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Abstract
Task-oriented semantic parsing models have
achieved strong results in recent years, but un-
fortunately do not strike an appealing balance
between model size, runtime latency, and cross-
domain generalizability. We tackle this prob-
lem by introducing scenario-based semantic
parsing: a variant of the original task which sep-
arates disambiguating an utterance’s “scenario”
(an intent-slot template with variable leaf spans)
and generating its frame, complete with on-
tology and utterance tokens. This formula-
tion closely ties to the data collection process
where the scenarios are first designed followed
by crowd sourced utterance annotation. Con-
cretely, we create a Retrieve-and-Fill (RAF) ar-
chitecture comprised of (1) a retrieval module
which ranks the best scenario given an utter-
ance and (2) a filling module which imputes
spans into the scenario to create the frame. Our
model is modular, differentiable, interpretable,
and allows us to garner extra supervision from
scenarios. RAF achieves strong results in high-
resource, low-resource, and multilingual set-
tings, outperforming recent approaches despite,
using base pre-trained encoders and efficient
decoding.

1 Introduction

Task-oriented conversational assistants typically
first use semantic parsers to map textual utterances
into structured frames for language understand-
ing (Hemphill et al., 1990; Coucke et al., 2018;
Gupta et al., 2018; Rongali et al., 2020; Agha-
janyan et al., 2020). While these parsers achieve
strong performance with rich supervision, they of-
ten face obstacles adapting to novel settings, es-
pecially ones with distinct semantics and scarce
data. Recent approaches address this by improv-
ing parsers’ data efficiency, such as by using pre-
trained representations (Aghajanyan et al., 2020;
Rongali et al., 2020), optimizing loss functions
(Chen et al., 2020b), and supplying natural lan-
guage prompts (Desai et al., 2021). However, these

approaches typically rely on larger models and
longer contexts, impeding their applicability in
real-world conversational assistants. Even though
non-autoregressive models can alleviate some con-
cerns (Babu et al., 2021; Shrivastava et al., 2021;
Zhu et al., 2020), to the best of our knowledge,
there exists no approach which strikes an appealing
balance between model size, runtime latency, and
cross-domain generalizability.

We begin tackling this problem by introducing
scenario-based task-oriented semantic parsing
which is more closely tied to how new task do-
mains are developed. A slight variation on orig-
inal semantic parsing, we are given access to all
supported scenarios apriori and have to parse the
utterance given this scenario bank. Here, a sce-
nario is akin to a incomplete frame; it is, precisely,
an intent-slot template with variables as leaf spans
(e.g., IN:GET_WEATHER [SL:LOCATION x1 ] ]),
indicating it maps to a family of linguistically sim-
ilar utterances. As domain development and data-
collection usually starts out with designing the set
of supported scenarios, our intuition is that by giv-
ing the model access to this bank we can train it to
more explicitly reason about scenarios and improve
performance especially in the low data regime.

Concretely, we propose RAF (Retrieve-and-
Fill), a modular yet differentiable architecture
for scenario-based task-oriented semantic parsing.
Guided by the definition of our task, RAF also
proceeds in two steps: (1) given an utterance, a
retrieval module finds the highest ranking scenario
and (2) given the utterance and retrieved scenario,
a filling module imputes spans into the scenario,
creating the final frame. This approach requires
no extra supervision despite performing auxiliary
inference: utterances and frames are typically pro-
vided, and scenarios are obtained by stripping leaf
text in frames. We design RAF to capitalize on the
advantages of prior work but avoid their disadvan-
tages; using base pre-trained encoders across-the-
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Figure 1: High-Level Overview. Retrieve-and-Fill (RAF) consists of 4 steps: (1) Encode the utterance via an
utterance encoder (e.g., RoBERTa); (2) Encode all scenarios (Desai et al., 2021) in the scenario bank into a cached
index via a scenario encoder (e.g., RoBERTa); (3) Compute the dot product similarity amongst the incoming
utterance and the index of all scenarios, obtaining the top-n candidates; (4) For each retrieved scenario, leverage the
non-autoregressive span pointer decoder (Shrivastava et al., 2021) to impute each scenario’s spans.

board, our retrieval module caches intrinsic repre-
sentations during inference and our filling module
non-autoregressively decodes leaf spans in a gener-
alizable fashion.

