code
search and code QA tasks. We notice that CoCLR
drops code search performance of UniXcoder and
code QA performance of GraphCodeBERT and
UniXcoder. On the other hand, KeyDAC shows
consistent performance improvement.

5 Analysis

We use GraphCodeBERT as base model for fol-
lowing analyses since among four pre-trained mod-
els, GraphCodeBERT achieves the highest perfor-
mance on code search and code QA when fine-
tuned using KeyDAC.

5.1 The Effect of Preserving Keywords

From the experimental results, we observe that Key-
DAC consistently outperforms CoCLR. We hypoth-
esize that the main reason for the performance gain
is preserving keywords in data augmentation. We
study the effect of preserving keywords, especially
in queries to directly compare KeyDAC and Co-
CLR. We perform query-rewritten data augmenta-
tion in three ways: 1) Preserving keywords (same
as applying keyword-based data augmentation to
query only); 2) Deleting a random word (same as

3614

Component Rewriting Code Search

Query
Preserving keywords 72.03

Deleting a random word 71.07
Deleting a keyword 68.03

Table 3: Effect of preserving keywords in query-
rewritten data augmentation.

Model Data Augmentation Code Search

GraphCodeBERT

No augmentation 71.46
(Delete) 74.81
(Switch) 73.74
(Copy) 72.37

Table 4: Effect of NL rewriting operations. The result
in the first row indicates the performance of fine-tuning
GraphCodeBERT using in-batch negative only.

CoCLR with delete operation); 3) Deleting a key-
word. We analyze this via code search task on
CoSQA test set to avoid an excessive submission
of code QA prediction results to the WebQueryTest
leaderboard. Table 3 shows the results. We can ob-
serve that preserving keywords in query-rewritten
data augmentation achieves the best performance.
The deletion of keywords in queries shows signifi-
cant performance degradation. The results suggest
that keywords determined through our proposed
way (Figure 2) are important to the performance of
the semantic code search task.

5.2 The Effect of NL Rewriting Operation

We conduct experiments to investigate the effect
of different NL rewriting operations on the code
search task. Table 4 shows the code search perfor-
mance evaluated on the CoSQA test set. We ob-
serve that KeyDAC with all three NL rewriting op-
erations outperforms GraphCodeBERT fine-tuned
using contrastive learning with in-batch negative
only (No augmentation).

Among the three rewriting operations, delete
shows the best performance (highlighted in bold).
We conjecture that deleting unimportant words
helps to reduce the noise of data. For example,
user web queries often have a typo, and documenta-
tion often contains a special character such as >>>
to show the execution result.

5.3 Contribution of Each Component

We investigate the contributions of each compo-
nent to keyword-based data augmentation. Ta-
ble 5 shows the results for code search task on the
CoSQA test set. All five rows determine keywords
from pairs of query and code function with the

same way. However, the last four rows only mod-
ify each component as follows: 1) deleting unim-
portant words in queries; 2) deleting unimportant
words in function names; 3) deleting unimportant
words in documentations; 4) renaming variables
using keywords.

The results show that KeyDAC leveraging all
components (results in the first row) achieves the
best result. Among the results of KeyDAC using a
single component, documentation contributes the
most to performance, and the function name con-
tributes the least. Software developers typically use
an abbreviated function name but write documen-
tation in detail to describe the functionality of the
code snippet.

5.4 Case Study

We conduct a case study to analyze the consistent
code search ability of KeyDAC. More cases for
other pre-trained language models can be found
in Appendix A.1. In addition, we provide some
cases to compare the prediction results of CoCLR
and KeyDAC for code question answering task in
Appendix A.2

def _split_str(s, n):
 """split string into list of strings
 by specified number."""
 length = len(s)
 return [s[i:i + n] for i in range(0, length, n)]

split string into n parts pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.

def _split_str(s, n):
 """split string into list of strings
 by specified number."""
 length = len(s)
 return [s[i:i + n] for i in range(0, length, n)]

def split_len(s, length):
 """split string *s* into list of strings
 no longer that *length*"""
 return [s[i:i+length] for i in range(0, len(s), length)]

def _split(string, splitters):
 """Splits a string into parts at
 multiple characters"""
 part = ' '
 for character in string:
 if character in splitters:
 yield part
 part = ' '
 else:
 part += character
 yield part

Top-1 Code:

Top-2 Code:

Top-3 Code:

(b) Code search results with KeyDAC (top-3 results).

