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Abstract

In simultaneous translation, the retranslation
approach has the advantage of requiring no
modifications to the inference engine. How-
ever, in order to reduce the undesirable flicker
in the output, previous work has resorted to
increasing the latency through masking, and
introducing specialised inference, thus losing
the simplicity of the approach. In this work,
we show that self-training improves the flicker-
latency tradeoff, while maintaining similar
translation quality to the original. Our analysis
indicates that self-training reduces flicker by
controlling monotonicity. Furthermore, self-
training can be combined with biased beam
search to further improve the flicker-latency
tradeoff.

1 Introduction

Simultaneous machine translation systems, which
process their input word by word instead of sen-
tence by sentence, must strike a balance between
producing output immediately (and so reducing
quality because of incomplete input) and waiting
for further input (and so increasing latency). Ide-
ally, a good simultaneous translation system will
provide a pareto-optimal tradeoff between quality
and latency. A straightforward way of doing simul-
taneous translation is retranslation (Niehues et al.,
2016), which has the advantage that it can be used
with an unmodified machine translation (MT) in-
ference engine, and can perform better than the
alternative streaming-based approaches (Arivazha-
gan et al., 2020b). The disadvantage is that retrans-
lation may change previous output causing flicker,
leading to a poor user experience, and so flicker
needs to be balanced with latency and quality.

We argue that flickering is caused by two dif-
ferent (but related) issues: (i) lexical instability of
the translation – the system “changes its mind” as
more source is revealed, swapping one word for

∗Work done while at the University of Edinburgh.

another1 and (ii) non-monotonicity of the transla-
tion – the system favours a non-monotonic trans-
lation, which means it needs high latency in or-
der to avoid flicker. Some of this instability and
non-monotonicity is necessary – forced by syntac-
tic differences between source and target, and lack
of information in the prefixes – but some is due to
arbitrary choices of the model. We aim to reduce
these as far as possible.

In non-autoregressive translation (NAT), a re-
lated problem, known as the “multimodality” prob-
lem (Gu et al., 2018), has been addressed using
knowledge distillation (Kim and Rush, 2016, KD).
We therefore investigate whether this can also re-
duce flicker in simultaneous translation. Since
the initial model and the distilled model have the
same architecture in our work, approximating KD
is essentially self-training2. We show that a self-
trained model is able to achieve the same qual-
ity as the initial model, but with improved flicker-
latency tradeoff. We also show that self-training
(Arivazhagan et al., 2020a) can be combined with
biased beam search to further improve the flicker-
latency tradeoff. Furthermore, we show experi-
ments that link flicker to monotonicity.

2 Background

2.1 Retranslation

We assume a retranslation approach, where the
source is retranslated each time it is updated, and
the new output replaces the old. Only the current
sentence is retranslated – previous sentences are
considered to be fixed. In contrast to streaming ap-
proaches (e.g. Ma et al., 2019a; Arivazhagan et al.,
2019b), retranslation can use an unmodified infer-
ence engine, making it simpler to deploy. The ba-
sic retranslation approach can be improved by us-
ing prefix training (Niehues et al., 2016, 2018), bi-

1An example of this is shown in Appendix C.
2Retraining a model on its own output (Clark et al., 2003).
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ased beam search and output masking3 (Arivazha-
gan et al., 2020a).

2.2 Evaluation of Simultaneous Translation

In addition to quality, evaluation of simultane-
ous translation requires that we consider latency
and, if using retranslation, flicker. The quality
of the translation can be evaluated by compar-
ing the final output of each sentence with a ref-
erence – we will use BLEU (Papineni et al., 2002;
Post, 2018), CHRF (Popović, 2015) and COMET

(Rei et al., 2020) scores. To measure flicker, we
use normalised erasure (Arivazhagan et al., 2020a,
2019a), which measures the flicker between con-
secutive translation outputs by counting the mini-
mum number of tokens that must be deleted from
the end of the previous translation in order to pro-
duce the next, normalised by output length.

The measurement of latency has been the sub-
ject of some debate in the literature, with sev-
eral different measures proposed (Ma et al., 2019a;
Cherry and Foster, 2019; Ansari et al., 2021). In
our experiments, we plot the flicker-latency trade-
off by controlling the output mask and recording
the effect on flicker. Since mask size correlates
with latency, our aim is to improve this mask-
flicker tradeoff curve, and so be able to use a
shorter mask with the same flicker budget.

