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Abstract

Social commonsense contains many human bi-
ases due to social and cultural influence (Sap
et al., 2020; Emelin et al., 2020). We focus
on identifying cultural biases in data, specif-
ically causal assumptions and commonsense
implications, that strongly influence model de-
cisions for a variety of tasks designed for so-
cial impact. This enables us to examine data
for bias by making explicit the causal (if-then,
inferential) relations in social commonsense
knowledge used for decision making, further-
ing interpretable commonsense reasoning from
a dataset perspective. We apply our methods
on 2 social tasks: emotion detection and per-
ceived value detection. We identify influen-
tial social commonsense knowledge to explain
model behavior in the following ways. First,
we augment large-scale language models with
social knowledge and show improvements for
the tasks, indicating the implicit assumptions a
model requires to be successful on each dataset.
Second, we identify influential events in the
datasets by using social knowledge to cluster
data and demonstrate the influence that these
events have on model behavior via leave-K-out
experiments. This allows us to gain a dataset-
level understanding of the events and causal
commonsense relationships that strongly influ-
ence predictions. We then analyze these rela-
tionships to detect influential cultural bias in
each dataset. Finally, we use our influential
event identification for detecting mislabeled ex-
amples and improve training and performance
through their removal. We support our findings
with manual analysis.

1 Introduction

Social commonsense knowledge helps humans ma-
neuver through everyday life, aiding in situations
that may require social nuance or cultural knowl-
edge. Commonsense knowledge acquisition has
been an important goal in NLP (Levesque et al.,
2012; Davis and Marcus, 2015; Talmor et al., 2019)

and in the past few years there has been a surge
of research focusing specifically on improving so-
cial commonsense understanding for neural models
(Sap et al., 2019a,b; Hwang et al., 2020; Forbes
et al., 2020). However, social commonsense may
contain many human biases due to social and cul-
tural influence (Sap et al., 2020; Emelin et al.,
2020). We aim to discover influential cultural bi-
ases in social applications datasets via the social
and causal commonsense knowledge (Roemmele
et al., 2011; Luo et al., 2016; Ponti et al., 2020)
present in each dataset, to identify bias in cause-
effect commonsense relationships. We define cul-
tural bias as a positive or negative cultural atti-
tude toward a social structure (see Section 3.1) and
define causal commonsense following Sap et al.
(2019a), as if-then, inferential relations. Specifi-
cally, we are interested in exploring biases towards
the following social structures: religion, economy,
family, government, education and technology. To
the best of our knowledge, we are the first to empir-
ically discover influential cultural biases in social
tasks, using causal commonsense knowledge about
social interactions, emotional reactions, and human
needs to explain underlying cultural trends in social
applications datasets.

We focus on two social tasks: emotion detection
in social media and community value detection
from interviews. We define a social task as any
task that is intended to have social impact and re-
quires social knowledge to correctly resolve. It is
particularly important to identify influential biases
in datasets and applications which are designed
for social impact. HurricaneEmo (Desai et al.,
2020) is an emotion detection task that focuses
on perceived emotional reactions to events that oc-
cur during natural disasters. For example, events
that exist in this dataset like “thanks god” may
elicit emotions like AWE, and events like “PersonX
sends – to congress" may elicit emotions like CON-
TEMPT, showing a positive cultural bias for reli-

3745



Stories2Insights:

'PersonX sells ___ to
the public'

ATOMIC 
knowledge:

'generous', 'helpful',
'influential', 'professional' Social

Signif.

Value
Label:

HurricaneEmo:

ATOMIC 
knowledge:

Remorse

Emotional 
Label:

'When I plant and later harvest then I will take to the market and sell and
get money which means my children will remain in school and will live

happily'

'our prayers are with our fellow citizens in # puertorico and the #
usvirginislands affected by # hurricanemaria . https://t.co/f8uxdb64va' 

'PersonX says
PersonX's prayers'

 'panic',  
'stressed',  
'sorrow'

Figure 1: Examples of Social Tasks and Knowledge.

gion and a negative cultural bias for government.
Stories2Insights (Conforti et al., 2020) is a value
detection task that focuses on interviews conducted
to identify community needs in developing coun-
tries, aiming to capture perceived values based on
certain events. For example, events like “reading
the bible” indicate INDIGENOUS values (defined
by social norms and religion) whereas events like

“providing for children” indicate INTRINSIC HU-
MAN needs (defined by health and quality of life).
This illustrates a positive culture bias for Christian-
ity and family. We aim to discover causal social
knowledge that indicates cultural biases in each
dataset, by analyzing model behavior on both tasks
to gain a dataset-level understanding of events that
influence performance.

We identify these biases via casual social knowl-
edge, which encodes the relationships between
events and the triggered reactions. We derived
our knowledge from the social knowledge graph
ATOMIC (Sap et al., 2019a). Consider the Hurrica-
neEmo example in Fig. 1, in which the ATOMIC
knowledge makes explicit the event-emotion causal
relationships in the tweet that bring about the per-
ceived emotion REMORSE. Identifying that the
event “says prayers” causes perceived traits like
sorrow and stressed, allows us to understand which
events in the tweet cause the perceived emotion
and contribute to the specific cultural biases. Next,
consider the Stories2Insights example, in which the
knowledge demonstrates the causal relationships
that support the perceived value SOCIAL SIGNIFI-
CANCE (defined by identity and status). Identifying
that the event “sells — to the public” causes per-
ceived traits like influential and professional, sheds
light on how the event’s associated cultural biases
contribute to the perceived value.