Figure 5: Code search results with KeyDAC on CoSQA
test set. The code snippets are searched from 6,267 can-
didates and ranked in the order of semantic relatedness.

3615

Model Component Keyword-based Data Augmentation Code Search

GraphCodeBERT

All Components NL Rewriting via delete & Variable Renaming 74.81
Query Deleting unimportant words in queries 72.03

Function Name Deleting unimportant words in function names 71.39
Documentation Deleting unimportant words in documentations 73.26

Code Statements Renaming variables using keywords 72.57

Table 5: The first row indicates the performance of KeyDAC which applied keyword-based data augmentation to all
components. The last four rows are the results of applying keyword-based data augmentation to a single component.

Figure 5 shows the code search results with Key-
DAC for the query split string into n parts python.
We only give the top-3 results due to the space limit.
KeyDAC returns the gold code function as its top-1
result. The other two code snippets have the same
functionality as the gold code, demonstrating the
consistent code search ability of KeyDAC.

5.5 Error Analysis

Figure 6 provides two error cases of KeyDAC on
code QA task. KeyDAC makes a wrong prediction
in the case of Figure 6(a). The purpose of the search
for the query is to calculate the l1 norm between
vectors. However, the functionality of the code is
computing l2 norm of a given array. The model
needs mathematical knowledge to understand the
difference between norm l1 and norm l2.

def l2_norm(arr):
 """The l2 norm of an array is defined as:
 sqrt(||x||), where ||x|| is the dot product
 of the vector """
 arr = np.asarray(arr)
 return np.sqrt(np.dot(arr.ravel().squeeze(), arr.ravel().squeeze()))

python l1 norm between vectorsQuery:

Code:

Label:

Prediction:

0

0.6800 (1)

(a)

def chmod_plus_w(path):
 """Equivalent of unix `chmod +w path`"""
 path_mode = os.stat(path).st_mode
 path_mode &= int('777', 8)
 path_mode |= stat.S_IWRITE
 os.chmod(path, path_mode)

python script chmod +x Query:

Code:

Label:

Prediction:

0

0.6027 (1)

(b)

Figure 6: Two error cases of KeyDAC for code question
answering task on CoSQA validation set.

In the case of Figure 6(b), the search intent of
the query is to add the execution privilege (chmod

+x) while the functionality of the code is to add
the write privilege (chmod +w). KeyDAC fails
to understand the difference between +x and +w,
resulting in a wrong prediction. While software
developers can easily understand the difference of
Unix/Linux command chmod +x and chmod +w, it
is not trivial for the language models and humans
without programming knowledge.

The potential research direction is to incorporate
domain-specific knowledge, such as mathemati-
cal knowledge and programming knowledge, into
the pre-training or fine-tuning process of language
models to improve code search performance.

6 Conclusion

We have presented KeyDAC— keyword-based data
augmentation for contrastive learning, which gener-
ates more training query-code pairs while preserv-
ing important keywords for the code search task.
First, KeyDAC utilizes term matching technique
to identify important words from a query and code
components (function name and documentation).
Then, KeyDAC augments both a query and a code
snippet while preserving the identified keywords.
Finally, KeyDAC deploys contrastive learning us-
ing the augmented data to fine-tune the pre-trained
language models. We have demonstrated that Key-
DAC outperforms the current state-of-the-art per-
formance on both the code search and an open
challenge code question answering task.

Limitations

Given a query-code pair, KeyDAC identifies key-
words which share the same surface form by term
matching. In other words, KeyDAC identifies key-
words at the lexical level. As a future work, Key-
DAC can utilize external knowledge for keyword-
based data augmentation. For example, KeyDAC
can utilize WordNet to identify keywords based on
not only surface form, but also synonyms.

3616

Acknowledgements

This research was supported by the NRF grant (RS-
2023-00208094) and the AI Graduate School Pro-
gram (No. 2020-0-01361) funded by the Korea
government (MSIT). Han is a corresponding au-
thor.