2.3 Knowledge Distillation and Self-Training

The idea of sequence-level KD (Kim and Rush,
2016), is to create a smaller student model using
the predictions of the larger teacher model. This
has found application in MT efficiency (Junczys-
Dowmunt et al., 2018) and in non-autoregressive
translation (Zhou et al., 2020). In our work, the
student model has the same size as the teacher, and
is self-trained on teacher output. The output distri-
butions of the student model have lower entropy
(Zhou et al., 2020), so the model is less likely to
swap between translation hypotheses unnecessar-
ily as the source prefix is extended. Also, since the
student model is trained on MT output, where the
target order tends to be more similar to the source
order (Zhou et al., 2020), it is more likely to avoid
unnecessary reorderings, generating a more mono-
tonic translation, which can be built up incremen-
tally. We give experimental evidence for these in
the next section.

3This means that the last k words are omitted from the
output before being passed to the user. This reduces flicker,
but increases latency.

Chen et al. (2021) also proposed to use pseudo-
reference sentences obtained through forward
translation of the source sentences to improve si-
multaneous translation. Unlike our work, they con-
sidered a streaming approach (specifically wait-k
(Ma et al., 2019b)) where the system can only ap-
pend to the output; it does not flicker like retrans-
lation. They showed that their approach could im-
prove the quality-latency tradeoff of wait-k using
their distillation approach, but to create the train-
ing data for the student system they used wait-k
and filtering. We avoid these complications by just
using the baseline system as the teacher.

3 Experiments

3.1 Data
We test our self-training approach on
English↔{German,Czech}. For En↔De we
use IWSLT21 (Anastasopoulos et al., 2021) for
training, and the concatenation of the 2014 and
2015 test sets for development (early stopping),
removing any sentences that overlap with the
training set. For En↔Cs, we use the training and
validation set from WMT21 (Akhbardeh et al.,
2021). Training data sizes are shown in Appendix
A. We use prefix training (Niehues et al., 2018)
to reduce the mismatch between sentence-level
training and prefix-based inference at test time.
For each parallel sentence pair in the training
set, we generate a corresponding prefix pair by
truncating a randomly chosen proportion. We
treat the validation sets similarly.

We test our systems both on IWSLT test data
(derived from TED talks) and on the ESIC test
set4 (Macháek et al., 2021). From IWSLT, we
use tst2018 for De↔En, and tst2015/tst2016 com-
bined for Cs↔En. ESIC is derived from the Euro-
pean parliament proceedings, and consists of tran-
scribed speeches in English, together with their si-
multaneous interpretation into Czech and German
(also transcribed). ESIC is aligned at the docu-
ment level, but not at the sentence level. We use
the test portion for evaluation, only for En→X. It
has been argued that simultaneous translation is
better evaluated (and trained, if possible) on inter-
preted data (Zhao et al., 2021). However such data
is hard to come by, and ESIC is the only such re-
source for European languages. We remove any
segments from the IWSLT test sets that overlap

4https://lindat.mff.cuni.cz/
repository/xmlui/handle/11234/1-3719
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with training, and also remove from the training
data any Europarl documents with overlap with
ESIC.

All data is pre-processed with SentencePiece
unigram model (Kudo and Richardson, 2018) with
a shared subword (Sennrich et al., 2016b) vocabu-
lary size of 32k.

En→De De→En En→Cs Cs→En
Metric Model ESIC IWSLT IWSLT ESIC IWSLT IWSLT

BLEU T 17.5 27.7 33.4 14.4 24.6 31.3
S 17.6 27.5 31.7 14.5 25.0 31.3

ChrF T 58.9 56.9 59.2 51.5 51.5 56.1
S 58.8 57.2 58.3 51.7 51.7 56.2

COMET T .553 .330 .488 .651 .639 .519
S .532 .326 .468 .672 .642 .521

Table 1: Comparison between teacher (T) and student
(S) models on ESIC and IWSLT test sets. For ESIC,
BLEU and CHRF are calculated at document level, i.e.
considering each document as a segment. For COMET
we use reference-less wmt20-comet-da for ESIC
and reference-based wmt20-comet-da for IWSLT.

3.2 Teacher-Student Training
Our teacher model, which serves as a baseline, is
a transformer base (Vaswani et al., 2017) trained5

with fairseq6 (Ott et al., 2019).
We use the teacher to translate the training data,

using a beam size7 of 8, then train a student model
with the same architecture on this synthetic data.