In this paper, we gain a dataset-level understand-
ing of influential causal social commonsense rela-
tionships, allowing an exploration of the underlying
social and cultural biases that explain model behav-

ior on social tasks. To this end, we first extract
ATOMIC knowledge for each datapoint, utilizing
a combination of TF-IDF and BERTScore (Zhang
et al., 2019). We then append different components
of this knowledge to the input, to focus strongly on
either the cause, the effect, or the causal relation
between the two. We use BERT-AUG, which in-
gests knowledge augmented data as input to BERT
(Devlin et al., 2018), to yield improvements on
both tasks. These improvements illustrate that the
underlying causal social assumptions made explicit
by the integrated knowledge do indeed increase
model accuracy on the task and thus augment a
model’s understanding of the task. To discover
underlying cultural biases, we investigate the in-
fluence of underlying events in each task. We first
identify underlying events in the data by cluster-
ing datapoints using k Nearest Neighbors (kNN)
around commonsense events, using fine-tuned con-
textual embeddings. We then identify which of
these events are influential by performing leave-K-
out experiments, which detect the influence of train
clusters on task performance.

Understanding cultural biases in social applica-
tions data via the implicit commonsense knowledge
present in the data is important for analyzing the
limitations of the dataset and the respective tasks.
By making explicit the underlying cultural assump-
tions and causal relationships, we are able to iden-
tify the biases that data from a certain source may
have, which is paramount when using this data in
the development of technology for other applica-
tions (Bender and Friedman, 2018).

Finally, we use our methods to identify misla-
beling in event clusters. Datasets used for training
deep learning models are large and often contain
noisy labels, even if the data was collected via
crowdsourcing (Frénay and Verleysen, 2013; Ra-
jani et al., 2020). We identify events whose train
clusters cause performance improvement when re-
moved in leave-K-out experiments, indicating mis-
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Figure 2: Data Extraction, Knowledge Integration, Knowledge Influence, and Mislabeled Removal.

labeling. Overall, our contributions are:

• We improve HurricaneEmo & Stories2Insights
performance when we augment models with
ATOMIC social knowledge, indicating the im-
plicit assumptions a model requires to be suc-
cessful on each dataset.

• We find representative events in each of the
datasets via ATOMIC and kNN, and use leave-K-
out experiments to discover causal social com-
monsense relationships that strongly influence
model behavior.

• We analyze the influential cultural biases for dif-
ferent social structures and strongly suggest a
cultural bias analysis for train data.

• We demonstrate that our methods can be used to
identify mislabeled examples in the dataset.

2 Related Work

2.1 Social Applications
We explore tasks for social applications, specifi-
cally perceived emotion detection and perceived
value detection. Emotion prediction has been stud-
ied for many different domains (Strapparava and
Mihalcea, 2007; Katz et al., 2007; Ezhilarasi and
Minu, 2012; Chen et al., 2018; Mohammadi et al.,
2019), and has been extensively applied to social
media posts (Mohammad, 2012; Wang et al., 2012;
Mohammad and Kiritchenko, 2015; Abdul-Mageed
and Ungar, 2017), particularly in the social good
domain. Sharifirad et al. (2019) performed emo-
tion classification on sexist tweets and Sanders
et al. (2021) analyzed sentiment in tweets during

the early COVID-19 pandemic. Similar to our
disaster-related application, Lin et al. (2018) used
semantic matching to discover disaster recovery
trends in large text corpora. In this paper, we focus
on implicit perceived emotion prediction, which
requires models to capture context and perform
reasoning about perceived emotions (Desai et al.,
2020), rather than intended emotions. Desai et al.
(2020) released an emotion prediction dataset, fo-
cusing on tweets related to Hurricanes Irma, Har-
vey, and Maria. Hirmer and Guthrie (2016) focused
on User-Perceived Values (UPVs), particularly con-
centrating on the needs and values of project ben-
eficiaries in developing countries. More recently,
Conforti et al. (2020) analyzed emotion as user per-
ceived values in statements made by Ugandan rural
individuals.

2.2 Social Causal Commonsense Reasoning

Commonsense reasoning has been a long-standing
challenge in NLP (Levesque et al., 2012; Davis
and Marcus, 2015; Talmor et al., 2019) and more
recently, social commonsense reasoning has gained
popularity (Rashkin et al., 2018; Nematzadeh et al.,
2018; Talmor et al., 2019; Sap et al., 2019b; Hwang
et al., 2020; Forbes et al., 2020; Sap et al., 2020;
Emelin et al., 2020), with a strong focus on so-
cial, moral, and cultural understanding and norms.
We further this work by extracting causal relations
for social and cultural norms and integrating this
knowledge to understand biases and model expla-
nation in social tasks. Similar to our integration
methods, Chang et al. (2020) implicitly and explic-
itly incorporates social knowledge from ATOMIC
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(Sap et al., 2019a) and ConceptNet (Speer et al.,
2017) into a social commonsense reasoning task
(in contrast to event-driven tasks with real-world
impacts), yielding performance gains. We, instead,
focus on a causal dimension of ATOMIC and use
knowledge to both improve and explain both per-
ceived emotion and value detection. Causal com-
monsense reasoning has also been explored for
a variety of tasks, focusing on identifying event
causality in social media (Sil et al., 2010; Riaz
and Girju, 2013; Kayesh et al., 2019, 2020b,a),
commonsense causal QA (Roemmele et al., 2011;
Luo et al., 2016; Hassanzadeh et al., 2019; Ponti
et al., 2020), and conversational emotion recogni-
tion (Ghosal et al., 2020). We, instead, focus on
social tasks and use knowledge to gain a dataset-
level understanding of influential events.

2.3 NLP Interpretability

Our analysis methods are related to influence func-
tions (Koh and Liang, 2017), which have been re-
cently extended to neural text classifiers in NLP
(Han et al., 2020). Our methods share particular
similarity with group influence functions, which
identify an influential group of training examples
in a particular test prediction (Basu et al., 2020).
We largely differ by using a heuristic for clustering
events and verifying the influence of each clus-
ter’s train data on the cluster’s dev data, allowing a
dataset-level analysis of influential social relation-
ships for text classification. Similar to our work,
Rajani et al. (2020) proposed using a kNN frame-
work to gain a dataset-level understanding of model
behavior by identifying training examples responsi-
ble for NLI predictions. In contrast, we identify in-
fluential causal social commonsense relationships.