We evaluate our approach in high-resource, low-
resource, and multilingual settings using standard
task-oriented semantic parsing datasets. RAF
achieves 87.52% EM on TOPv2 (Chen et al.,
2020b) and 86.14% EM on TOP (Gupta et al.,
2018), outperforming recent autoregressive and
non-autoregressive models. RAF also excels in
weakly supervised settings: on TOPv2-DA, we
outperform Inventory (Desai et al., 2021) on 4 do-
mains (alarm, music, timer, weather) despite using
<128 token sequence lengths and 2-4x less parame-
ters, on TOPv2 low resource, we outperform BART
(Lewis et al., 2020), RINE (Mansimov and Zhang,
2021), and RoBERTa + Span Pointer (Shrivastava
et al., 2021), and on MTOP (Li et al., 2021), we
outperform XLM-R + Span Pointer, achieving 42%
EM averaged across en→{es, fr, de, hi, th} transfer
tasks.

To summarize, our contributions are: (1) Intro-
ducing scenario-based task-oriented semantic pars-
ing, a novel task which requires disambiguating
scenarios during typical utterance→frame predic-
tions; (2) Creating RAF (Retrieve-and-Fill), a mod-
ular yet differentiable architecture composed of a
retrieval and filling module for solving scenario-
based task-oriented semantic parsing; and (3)
Achieving strong results in high-resource, low-

resource, and multilingual settings, outperforming
recent models such as Span Pointer, Inventory, and
RINE by large margins, while also optimizing for
model size, runtime latency, and cross-domain gen-
eralizability.

2 Scenario-based Semantic Parsing

We formally introduce the task of scenario-based
semantic parsing. Task-oriented conversational as-
sistants support a wide range of domains (e.g., call-
ing, reminders, weather) to maximize coverage
over users’ needs. Over time, in response to re-
quests and feedback, developers often iterate on as-
sistants’ skill-sets by adding new domains. Though
the crowdsourcing process of collecting and anno-
tating samples—utterances and frames—for new
domains can be accomplished in many ways, we
propose a two-step methodology where develop-
ers (a) develop scenarios which roughly describe
a family of samples and (b) collect linguistically-
varied samples consistent with each scenario. We
elaborate more on our scenario-based methodology
below.

Scenario Definition. We define a scenario as
an intent-slot rule which abstracts away linguistic
variation in utterances. More specifically, it is a de-
coupled semantic frame (Aghajanyan et al., 2020)
with variables in leaf spans, indicating it can sub-
class utterances with similar syntactic and semantic
structure, an example is showing in table 1. Our no-
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Utterance Frame

Scenario: [IN:GET_WEATHER [SL:LOCATION x1 ] ]

what’s the weather in seattle [IN:GET_WEATHER [SL:LOCATION seattle ] ]
how’s the forecast in sf [IN:GET_WEATHER [SL:LOCATION sf ] ]

Scenario: [IN:GET_WEATHER [SL:LOCATION x1 ] [SL:DATE_TIME x2 ] ]

what’s the weather in seattle tomorrow [IN:GET_WEATHER [SL:LOCATION seattle ] [SL:DATE_TIME tomorrow ] ]
how’s the forecast in sf at 8pm [IN:GET_WEATHER [SL:LOCATION sf ] [SL:DATE_TIME 8pm ] ]

Table 1: Scenario Description. Scenarios are intent-slot templates with missing slot text, suggesting they subclass
linguistically similar utterances. We show examples of utterances, scenarios, and frames in the weather domain;
each scenario consists of multiple (utterance, frame) pairs.

tion of a scenario is inspired by production rules in
constituency parsing (Chomsky, 1959), but the par-
allel is not exact given our scenarios have semantic
not syntactic types.

Using scenarios, we can effectively quantize the
space of possible utterances by identifying and
defining slices of user requests. Our solution also
offers fine-grained control over precision and recall,
which is important in real-world systems; we can
collect more paraphrases to improve precision and
we can create more scenarios to improve recall.

We collect scenarios by taking train, eval, and
test frames from our datasets, and stripping out
the utterance text, to yield a decoupled semantic
frame. As discussed later in this manuscript, our
approach requires knowing, beforehand, the space
of possible scenarios, in order to perform global
inference.