In Table 1 we show the performance of our base-
line system (equivalent to the teacher) and the stu-
dent system on 6 test sets. Overall, student perfor-
mance is robust compared to teacher, with same or
better scores in Cs↔En and some small losses in
De↔En.

To assess whether the student models reduce
flicker in retranslation, we use each model in a sim-
ulated SLT pipeline and plot flicker-latency trade-
off curves. That is, we use the systems to translate
ever-growing prefixes of the source sentences in
the testsets, using SLTev (Ansari et al., 2021) to
measure the flicker, and varying the output mask
to show the tradeoff. A curve for one test set is
shown in Figure 1, with full results in Appendix D.

5For training hyperparameters, see Appendix B.
6To generate training data for the students, we actually

used a marian (Junczys-Dowmunt et al., 2018) model, with
60×106 parameters, trained on the same data and with the
same architecture, which achieves nearly identical BLEU.
This was to take advantage of marian’s fast inference. All
results shown in the paper are with the fairseq models.

7We also tested sequence-level interpolation, selecting the
highest-scoring translation in an 8-best list according to BLEU
and CHRF, but results were very similar.

We can see that in all configurations the student
models improve the flicker-latency tradeoff. In
section 3.4, we show how the student training data
is more monotonic, and the models have lower en-
tropy, echoing Zhou et al. (2020).

0 2 4 6 8 10
Output mask

0.5

1.0

1.5

2.0

2.5

F
lic

ke
r

T

S

Figure 1: Flicker-latency tradeoff for the teacher (T)
and student (S) models, En→De IWSLT. We control
latency by varying the output mask.

3.3 Controlling Monotonicity

To show that self-training affects flicker through
increased monotonicity, we experiment with con-
trolling the monotonicity of the student training
data. We stratify the teacher data into 5 dif-
ferent monotonicity levels using Kendall’s Tau
on a fast_align (Dyer et al., 2013) target–source
alignment to measure monotonicity, with an equal
stratum size. We add the monotonicity level as
pseudo-word, as in Sennrich et al. (2016a), to
each source sentence, and train a teacher model
on this monotonicity-aware corpus. We then use
this teacher to create 5 different student training
corpora, using the monotonicity control, and train
5 different students on these corpora.

Table 2 shows the BLEU8 scores for the
monotonicity-controlled models, as well as the
teacher and student from the previous section. Us-
ing highly monotonic (Mono-1) or non-monotonic
(Mono-5) data gives poor quality, but the in-
between strata are similar, with Mono-3 slightly
better overall. Figure 2 shows a distinctly worse
flicker-latency tradeoff for Mono-5, whereas
Mono-4 is a bit better than the teacher, and all
other students are better. This supports the hypoth-
esized connection between the higher degree of
monotonicity in the student training data, and the

8Scores for CHRF and COMET are in the Appendix F, but
the pattern is similar.
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Figure 2: Latency–flicker tradeoff for the En→De
IWSLT monotonicity-controlled models. Monotonicity
control ranges from 1 (training data created with maxi-
mum monotonicity) to 5 (minimum monotonicity).

better flicker-latency tradeoff in the student mod-
els. We show the flicker-latency tadeoff curves on
more test sets and language pairs in Figure 5 in the
Appendix F but the pattern is similar.

En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU Teacher 17.5 27.7 14.4 24.6
Student 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

Table 2: Student models with monotonicity control.
Monotonicity ranges from 1 (highest) to 5 (lowest).
The best scores are in bold font.

3.4 Monotonicity and Entropy of Student
Models

We claimed that student models have lower flicker
because they produce more monotonic transla-
tions, with less unnecessary variation. Here we
provide evidence to support those claims.

Training data for student models is more mono-
tonic In order to calculate the monotonicity of
the training data, we use Kendall’s tau score. We
first extract word alignments from the training data
using fast_align (Dyer et al., 2013) to forward-
align source and target. For each sentence pair we
express the alignment as a function a : i → j, and
construct the two lists 1, . . . , T and a(1), . . . , a(T )
where T is the target length. We then calculate
the Kendall’s tau between the two lists, repeat for
each sentence pair in the corpus, and average. We
repeat the calculation for the original training data

and for the student training set. The results are
shown in Table 3. We can see that in all cases, the
student training data is more monotonic than the
original teacher training data.