References
Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2021. Self-

supervised contrastive learning for code retrieval and
summarization via semantic-preserving transforma-
tions. In Proceedings of the 44th International ACM
SIGIR Conference on Research and Development in
Information Retrieval.

Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and Satish Chandra. 2019. When deep learning
met code search. In Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations
of Software Engineering.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. CodeBERT: A
pre-trained model for programming and natural lan-
guages. In Findings of the Association for Computa-
tional Linguistics: EMNLP.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
SimCSE: Simple contrastive learning of sentence
embeddings. arXiv preprint arXiv:2104.08821.

Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming
Zhou, and Jian Yin. 2022. UniXcoder: Unified cross-
modal pre-training for code representation. In Pro-
ceedings of The Annual Meeting of the Association
for Computational Linguistics (ACL).

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey
Svyatkovskiy, Shengyu Fu, et al. 2020. GraphCode-
BERT: Pre-training code representations with data
flow. In Proceedings of International Conference on
Learning Representations (ICLR).

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. CoSQA: 20,000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5690–5700, Online. Association
for Computational Linguistics.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
SearchNet Challenge: Evaluating the state of seman-
tic code search. arXiv preprint.

Diederik P Kingma and Jimmy Lei Ba. 2014. Adam: A
method for stochastic optimization. In Proceedings
of International Conference on Learning Representa-
tions (ICLR).

Wei Li, Haozhe Qin, Shuhan Yan, Beijun Shen, and
Yuting Chen. 2020. Learning code-query interaction
for enhancing code searches. In 2020 IEEE Inter-
national Conference on Software Maintenance and
Evolution (ICSME).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint.

Meili Lu, Xiaobing Sun, Shaowei Wang, David Lo, and
Yucong Duan. 2015. Query expansion via wordnet
for effective code search. In 2015 IEEE 22nd Inter-
national Conference on Software Analysis, Evolution,
and Reengineering (SANER).

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, et al.
2021. CodeXGLUE: A machine learning benchmark
dataset for code understanding and generation. In
Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks.

Fei Lv, Hongyu Zhang, Jian-guang Lou, Shaowei Wang,
Dongmei Zhang, and Jianjun Zhao. 2015. CodeHow:
Effective code search based on api understanding and
extended boolean model. In 2015 30th IEEE/ACM
International Conference on Automated Software En-
gineering (ASE).

Yu Meng, Chenyan Xiong, Payal Bajaj, Paul Bennett,
Jiawei Han, Xia Song, et al. 2021. COCO-LM: Cor-
recting and contrasting text sequences for language
model pretraining. Advances in Neural Information
Processing Systems.

Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong,
and Quoc Le. 2020. Unsupervised data augmenta-
tion for consistency training. In Proceedings of The
Conference and Workshop on Neural Information
Processing Systems (NeurIPS).

3617

https://doi.org/10.18653/v1/2021.acl-long.442
https://doi.org/10.18653/v1/2021.acl-long.442

A Case Study

We present case studies in the following sections
for code search on CoSQA test set and code ques-
tion answering on CoSQA validation set.

A.1 Code Search
The code snippets, shown in each case study, are
retrieved from 6,267 candidate Python code func-
tions.

def get_parent_dir(name):
 """Get the parent directory of a filename."""
 parent_dir = os.path.dirname(os.path.dirname(name))
 if parent_dir:
 return parent_dir
 return os.path.abspath('.')

how to get the parent directory in pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def get_parent_dir(name):
 """Get the parent directory of a filename."""
 parent_dir = os.path.dirname(os.path.dirname(name))
 if parent_dir:
 return parent_dir
 return os.path.abspath('.')

def get_parent_folder_name(file_path):
 """Finds parent folder of file
 :param file_path: path
 :return: Name of folder container"""
 return os.path.split(os.path.split(os.path.abspath(file_path))[0])[-1]

Top-1 Code:

Top-2 Code:

(b) Code search results with KeyDAC (top-2 results).