3 Tasks & Datasets

3.1 Definition of Cultural Bias

We define cultural bias as a positive or negative cul-
tural attitude toward a certain social structure. Thus,
positive and negative bias refer to the sentiment
of the particular commonsense relation toward a
social structure in the text. This is encoded differ-
ently for the two datasets that we use throughout
this work. HurricaneEmo has labels for positive or
negative perception (e.g., contempt = negative, love
= positive). However, the target of the cultural bias
depends on the subject of the text and the intended
target of the emotion, thus we stress the importance
of analyzing the automatically retrieved instances

manually (see list of influential events in Table 4
and datapoints in Table 5). We also consider the
respective commonsense relation in order to under-
stand whether the sentiment is positive or negative.
On the other hand, Stories2Insights does not use
sentiment-based labels, but instead focuses on dif-
ferent categories of values, indicating a positive-
only cultural attitude/bias toward the topic of the
text. Therefore, we consider all Stories2Insights
labels as positive with respect to cultural attitude.

It is crucial to note that it is not the intention
of this work to draw conclusions about various
cultures that these datasets may derive from. The
cultural attitudes we discover in a single dataset
are not an accurate reflection of the entire culture
that this dataset may derive from and we would
find this conclusion to be particularly harmful. We
instead aim to explore biases with respect to social
structures in a particular dataset and are only able
to discover and examine cultural attitudes that are
particular and limited to the target dataset and are
additionally limited by our knowledge recall. See
Section 8 for more details.

3.2 HurricaneEmo
For emotion classification, we use HurricaneEmo
(Desai et al., 2020). This dataset was constructed
from 15,000 English tweets about Hurricanes Irma,
Harvey, and Maria. Through crowd-sourcing, each
tweet was classified based on the 24 Plutchik emo-
tions (Plutchik, 2001), and then summarized into
eight emotions: AGGRESSIVENESS, AWE, CON-
TEMPT, DISAPPROVAL, LOVE, OPTIMISM, RE-
MORSE, and SUBMISSION. These were split into
eight binary classification tasks. For example, this
tweet in the LOVE binary classification task, “to
my friends offering that support during the hur-
ricane, i thank you. we are safe and sound.
https://t.co/yl8wdbhi4" is labeled positive. See Sec-
tion A.1 in the appendix for dataset construction
and size.

3.3 Stories2Insights
For Automatic User-Perceived Value classifica-
tion, we obtain the Stories2Insights (Conforti et al.,
2020) corpus, consisting of labeled (English) inter-
views from villages in Uganda. Each statement in
the dataset is labeled with User-Perceived Values
(UPVs), and the data is divided into six different
labels: EMOTIONAL, EPIST, FUNCTION, INDIGE-
NOUS, INTRINSIC HUMAN, and SOCIAL SIGNIF-
ICANCE (Conforti et al., 2020). We used these
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labels to create binary datasets from the original
data. For example, “Also my children and my hus-
band will get entertained and be happy." is labeled
as EMOTIONAL. See Section A.2 in the appendix
for dataset construction and size.

3.4 ATOMIC
We utilize the causal social commonsense knowl-
edge in the knowledge graph ATOMIC (Sap et al.,
2019a), a graph for if-then reasoning, connecting
events through one of nine different relation edges.
In this paper, we focus on the "xAttr" edge, which
describes the perceived attributes of an event’s sub-
ject. This edge allows us to extract perceived social
knowledge, as it often covers the perceived emo-
tion or value we are interested in for HurricaneEmo
and Stories2Insights. For example, the ATOMIC
event “PersonX helps people" uses the "xAttr" edge
to show the perceived attributes of PersonX based
on this event, i.e., PersonX is seen as "kindhearted;
incredible; pleasant; kind".

4 Models & Knowledge Augmentation

We aim to 1) extract knowledge that makes explicit
the underlying causal social commonsense relation-
ships in each datapoint and 2) propose a simple
integration method to show that this knowledge is
able to increase model accuracy, demonstrating the
role of these relationships in improving a model’s
understanding of the task.

4.1 Baseline
We finetune BERT base (Devlin et al., 2018) as
a baseline for both datasets. We input the text
(tweet or statement) to BERT to obtain contextual
embeddings, which we then project with a weight
matrix W ∈ Rd×2.

4.2 Knowledge Integration
We augment the BERT baseline with knowledge,
which we call BERT-AUG. We illustrate this pro-
cess in the Knowledge Integration section of Fig.
2. Each input consists of text from the task and
k (where k=3) extracted ATOMIC events with at-
tributes (the extraction process is described in Sec-
tion 4.3). We directly append knowledge as text to
the input text via 5 different methods. To illustrate
these methods, consider the following top 2 events
that may be extracted for a given tweet:

• "PersonX gets a warning" -> "unhappy", "be-
haved", "negative", "mischievous", "badly"

Dataset %Event-Text %Attribute-Label

HEmo 58 54
S2I 77 65

Table 1: Data Extraction Manual Analysis. Event-Text
is the match between the ATOMIC event and datapoints.
Attribute-Label is the match between the respective
ATOMIC attributes and the dataset label. Higher %
indicates more matches.

• "PersonX ignores the warnings" -> "reckless",
"unworried", "confused", "dangerous", "un-
safe", "careless"

Each integration method uses different components
of the knowledge as follows, which are then ap-
pended to the input text:

• Method 1: all attributes of first event
Example: "unhappy; behaved; negative; mis-
chievous; badly"

• Method 2: first attribute of first event
Example: “unhappy”

• Method3: first attribute of all events
Example; “unhappy; reckless’

• Method4: first event + first attribute
Example: "PersonX gets a warning: unhappy"

• Method5: first event + all attributes
Example: "PersonX gets a warning: unhappy;
behaved; negative; mischievous; badly

We determine the best method for each dataset
as a hyperparameter when tuning BERT-AUG on
the dev set.