Model En→De De→En En→Cs Cs→En
Teacher 0.793 0.788 0.849 0.836
Student 0.857 0.801 0.906 0.880

Table 3: Kendall’s tau scores. Higher scores indicate
more monotonicity.

Student models have lower entropy distribu-
tions For each of our models, we calculate the
mean per-token entropy, by considering the proba-
bility distribution over the vocabulary at each time
step. The entropies are shown in Table 4.

Entropy
Pair Test set Teacher Student

En→De ESIC 0.371 0.220
IWSLT 0.295 0.228

De→En IWSLT 0.273 0.160

En→Cs ESIC 0.443 0.251
IWSLT 0.417 0.238

Cs→En IWSLT 0.335 0.213

Table 4: Mean per-token entropies for each language
pair test set combination.

We can see from Table 4 that the token entropies
are consistently lower for student models, suggest-
ing that the distributions are more “peaky”, and so
less likely to flicker between multiple output to-
kens with similar probabilities.

3.5 Self-training and Biased Beam Search

We investigate the combination of our self-training
approach with biased beam search (Arivazhagan
et al., 2020a). The idea of biased beam search (or
“prefix biasing”) is to reduce flicker in retransla-
tion by modifying inference so that the translation
of the current prefix is “biased” towards the trans-
lation of the last prefix. The model for inference
has an extra term which penalises it for departing
from the previous translation. As the current trans-
lation is being generated, once the hypothesis de-
parts from the previous translation, we stop apply-
ing the bias penalty, reverting to the unmodified
MT model.

Before the previous translation is used for bias-
ing, it is normally masked; i.e., the right-most k
tokens are removed. Without applying this mask,
biased beam search seriously reduces quality by
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forcing inference to follow poor-quality early deci-
sions. This bias mask is different from the output
mask used in earlier experiments (which controls
latency) although in previous work the bias and
output mask are typically set to the same value.

We implemented biased beam search in fairseq
and, based on previous work, we set the bias
strength β = 0.25. After comparing different bias
masks (Appendix E) we set the mask to 6 for ESIC
and 10 for IWSLT.

We sweep across output masks to generate
latency–flicker tradeoff curves in Figure 3 (with
full results in Appendix E). We compare teacher
and student models, with and without biased beam
search. We can see from the graphs that biased
beam search is effective in improving the latency–
flicker tradeoff, but that the student models still
improve over the teacher with biased beam search.
The disadvantages of biased beam search are that
it requires careful tuning of the prefix mask in or-
der to avoid damaging quality, and that it requires
a modified inference engine. The inference engine
requires access to the previous translation, creat-
ing challenges for scalability. In contrast, our self-
training approach requires no modifications to in-
ference. Furthermore, since biased beam search
relies on aligning the current translation with the
previous one, it is hard to apply when the transla-
tion cannot be aligned – for example in a cascaded
system where the ASR can rewrite its output.
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Figure 3: Latency-flicker tradeoff for teacher-student
models with and without biased beam search for the
En→De IWSLT.

4 Conclusion

We show that self-training reduces the flicker
in retranslation-based simultaneous translation,
whilst retaining quality. Our experiments link this

flicker reduction to increased monotonicity and re-
duced entropy of the self-trained model. Although
biased beam search can obtain larger reductions in
flicker, it requires more careful parameter tuning,
and a modified inference engine.

5 Limitations

Language Pairs We conducted our experiments
using two European language pairs where source
and target are linguistically similar. We show
that we are able to reduce word order divergence
between source and target text through forward
translation which helps in reducing the flicker.
However, a more challenging case will be using
languages from different linguistic families with
radically different word orders (such as English–
Japanese) which may limit to which extent we are
able to reduce the word order divergence between
source and target through synthetic data creation.

Evaluation Whilst we show quality evaluation
across three different metrics, we were not able to
add human evaluation due to resource and space
constraints. An additional consideration for simul-
taneous ST is that it is not clear what the combined
effect of flicker, latency and quality is on human
perception, and there has been limited work on this
(Javorský et al., 2022).
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A Training Data

Corpus Sentence pairs
English-German

Europarl 1.79 M
Rapid 1.45 M
News Commentary 0.35 M
OpenSubtitle 22.51 M
TED corpus 206 K
MuST-C.v2 248 K

English-Czech
Europarl 645 K
ParaCrawl 14 M
CommonCrawl 161 K
News Commentary 260 K
CzEng2.0 36 M9

Wikititles 410 K
Rapid 452 K

B Training Parameters

The non-default hyperparameters for Fairseq are
shown in Table 5.