Figure 7: Code search results with KeyDAC on CoSQA
test set. Base model is RoBERTa.

def vector_distance(a, b):
 """The Euclidean distance between two vectors."""
 a = np.array(a)
 b = np.array(b)
 return np.linalg.norm(a - b)

get eucliedan distance between two vectors pythonQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def _euclidean_dist(vector_a, vector_b):
 """param vector_a: A list of numbers.
 param vector_b: A list of numbers.
 :returns: The euclidean distance between the two vectors."""
 dist = 0
 for (x, y) in zip(vector_a, vector_b):
 dist += (x-y)*(x-y)
 return math.sqrt(dist)

Top-1 Code:

Top-2 Code: def vector_distance(a, b):
 """The Euclidean distance between two vectors."""
 a = np.array(a)
 b = np.array(b)
 return np.linalg.norm(a - b)

(b) Code search results with KeyDAC (top-2 results).

Figure 8: Code search results with KeyDAC on CoSQA
test set. Base model is CodeBERT. The query has a typo
eucliedan.

def get_domain(url):
 """Get domain part of an url.
 For example: https://www.python.org/doc/ -> https://www.python.org"""
 parse_result = urlparse(url)
 domain = "{schema}://{netloc}".format(schema=parse_result.schema, netloc=parse_result.netloc)
 return domain

python urlparse get domainQuery:
Gold Code:

(a) A pair of real user web query and gold code function.
def get_domain(url):
 """Get domain part of an url.
 For example: https://www.python.org/doc/ -> https://www.python.org"""
 parse_result = urlparse(url)
 domain = "{schema}://{netloc}".format(schema=parse_result.schema, netloc=parse_result.netloc)
 return domain

def parse_domain(url):
 """parse the domain from the url"""
 domain_match = lib.DOMAIN_REGEX.match(url)
 if domain_match:
 return domain_match.group()

Top-1 Code:

Top-2 Code:

(b) Code search results with KeyDAC (top-2 results).

Figure 9: Code search results with KeyDAC on CoSQA
test set. Base model is UniXcoder.

3618

A.2 Code Question Answering
We use the CoSQA validation set, since the ground-
truth labels of WebQueryTest are not provided. All
cases are negative query-code pairs, such that the
code snippet does not match the search intent of
the query. The models predict a pair of query and
code as a negative pair when the cosine similarity
is lower than the threshold 0.5.

def split_strings_in_list_retain_spaces(orig_list):
 """
 Function to split every line in a list,
 and retain spaces for a rejoin
 :param orig_list: Original list
 :return: A List with split lines
 """
 temp_list = list()
 for line in orig_list:
 line_split = __re.split(r'(\s+)', line)
 temp_list.append(line_split)
 return temp_list

python remaining blanks spaces from listQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.5123 (1) / KeyDAC : 0.4402 (0)

Figure 10: Case study for code question answering task
on CoSQA validation set. Base model is RoBERTa.

def connected_socket(address, timeout=3):
 """yields a connected socket"""
 sock = socket.create_connection(address, timeout)
 yield sock
 sock.close()

how to create wrapped socket in pythonQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.6983 (1) / KeyDAC : 0.4699 (0)

Figure 11: Case study for code question answering task
on CoSQA validation set. Base model is CodeBERT.

def strip_columns(tab):
 """Strip whitespace from string columns."""
 for colname in tab.colnames:
 if tab[colname].dtype.kind in ['S', 'U']:
 tab[colname] = np.core.defchararray.strip(tab[colname])

remove character type coloumns from dataset using pythonQuery:

Code:

Label:

Prediction:

0

CoCLR : 0.6279 (1) / KeyDAC : 0.3833 (0)

Figure 12: Case study for code question answering task
on CoSQA validation set. Base model is GraphCode-
BERT.

def shape_list(l,shape,dtype):
 """Shape a list of lists into the
 appropriate shape and data type"""
 return np.array(l, dtype=dtype).reshape(shape)

python use numpy array as list in codeQuery:

Code:

Label:
Prediction:

0
CoCLR : 0.5239 (1) / KeyDAC : 0.4319 (0)

Figure 13: Case study for code question answering task
on CoSQA validation set. Base model is UniXcoder.

3619