4.3 Knowledge Extraction
We extract ATOMIC knowledge for both Hurri-
caneEmo and Stories2Insights, illustrated in the
Data Extraction section of Fig. 2. In this section,
the tweets of HurricanEmo and the text of Sto-
ries2Insights are both referred to as the dataset D,
as we follow the same extraction process for both
datasets.

Following Lin et al. (2018), our extraction proce-
dure is decomposed into two phases: one for speed
and one for precision. The first phase serves as a
coarse-grained filter to efficiently collect an initial
pool of ATOMIC knowledge candidates Pi for each
datapoint di ∈ D: if there is word overlap between
di and a ATOMIC candidate event, the ATOMIC
candidate is added to Pi. Next, we use TF-IDF
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Model AGR LOV SBM AWE DSP CNT RMR AVG

BERT (Desai et al., 2020) 67.6 54.0 67.4 68.3 55.7 66.8 58.5 62.6
BERT 75.6 65.1 72.8 73.7 58.0 77.9 63.2 69.5
BERT-AUG 75.0 68.8 70.5 72.7 64.4 75.9 65.2 70.4

Table 2: HurricaneEmo Test Results (Accuracy), including aggressiveness (agr), love (lov), submission (sbm), awe
(awe), disapproval (dsp), contempt (cnt), remorse (rmr), and average (avg) across all binary tasks. We recompute
the baseline after extra data preprocessing. Best results are bold.

Model Emotional Epistemic Functional Indigenous Intrinsic Social Avg

BERT 81.0 87.7 84.6 84.6 84.4 80.1 83.7
BERT-AUG 86.9 87.7 82.6 89.4 87.2 82.8 86.1

Table 3: Stories2Insights Test Results (Accuracy). Best results are bold.

to find the top n (we choose n=50) most similar
ATOMIC candidates (considering ATOMIC event
only) to di in Pi, and add these to a smaller pool
Si. Then, for precision we score each ATOMIC
candidate in Si with di for semantic match, using
BERTScore, an evaluation metric for text similar-
ity (Zhang et al., 2019). In this step, we use both
the ATOMIC event and attributes to ensure that the
causal social knowledge of each event is captured.
We rank Si by score and return the top k (where
k=3) ATOMIC candidates for each datapoint.

To determine how precise this retrieval is,
we manually examine the knowledge-datapoint
matches for each dataset, demonstrated in Ta-
ble 1. We analyzed 30 events from the dev set
of each binary dataset (7 for HurricaneEmo, 6
for Stories2Insights; totaling 1260 datapoints),
and examined matches between 1) the datapoint
and ATOMIC event, and 2) the dataset label and
ATOMIC attributes. This analysis investigated both
whether 1) the ATOMIC events matched events
in the datapoint and 2) the causal relationship be-
tween the event and its attribute is the same as the
relationship between the datapoint and its label.
We observe that ATOMIC matches both the events
and causal relations in Stories2Insights better than
those in HurricaneEmo. See Section A.4.1 in the
appendix for more details.

5 Event Influence & Bias Discovery

We aim to (1) identify influential social and causal
events in each dataset, and (2) analyze their respec-
tive inferential relationships to discover attitudes
toward target social structures.

To identify influential events in the datasets,
we first extract underlying ATOMIC events from
each dataset via event selection and then measure

how influential these events are via leave-K-out
experiments (illustrated in event selection and
leave-K-out in the Knowledge Influence section of
Fig. 2). We then explore the following types of so-
cial and cultural structures in our datasets: religion,
economy, family, government, education and tech-
nology. We consider a dataset to be biased if there
exists a positive or negative attitude toward one of
these structures in the influential underlying events.

5.1 Event Selection

We select underlying events in each dataset that
potentially influence model behavior. To identify
these events, we first fine-tune a separate BERT
model for each binary dataset. Then, we represent
the binary train data, dev data, and ATOMIC events
with contextual embeddings using the respective
BERT model for that dataset. Next, for each data-
point di ∈ D, we find its closest event ej (where
ej ∈ E and E denotes the ATOMIC events) using
kNN. We then assign di to cj , where cj is the re-
spective data cluster for ej (cj ∈ C and C denotes
all the clusters). If di is in train, we assign it to ctj
(the event-specific train cluster), and if di is in dev,
we assign it to cdj (the event-specific dev cluster).
Thus, for each binary dataset, we have clusters of
train and dev data for each ATOMIC event. This
process is denoted as kNN in Fig. 2.

To identify the most representative underlying
ATOMIC events learned by the model, we use the
clusters of the top m (where m=50) most common
ATOMIC events extracted for the train set (see Sec-
tion 4.3 for details), and thus each binary dataset in
HurricaneEmo and Sight2Insights has m clusters.
To further identify which events have been learned
best by the model, we then use cross-validation
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to determine which clusters have the highest pre-
diction accuracy (thus the dev set is not used to
score clusters during event selection). We score
clusters by their average prediction accuracy across
each fold and select events whose clusters score
highest. This process denoted as Score Clusters in
Fig. 2. We use the top t (where t=5) events for our
leave-K-out experiments.

5.2 Leave-K-Out
We evaluate whether the selected underlying events
have a strong influence on model behavior (see
leave-K-out in Fig. 2). Recall that each event ej
in a particular binary dataset has a cluster of event-
specific datapoints ctj and cdj for train and dev. For
each event ej , we remove ctj from the train set and
use cdj as an evaluation set. We compare results on
cdj between a BERT baseline (discriminator trained
on all train data in that binary dataset) versus BERT
trained on the train set with ctj removed. We evalu-
ate accuracy and look for prediction changes. We
also include ablations that remove the same amount
of randomly selected train data to establish a lower
bound. See Section A.5.1 in the appendix for data
sizes and a thorough discussion and interpretation
of the respective results.