Case Study: Weather. Table 1 shows an ex-
ample setting where we crowdsource weather do-
main samples using the scenario-based methodol-
ogy outlined above. To begin, we may envision
building a weather system which supports requests
with location and/or date-time information. There-
fore, we can define two scenarios: (1) a family of
samples with one location span; and (2) a family
of samples with one location span and one date-
time span. Each scenario explicitly outlines the
intents and slots that must be present, as scenar-
ios are not “one-size-fits-all” rules with optional
slotting. So, as an example, the utterance “how’s
the forecast in sf” would not be compatible with
the scenario [IN:GET_WEATHER [SL:LOCATION x1
] [SL:DATE_TIME x2 ] ] since it does not have a
date-time span as specified by the x2 variable.

Task Definition. Finally, we precisely define our
task of scenario-based semantic parsing. For the
typical task of semantic parsing, we define U as
a random variable over utterances, F as a random
variable over frames, and model P (F |U): find the

most likely frame given the utterance. However,
because we introduce scenarios as a coarse, inter-
mediate representation of frames, we additionally
define S as the set of all supported scenarios given
a priori, and model P (F |U, S).

3 RAF: Retrieve and Fill

We propose a model called RAF (Retrieve and Fill)
for scenario-based semantic parsing that naturally
decomposes the task into a coarse-to-fine objective
where we (a) find the most likely scenario given the
utterance and (b) find the most likely frame given
the utterance and scenario. More concretely given
an utterance u and scenarios s1, · · · , sn, as well as
a gold scenario s∗ and gold frame f∗, we learn our
model as follows:

1. Retrieve (Coarse Step; §3.1): A retrieval
module maximizes P (S = s∗|U = u) by
learning to retrieve scenario si given utter-
ance u, e.g., “what’s the weather in seattle”→
[IN:GET_WEATHER [SL:LOCATION x1 ] ].

2. Fill (Fine Step; §3.2): A filling module maxi-
mizes P (F = f∗|U = u, S = s∗) by decod-
ing the most likely frame f given the structure
of scenario s∗i and spans of utterance u, e.g.,
[IN:GET_WEATHER [SL:LOCATION x1 ] ]→
[IN:GET_WEATHER [SL:LOCATION seattle ]
].

RAF is a composable yet differentiable model
which implements coarse-to-fine processing: we
first develop a coarse-grained sketch of an utter-
ance’s frame, then impute fine-grained details to
achieve the final frame. In these types of ap-
proaches, there often exists a trade-off when cre-
ating the intermediate representation; if it is “too
coarse”, the filling module suffers, but if it is “too
fine”, the retrieval module suffers. We find sce-
narios, as defined in §2, offer the most appealing
solution, as the retrieval module unearths rough
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syntactic-semantic structure, while the filling mod-
ule focuses in on imputing exact leaf spans.

In the following sub-sections, we discuss the
technical details behind the retrieval and filling
modules, as well as describe the training and infer-
ence procedures.

3.1 Retrieval Module
First, we discuss the coarse-grained step of RAF,
which aims to find the best-fitting scenario for an
utterance. We formulate this task as a metric learn-
ing problem. Here, we can maximize the similarity
sim(u, s∗) between an utterance u and scenario s∗

as judged by a scalar metric. This offers numerous
advantages: we can explore ad-hoc encodings of
utterances and scenarios, adjust the output space
dynamically during inference, and compute exact
conditional probabilities by leveraging a (tractable)
partition function.

3.1.1 Bi-Encoder Retrieval
Following retrieval modeling in open-domain QA
(Karpukhin et al., 2020), we specifically lever-
age pre-trained encoders (EU for utterances and
ES for scenarios) to compute dense vector repre-
sentations, then maximize the dot product simi-
larity sim(u, s∗) = EU (u)

⊤ES(R(s∗)) between
utterance-scenario pairs (u, s∗); the precise nature
of R is discussed in §3.1.3. To learn such a metric
space and avoid degenerate solutions we need to
train the encoders to pull positive pairs together
and push negative pairs apart. Hence, we need ac-
cess to both positive (gold; (u, s+)) and negative
(non-gold; (u, s−)) pairs.

3.1.2 Negatives Sampling
The choice of negatives has a large impact on re-
trieval performance, which is consistent with find-
ings in information retrieval (Zhan et al., 2021;
Karpukhin et al., 2020). We explore two types
of negative sampling to improve retrieval perfor-
mance: in-batch negatives and model-based nega-
tives.