C Example of Flicker

An example of a translation which flickers be-
tween two similar possibilities is shown in Table
6.
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Param Value
label-smoothing 0.1
criterion label_smoothed_cross_entropy
patience 10
arch transformer
optimizer adam
adam-betas 0.9, 0.98
lr 5e-4
lr-scheduler inverse_sqrt
warmup-updates 4000
clip-norm 0.0
weight-decay 0.0001
dropout 0.3
update-freq 2
max-tokens 3000
best-checkpoint-metric bleu
maximize-best-checkpoint-metric True

Table 5: Fairseq training hyperparameters (non-default) for 4 GPU training.

Source I hope you will have a little time and energy to focus on another report which is, despite its
technicality, quite important for all of us.

Target: Ich
Ich hoffe,
Ich hoffe, Sie
Ich hoffe, Sie
Ich hoffe, Sie haben
Ich hoffe, Sie haben ein
Ich hoffe, Sie werden ein wenig Zeit
Ich hoffe, Sie haben etwas Zeit
Ich hoffe, Sie haben etwas Zeit und
Ich hoffe, Sie werden etwas Zeit und Energie haben,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf ein anderes Thema
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen weiteren Bericht zu konzentrieren,
Ich hoffe, Sie haben etwas Zeit und Energie, um sich auf einen anderen Bericht zu konzentrieren,
...
Ich hoffe, Sie werden ein wenig Zeit und Energie haben, um sich auf einen anderen Bericht zu konzentrieren,
der trotz seiner Formalität für uns alle sehr wichtig ist.

Table 6: Examples of flicker caused by the teacher model. Source is the original full sentence which is input as a
growing input prefix. Target is the output prefix in successive retranslations.

D Flicker-Latency Tradeoff

In Figure 4, we show the flicker-latency tradeoff
for all language-pair and testset combinations.

E Biased Beam Search

We consider the effect of the bias mask on full
sentence translation quality, as measured by BLEU.
The bias mask is measured in sentencepiece to-
kens. Based on Figure 6, we set the bias mask
to 6 for ESIC and 10 for IWSLT, in order to avoid
a loss of BLEU.

In Figure 7, we show flicker-latency tradeoffs
for all language pair and testset combinations.

F Controlling Monotonicity

We have shown the scores for CHRF and COMET

for monotonicity control experiments in addi-
tion to BLEU in Table 7. In Figure 5, we
show the flicker-latency tradeoff for monotonicity-
controlled experiments for all language-pair and
testset combinations.
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Figure 4: Flicker-latency tradeoff for the teacher-student models. We control latency by varying the output mask.
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Figure 5: Latency–flicker tradeoff for the monotonicity-controlled models. Monotonicity control ranges from 1
(training data created with maximim monotonicity) to 5 (minimum monotonicity).
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Figure 6: Dependence of BLEU on bias mask when applying biased beam search.
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Figure 7: Flicker vs mask on biased beam search.
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En→De En→Cs
Metric Model ESIC IWSLT ESIC IWSLT

BLEU
Teacher 17.5 27.7 14.4 24.6
Studentmodel 17.6 27.5 14.5 25.0
Mono-1 8.6 14.4 14.7 23.6
Mono-2 17.6 27.4 14.5 25.0
Mono-3 17.5 27.9 14.5 25.7
Mono-4 17.2 26.6 13.8 24.7
Mono-5 16.0 25.0 12.5 23.0

ChrF
Teacher 58.9 56.9 51.5 51.5
Studentmodel 58.8 57.2 51.7 51.7
Mono-1 42.4 39.6 51.3 50.7
Mono-2 58.7 57.3 51.8 52.0
Mono-3 59.0 57.8 51.7 52.2
Mono-4 59.0 56.8 51.4 51.4
Mono-5 58.5 55.0 50.7 50.2

COMET
Teacher .553 .330 .651 .639
Studentmodel .532 .326 .672 .642
Mono-1 .510 -0.028 .639 .597
Mono-2 .526 .295 .650 .636
Mono-3 .530 .326 .678 .641
Mono-4 .535 .313 .677 .639
Mono-5 .518 .247 .633 .577

Table 7: Full results of student models with monotonicity control.
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