6 Results

6.1 Knowledge Integration
We examine knowledge integration in Table 2 and
Table 3. Due to our additional HurricaneEmo data
preprocessing (see Section A.1 in the appendix),
we reran BERT baselines on this dataset. Overall,
Stories2Insights has better performance improve-
ments than HurricaneEmo.

For HurricaneEmo, we see visible improvement
for LOVE, DISAPPROVAL, and REMORSE, which
performed best using integration methods 2, 5, and
3, respectively, all of which are attribute focused.
For Stories2Insights, we see visible improvements
for datasets where the label is focused on social
knowledge: EMOTIONAL, SOCIAL SIGNIFICANCE,
INTRINSIC HUMAN, and INDIGENOUS, using inte-
gration methods 1, 3, 4, and 5, respectively.

6.2 Knowledge Influence
We find ATOMIC events that influence model per-
formance in Table 4. Given the top t dataset events
from event selection in Section 5, we demonstrate
results for the events for which a change in per-
formance occurred, i.e., the influential events (see

Section A.5.2 in the appendix for the full list of
events). We see that for all Stories2Insights events,
and most events in HurricaneEmo, removing ctj de-
creases performance on cdj . Our ablations indicate
a lower bound and thus highlight the cases where
decreased performance is indeed significant. We
underline all influential results that perform worse
on cdj than both the baseline and ablation when the
respective ctj is removed. These events are able to
cluster highly relevant text and thus the ctj exam-
ples have strong prediction influence on cdj . See
Section A.5.1 in the appendix for further discussion
and interpretation of the results.

We observe some cases in HurricaneEmo where
best performance is achieved by removing ctj , indi-
cating mislabeling. We manually analyze the five
HurricaneEmo event clusters in question. For each
datapoint in cdj where the prediction was corrected
after leave-K-out, we retrieve the removed ctj data-
points. We find that the train and dev manual label
agreement between the two sets is 49.33%, aver-
aged across all clusters. As the labels should agree,
this indicates mislabeling and explains the perfor-
mance improvements after removal (verified by the
manual analysis in Section 6.4). Finally, there are
cases in which the ablation performs worst. This
seems related to the nature of the cdj s in question,
such that the model is uncertain about these exam-
ples and thus predictions on this subset are highly
sensitive to any changes in the train set.

We performed manual analysis to verify cj
(event-specific data) semantic similarity with ej
(the event) and also ctj and cdj (event-specific dev
and train) similarity with each other. Two annota-
tors analyzed approximately 190 datapoints across
13 different event clusters (with a Cohen kappa of
0.81 which is considered as ‘almost perfect agree-
ment’ 1, see Section A.4.2 for more details). Ta-
ble 6 shows that for HurricaneEmo, 87% of the
event-specific data semantically match each other,
and close to half of dev and train examples match
the cluster’s event. We also observe that for Sto-
ries2Insights, 100% of the event-specific data se-
mantically match. Overall, the integration improve-
ments, leave-K-out results, and final influential
events suggest that ATOMIC represents a better
cultural and social match for Stories2Insights, and
allow us to clearly identify influential events in
Stories2Insights. This is supported by our man-

1https://en.wikipedia.org/wiki/Cohen%
27s_kappa
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Dataset Event Full Train Leave-K-Out Ablation

HurricaneEmo
AGR PersonX drives from florida 76.9 74.4 76.9
LOV PersonX checks the weather forecast 60.4 39.6 60.4

PersonX uses — to avoid 40.0 45.0 35.0
SBM PersonX sends — to the congress 82.4 88.2 76.5
AWE PersonX prepares for the storm 60.6 66.7 60.6

PersonX is still valid — 69.2 38.5 61.5
DSP PersonX practices — in the state 57.1 71.4 57.1

PersonX keeps PersonY in PersonY’s prayers 100.0 50.0 100.0
CNT PersonX sails close to the wind 79.5 74.4 79.5
RMR PersonX crosses my heart and hope to die 82.3 85.5 80.7

PersonX sends — to the congress 69.1 66.7 66.7
PersonX keeps PersonY in PersonY’s prayers 80.0 60.0 60.0

Stories2Insights
Indigenous PersonX offer — to the gods 66.7 33.3 66.7

PersonX reads the bible 87.5 75.0 75.0
Intrinsic PersonX provides — to children 100.0 80.0 100.0
Social PersonX protects — from the effects 71.4 57.1 42.9

PersonX sells — to the public 88.2 67.7 88.2

Table 4: Leave-K-Out Results. Best performance is bold and performance of most influential events is underlined.

Clustered Datapoints by Event

HurricaneEmo: PersonX prepares for the storm
even san antonio evac centers could get more than 1’ of rain. tx gov. abbott suggests going farther inland to austi
https://t.co/jsxrwwiu3y
puerto rico rations resources as hurricane maria approaches - https://t.co/ypziieca7a https://t.co/lzw1inirsu
cnn reports miami international airport & fort lauderdale-hollywood international airport are closed. latest updat
https://t.co/repbpqdqsz
to all ga residents in hurricane irma ’s path, stay safe & be careful! for shelter information, please visit: https://t.co/acytlq9orr
Stories2Insights: Person provides — for the children
We have many diseases which attack us at any including our children, so if medicines are around, we can always treat
ourselves and do things which can bring for us money and our children will go to school and learn.
Motorcycle will help me to take children for treatment when they fall sick and also I can be taken for treatment using the
motorcycle.
Chicken is good to have at home since it lays eggs which I use it in feeding my children.

Table 5: Examples of HurricaneEmo and Stories2Insights datapoints in ATOMIC event clusters.