In-Batch Negatives. We mine positive and nega-
tive pairs from each training batch using in-batch
negatives (Karpukhin et al., 2020). Let U and S
be the utterance and scenario matrices, each be-
ing a (B × d) matrix consisting of d-dimensional
embeddings up to batch size B. We obtain B2

similarity scores upon computing the similarity ma-
trix M = US⊤, where Mi=j consists of positive
scores and Mi ̸=j consists of negative scores. For

each positive utterance-scenario pair (ui, s+i ), we
now have (B − 1) negative pairs {(ui, s−ij)}i ̸=j .
Having collected multiple negative pairs per posi-
tive pair, we leverage the contrastive loss for utter-
ance i is defined in Karpukhin et al. (2020); Chen
et al. (2020a):

Liretrieval(ui, s1, · · · , sb) =

log
esim(ui,si)

∑b
j=0 e

sim(ui,sij)
(1)

Since our set of scenarios isn’t huge this can result
in conflicts so we additionally implement identity
masking while training which ensures that for ev-
ery utterance each scenario is present at-most once
in it’s positive/negative set.

Model-Based Negatives. Following prior work
in IR (Xiong et al., 2020; Oğuz et al., 2021) we
train an initial retrieval model that uses only In-
Batch negatives. This model is used to rank all
scenarios for each utterance and the top K ranked
scenarios which are not the gold scenario are se-
lected as additional negative examples. Those neg-
atives examples are expected to be harder examples
since they were ranked higher by the initial model.
We train a new model using those added k scenar-
ios as explicit negative examples for each positive
example.

3.1.3 Frame Representation
While we have covered scenario-based retrieval
above, we have not yet precisely described how
dense vectors for scenarios are computed. Recall
our definition of utterance-scenario similarity in
§3.1.1: our objective is to maximize sim(u, s) =
EU (u)

⊤ES(R(s)), where R is a string transforma-
tion applied to scenarios.

Following Desai et al. (2021), we leverage in-
trinsic modeling to rewrite intents and slots as
a composition of their intrinsic parts in a single
string. Desai et al. (2021) define two, in particu-
lar: the categorical type (e.g., “intent” or “slot”)
and language span (e.g., “get weather” or “loca-
tion”). Using this methodology, we can transform
the scenario IN:GET_WEATHER [SL:LOCATION x1
] ] → [ intent | get weather [ slot |
location x1 ] ], which is inherently more natural
and descriptive.

Guided by the general concept of intrinsic mod-
eling, our goal here is to define R such that
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EU (u)
⊤ES(s) ≤ EU (u)

⊤ES(R(s)), all else be-
ing equal. We discuss our approach in detail in the
following sub-sections.

3.1.4 Language Spans

Desai et al. (2021) chiefly use an automatic
method to extract language spans from ontology
labels. For example, using standard string process-
ing functions, we can extract “get weather” from
IN:GET_WEATHER. While this method is a surpris-
ingly strong baseline, it heavily relies on a third-
party developers’ notion of ontology nomenclature,
which may not always be pragmatically useful. In
TOPv2 (Chen et al., 2020b), our principal evalu-
ation dataset, there exists ambiguous labels like
SL:AGE—is this referring to the age of a person,
place, or thing?

Therefore, to improve consistency and de-
scriptiveness, we propose a handmade method
where we manually design language spans for
each ontology label.1 The most frequent tech-
niques we use are (1) using the label as-
is (e.g., IN:GET_WEATHER → “get weather”);
(2) inserting or rearranging prepositions (e.g.,
IN:ADD_TO_PLAYLIST_MUSIC → “add music to
playlist”; and (3) elaborating using domain knowl-
edge (e.g., IN:UNSUPPORTED_ALARM → “unsup-
ported alarm request”).

3.1.5 Example Priming

Despite using curation to improve ontology label
descriptions, there are still many labels which re-
main ambiguous. One such example is SL:SOURCE;
this could refer to a travel source or messaging
source, but without seeing its exact manifestations,
it is challenging to fully grasp its meaning. This
motivates us to explore example priming: aug-
menting scenario representations with randomly
sampled, dataset-specific slot values. This can help
our model further narrow down the set of spans
each slot maps to during parsing. Furthermore, our
examples are just spans, so they are straightforward
to incorporate into our representation. For example,
for the slot SL:WEATHER_TEMPERATURE_UNIT, we
can augment and contextualize its representation
“slot | unit of weather temperature” with “slot | unit
of weather temperature | F / C” where “F” and “C”
are examples which appear in our dataset.

1See Appendix §D for our curated intent and slot descrip-
tions, respectively.