Dataset %dev %train %dev-train

HEmo 53 43 87
S2I 50 79 100

Table 6: HurricaneEmo and Stories2Insights Clustering
Manual Analysis. %dev and %train show the match
between dev/train clusters and the event. %dev-train
shows the match between dev and train clusters. Higher
% indicates more matches.

ual analysis which indicates that Stories2Insights
events and causal relations are better captured by
ATOMIC and that by using ATOMIC knowledge,
we are able to get semantically matching clusters.

6.3 Bias Analysis

We examine bias with respect to the following cul-
tural structures: religion, economy, family, gov-
ernment, education and technology. For Hurrica-
neEmo, we find strong cultural biases for religion

and technology. In Table 4, we see that religion
is associated with several causal reactions, specif-
ically disapproval and remorse. This may be due
to the use of religion in text, marking particularly
traumatic situations. We also observe that there is
a general mixed reaction toward technology, with
"driving" associated with perceived aggression and
"checking weather forecast" associated with per-
ceived love (often in the context of rapid informa-
tion spread during a disaster). Finally, it seems
that there is a negative bias towards government,
in which references to "congress" tend to elicit
remorse. Interestingly, the economy, family and
education seem relatively non-influential.

For Stories2Insights, we see that the mention
of religion is both influential and strongly associ-
ated with INDIGENOUS values (defined by social
norms and religion). "Providing for children" is
also a very influential event, demonstrating a strong
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Model LOV DSP SBM AWE RMR

Baseline 65.1 58.0 72.8 73.7 63.2
Reduced Train 68.4 61.1 73.2 72.1 66.4

Number Examples Removed 4 13 8 97 11

Table 7: HurricaneEmo test set performance after removing potentially mislabeled train datapoints.

bias for family in the dataset, which elicits the IN-
TRINSIC HUMAN value, associated with health and
quality of life. This sheds light on how attitudes
toward religion, family, and childcare are valued
in positive ways within this corpus, and indicates
how these structures may play strong roles in val-
ues associated with social norms and quality of life.
Finally, the economy also seems to be quite influen-
tial, as we see that "PersonX sells — to the public"
is strongly associated with SOCIAL SIGNIFICANCE

(i.e., identity, status) illustrating that the economy
plays a strong role in this value.

Given the performance improvements when
adding social causal knowledge and the discovered
influential cultural biases described above, we see
that these datasets contain implicit assumptions
that, when acquired, improve a model’s perfor-
mance on each dataset. In particular, there are
several influential cultural biases in the dataset
that may be harmful when generalizing to another
task. For example, the importance and meaning
of religion may be different depending on the task.
In HurricaneEmo, religion plays a major role as
a reaction to traumatic events, whereas in Sto-
ries2Insights it plays a role in indigenous values.
We observe that the context of data collection (e.g.,
natural disaster tweets, perceived value collection,
etc) is particularly important in the type of attitudes
towards social structure a dataset might encapsu-
late, and thus recommend this type of analysis to
better understand implicit bias held in a dataset
based on its application. We want to strongly em-
phasize that is very important to properly analyze
the implicit cultural biases for any train set before
applying a model trained on this dataset.

6.4 Detecting Mislabeled Events

Finally, we leverage our analysis to identify misla-
beled datapoints in HurricaneEmo and improve our
performance on the full test set. We use all datasets
that contain events where the best performance on
the target cdj is achieved by training on the removed
train set, as illustrated in Table 4. This suggests
that the ctj have been mislabeled and are negatively

affecting cdj , which we have confirmed with man-
ual analysis (see Section A.4.3 for more details).
We refer to these events as mislabeled events. To
mitigate this, we use the mislabeled events in a
removal heuristic, where we remove all examples
that extract the mislabeled events as their highest
scoring event. We then evaluate our model on the
full test set, see Table 7. Every considered dataset
demonstrates improvement over the BERT baseline
on the full test set, except AWE, most likely due to
the large number of removed examples for AWE,
which may interfere with the predictions of other
datapoints.

7 Conclusion

We used causal social commonsense knowledge
to discover influential events and relationships that
explain model behavior and pinpointed instances of
cultural bias. First, we found that using large-scale
language models augmented with causal social
knowledge improved our social classification tasks,
illustrating that the knowledge made the underly-
ing social assumptions in the dataset explicit. Then,
we identified underlying events in each dataset by
clustering data around ATOMIC knowledge, to pin-
point cultural biases that the dataset may exhibit.
We found that some of this knowledge strongly
influenced model behavior through leave-K-out ex-
periments, providing a dataset-level understanding
of influential events and causal social common-
sense relationships and allowing an analysis of the
datasets’ implicit influential cultural biases. Finally,
we used these underlying and influential events to
identify mislabeled train examples and thus im-
prove training and performance.

Acknowledgements

We thank the reviewers for their useful feed-
back. This work was supported by DARPA MCS
Grant N66001-19-2-403, NSF-CAREER Award
1846185, and an NSF Graduate Research Fellow-
ship. The views are those of the authors and not of
the funding agency.

3753



8 Ethical Considerations & Limitations

We first address ethical considerations and limita-
tions with respect to potential biases in our methods
and resources, and then ethical considerations with
respect to data use.

Bias: Emotions and values, and their expression
and perception, are not universal. We use ATOMIC
as, at the time of this work, it is the largest En-
glish source of social commonsense knowledge,
however it is important that we further the cre-
ation and use of resources that are not limited to
Western norms, developed countries, and the En-
glish language, especially when applying them to
data outside of these domains. We anticipate that
a knowledge graph better suited for representing
different cultural attitudes will yield more cover-
age. For example, the events in ATOMIC may not
cover important or representative cultural events
in Uganda (the source of our second dataset), as it
largely contains Western-centric social and cultural
norms found in mostly developed countries.

It is also crucial to note that it is not the inten-
tion of this work to draw conclusions about various
cultures that these datasets may derive from. The
cultural attitudes we discover in a single dataset
are not an accurate reflection of the entire culture
that this dataset may derive from and we would
find this conclusion to be particularly harmful. We
instead aim to explore biases with respect to social
structures in a particular dataset and are only able
to discover and examine cultural attitudes that are
particular and limited to the target dataset and are
additionally limited by our knowledge recall. A
precision-recall tradeoff exists based on the KG
coverage, and thus the retrieved datapoints may
not all be biased (precision) nor will all biases be
retrieved (recall) using the available KG. Thus, we
also stress the importance of using manual analy-
sis to identify and confirm biases in the extracted
datapoints. We hope this will further encourage the
development of knowledge graphs that explicitly
represent more annotated social/cultural common-
sense knowledge by illustrating its usefulness in
gaining a corpus-level understanding of datasets.

Similarly, we are additionally limited by the use
of transformer models that were trained on mostly
Western text and may be prone to capture Western
cultural information even if fine-tuned on a dataset
with different cultural attitudes. Providing a so-
lution to this problem is beyond the scope of this
paper, but future work could explore more cultur-

ally diverse data for pre-training models.
Data Use: Twitter data and interview transcripts

are sensitive data and thus require strong consider-
ations about the use and release of the data. The
publicly released data for HurricaneEmo is fully
anonymized to protect the identity of users. Sto-
ries2Insights data has also been fully anonymized,
but is not publicly released and has been kept pri-
vate to ensure the safety of the communities and to
prevent harmful use of the data. Following suit, we
do not release any data for this dataset to limit
potential harm or misuse. For more details on
the ethics concerning the collection and intended
use of either of these datasets, please refer to each
dataset’s original paper.

Future Work: Our contribution focuses on the
novel combination of knowledge graph relations,
interpretability methods, and clustering to identify
both influential and biased commonsense relation-
ships. We aim to use this as an opportunity to
encourage work in the curation of resources that
explicitly annotate cultural attitudes or "common-
sense" biases by illustrating how such resources can
facilitate a corpus-level understanding of implicit
influential cultural biases. Our work is limited by
the methods we explored, and thus we encourage
further investigation of certain elements in our ex-
perimental pipeline, in particular other datasets,
clustering method variations, other MLMs, more
diverse KGs, and other knowledge models.
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A Appendix

A.1 HurricaneEmo Pre-processing
We performed the following pre-processing steps
for HurricaneEmo (released by Desai et al. (2020)).
First, we de-duplicated each train, dev, and test
file (per the authors suggestion). Then, we
de-duplicated across splits, removing data from
the train set if it was present in the dev or
test sets. We used these files as our input
for the pipeline described in our paper. We
chose not to include the OPTIMISM category in
our experiments since we were not able to re-
produce a baseline result sufficiently close to
the original paper on the fully deduplicated
dataset. After preprocessing, the train/dev/test
splits for each of the files are: AGGRESSIVENESS:
1695/493/495, AWE: 2942/868/868, CONTEMPT:
1507/452/443, DISAPPROVAL: 2363/706/707,
LOVE: 1028/307/304, REMORSE: 3104/910/908,
SUBMISSION 2432/724/721.

A.2 Stories2Insights Pre-processing
We performed the following pre-processing steps
for Stories2Insights. We received the dataset from
the authors, with the T3 labels described in the
original paper (Conforti et al., 2020). We instead
use the T1 labels defined in their paper as bi-
nary datasets. To create these datasets, we fol-
lowed the T3 label groupings shown in Appendix
A of their paper. We then created datasets with
a 1:1 positive-to-negative datapoint ratio for the
train, dev, and test sets. These negative data-
points were collected evenly from all other T1
datasets. We repeated this process for all T1 la-
bels and every set (train, dev, and test). After
preprocessing, the train/dev/test splits are: EMO-
TIONAL: 805/75/84, EPIST: 553/82/65, FUNC-
TION: 2551/302/345, INDIGENOUS: 695/64/104,
INTRINSIC HUMAN: 2317/261/320, SOCIAL SIG-
NIFICANCE: 1241/134/151. If interested in using
this data, please contact the original authors for
access.

A.3 Reproducibility & Hyperparameters
We utilized BERT-base for all of our experiments
(Devlin et al., 2018). We followed hyperparame-
ter settings for BERT as described in Desai et al.
(2020). To train BERT for HurricaneEmo, we use
batch size 8 and learning rate 2e-5. To train BERT
for Stories2Insights, we use batch size 8 and learn-
ing rate 1e-5. Training for both was completed in

3 epochs. We train each model using 1 GeForce
GTX 1080 Ti GPU.

A.4 Manual Analysis Details and Further
Analysis

A.4.1 Data Extraction
Manual analysis for examining the knowledge-
datapoint matches for each dataset was completed
by an expert author, since this is time-consuming,
fine grained verification analysis (as opposed to
model evaluation). Details on the setup of the anal-
ysis are in the main paper Section 4.3.

A.4.2 Cluster Match
This section describes the manual analysis used
to analyze the cluster matches via our methods
in Section 6.2 in the main paper (Table 6). Man-
ual analysis was completed by 2 expert authors
since this is time-consuming, fine grained verifi-
cation analysis (as opposed to model evaluation).
We obtain high agreement, with a Cohen kappa of
0.81 (which is considered as ‘almost perfect agree-
ment’; see https://en.wikipedia.org/
wiki/Cohen%27s_kappa). We selected 10
dev and 10 train datapoints for each event cluster,
and because not all events had a full 10 datapoints
in dev or train, this leads to total of 190 datapoints.

Using this data, we performed an analysis to
identify whether the event-specific data sets that
were extracted for a certain ATOMIC event (1)
semantically matched the events and (2) semanti-
cally matched each other. For (1), we wanted to
see whether the semantic meaning in the ATOMIC
event was reflected in the clustered data. For (2),
we wanted to see whether the semantic meaning
in event-specific dev (cdj ) and event-specific train
(ctj) sets was matched. The results were computed
as follows. For (1), if the majority of selected dat-
apoints matched the event, we considered this to
be a positive data−event match. We then compute:
# events with semantically matching data−event
clusters / # total events. For (2), if the major-
ity of selected datapoints matched across dev and
train, we considered this to be a positive train−dev
match. We then compute: # events with semanti-
cally matching train−dev clusters / # total events.
Majority is calculated such that a majority of both
train and dev had to be semantically similar.

We see that the results for (2) are very high in
Table 6, which supports our findings that there is
mislabeling in the dataset (i.e, the labels are dif-
ferent between dev and train sets but the semantic
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Dataset Event %Event-Specific Train %Event-Specific Dev

HurricaneEmo
AGR PersonX drives from florida 4.7 7.9
LOV PersonX checks the weather forecast 24.0 36.2

PersonX uses — to avoid 5.5 6.5
SBM PersonX sends — to the congress 1.2 2.3
AWE PersonX prepares for the storm 4.6 7.6

PersonX is still valid — 0.8 1.5
DSP PersonX practices — in the state 0.6 1.0

PersonX keeps PersonY in PersonY’s prayers 0.1 0.3
CNT PersonX sails close to the wind 7.2 8.6
RMR PersonX crosses my heart and hope to die 5.9 6.8

PersonX sends — to the congress 3.2 4.6
PersonX keeps PersonY in PersonY’s prayers 0.2 0.5

Stories2Insights
Indigenous PersonX offer — to the gods 4.7 4.7

PersonX reads the bible 4.7 12.5
Intrinsic PersonX provides — to children 1.1 1.9
Social PersonX protects — from the effects 2.0 5.2

PersonX sells — to the public 21.9 25.4

Table 8: Leave-K-Out Cluster Size. %Event-Specific Train is the % of train examples removed during Leave-K-Out
training and %Event-Specific Dev is the % of dev examples the trained model is evaluated on.

meaning are similar, thus there is mislabeling). We
also see that (1) can be low for some datasets, in-
dicating that while the train and dev data may be
semantically matched, this semantic meaning may
differ from the original ATOMIC commonsense
relation for some datasets more than others. This
may be due to limited coverage of ATOMIC for
some events and is intended to show transparency
in the limitations of our approach, which we hope
will encourage the development of a KG that ex-
plicitly represents this type of cultural knowledge
(which was not available at the time of this work).

A.4.3 Mislabeling
This section describes the manual analysis used to
confirm mislabeling in HurricaneEmo train exam-
ples. Manual analysis was completed by an expert
author since this is time-consuming, fine grained
verification analysis (as opposed to model evalua-
tion). We completed manual analysis to identify
mislabeling on a set of 30 train examples across
different event clusters. The train examples were se-
lected from cases where the performance improved
on the event specific dev set when the event specific
train set was removed.

A.5 Knowledge Influence Details

A.5.1 Leave-K-Out Cluster Size
We illustrate the sizes of the event-specific train (ctj)
and dev (cdj ) clusters with respect to the original
train and dev dataset sizes for each of the leave-
K-out results in Table 8. Some of the resulting

datasets are very small and are more difficult to
draw conclusions from. For this reason, we show
the dataset sizes in Table 8 for an improved and
transparent interpretation of the results. On the
other hand, we can also see that several of the
datasets are quite large and leave-K-out has a clear
and significant impact on their performance with
respect to the full train set (e.g., “PersonX checks
the weather forecast” and “PersonX sells — to the
public”).

A.5.2 Selected Events
We show full top 5 events from the event selection
step for each binary dataset in Tables 9 and 10.
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Dataset Event

Emotional PersonX sells PersonY’s — for money
PersonX sleeps well —
PersonX gets — at night

PersonX devotes — to the study
PersonX wakes up in the middle of the night

Epist PersonX hears — on the radio
PersonX checks the news

PersonX supplies the — with food
PersonX loves listening to music

PersonX protects the — from injury

Functional PersonX protects the — from injury
PersonX uses — to prevent

PersonX seeks god ’s —
PersonX teaches children —

PersonX educates PersonX’s children

Indigenous PersonX offer — to the gods
PersonX reads the bible

PersonX pays a lot of money
PersonX seeks god ’s —

PersonX treats the — with respect

Intrinsic PersonX educates PersonX’s children
PersonX provides — to children

PersonX works well in business to get
PersonX pays a lot of money

PersonX helps the — to understand

Social PersonX uses — to prevent
PersonX protects — from the effects

PersonX sells —to the public
PersonX uses — to support

PersonX tries to use it

Table 9: Top 5 Events for Stories2Insights Binary Datasets
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Dataset Event

AGR PersonX stays away from PersonY
PersonX drives from florida

PersonX doesn’t have enough money
PersonX doesn’t want to go to school

PersonX moves to texas

DSP PersonX comes back to my house
PersonX practices — in the state

PersonX keeps PersonY in PersonY’s prayers
PersonX is trying to watch a movie

PersonX sees PersonY’s friends

CNT PersonX says the wrong thing
PersonX can’t afford to fix it

PersonX doesn’t want to go to school
PersonX supplies the — with food

PersonX sails close to the wind

LOV PersonX practices — in the state
PersonX goes to the local animal shelter

PersonX spends — with PersonX’s families
PersonX checks the weather forecast

PersonX uses — to avoid

SBM PersonX uses PersonX’s — to help
PersonX goes to the local animal shelter

PersonX sends — to the congress
PersonX organizes — in a way

PersonX does n’t want to go to school

AWE PersonX thanks god
PersonX provides — for the people

PersonX uses — to protect
PersonX is still valid —

PersonX prepares for the storm

RMR PersonX crosses my heart and hope to die
PersonX strikes — into the hearts
PersonX sends — to the congress

PersonX keeps PersonY in PersonY’s prayers
PersonX doesn’t want to go to school

Table 10: Top 5 Events for HurricaneEmo Binary Datasets
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