3.1.6 Representation Sampling

Our scenario-based retrieval task performs reason-
ing over a compact set of scenarios, unlike large-
scale, open-domain tasks such as information re-
trieval and question answering which inculcate mil-
lions of documents. As such, the chance our sys-
tem overfits to a particular representation is
much greater, no matter what it is set to. So, we
instead make R stochastic by uniformly sampling
unique frame representations for encoding scenar-
ios, and only using the handmade representations
during inference; Table 12 enumerates the com-
plete set of outcomes.

3.2 Filling Module

We use Span pointer model (Shrivastava et al.,
2021; Nicosia et al., 2021) as the basis of our infill-
ing model. Figure 2.A shows the how the model
works. In our case, we use scenario tokens from
the retrieved scenario as input tokens to decoder
as shown in figure 2.B. We also tried to pass the
scenario encoder output as input to the decoder to
replace the discrete input to the decoder and called
this scenario fusion as shown in figure 2.C.

Our final objective is Lfilling = NLL(f∗, f) +
αLS(f) where LS refers to label smoothing
(Pereyra et al., 2017).

4 Experiments and Results

We evaluate RAF in three settings: a high-resource
setting (100,000+ training samples), low-resource
setting (1-1,000 training samples), and multilingual
setting (0 training samples). Hyper parameter de-
tails are described in Appendix §E. Our goal here
is to show that our system both achieves competi-
tive performance on established benchmarks and
offers substantial benefits in resource-constrained
environments where training samples are limited.

4.1 Datasets for Evaluation

Following prior work in task-oriented semantic
parsing, we use 5 datasets for evaluation: TOP
(Gupta et al., 2018), TOPv2 (Chen et al., 2020b),
TOPv2-LR (Low Resource; Chen et al. (2020b)),
TOPv2-DA (Domain Adaptation; Desai et al.
(2021)), and MTOP (Li et al., 2021). TOP and
TOPv2 are used for high-resource experiments,
TOPv2-LR and TOPv2-DA are used for low-
resource experiments, and MTOP is used in multi-
lingual experiments.
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Figure 2: Infilling Model. A. the Span Pointer model in (Shrivastava et al., 2021). B. the Infilling model using tokens from
retrieved scenario and C. the infilling model with scenario fusion where scenario encoder output is connected to the decoder
directly. Note in all cases the decoder apply cross attention on the utterance encoder output.

4.2 Systems for Comparison

We compare against multiple task-oriented seman-
tic parsing models, which cover autoregressive
(AR), and non-autoregressive (NAR) training. See
Aghajanyan et al. (2020); Mansimov and Zhang
(2021); Babu et al. (2021); Shrivastava et al. (2021)
for detailed descriptions of these models.

The autoregressive models consist of BART
(Lewis et al., 2020) and RoBERTa (Liu et al.,
2019), and RINE (Mansimov and Zhang, 2021),
and the non-autoregressive models are RoBERTa
NAR (Babu et al., 2021) and RoBERTa NAR +
Span Pointer (Shrivastava et al., 2021). These mod-
els are applicable to both high-resource and low-
resource settings; though, for the latter, we also
add baselines from Desai et al. (2021): CopyGen
(BART + copy-gen decoder) and Inventory (BART
+ intrinsic modeling). The multilingual setting only
requires swapping RoBERTa with XLM-R (Con-
neau et al., 2020).

We denote our system as RAF in our ex-
periments. Unless noted otherwise, we use
RoBERTaBASE for the utterance encoder θU and
secnario θS and a random-init, copy-gen, trans-
former decoder for the frame decoder θF . As
alluded to before, we swap RoBERTaBASE with
XLM-RBASE for multilingual experiments.

4.3 High-Resource Setting

First, we evaluate RAF in a high-resource setting
where hundreds of thousands are samples are avail-
able for supervised training; Table 2 shows the re-
sults. RAF achieves strong results across-the-board,
using both base and large pre-trained encoders:
RAFBASE consistently outperforms other base
variants by 0.25-0.5 EM and RAFLARGE com-
paratively achieves the best results on TOPv2.

Model TOPv2 TOP

Type: Autoregressive Modeling (Prior)

RoBERTaBASE 86.62 83.17
RoBERTaLARGE 86.25 82.24
BARTBASE 86.73 84.33
BARTLARGE 87.48 85.71
RINEBASE — 87.14
RINELARGE — 87.57

Type: Non-Autoregressive Modeling (Prior)

RoBERTaBASE 85.78 82.37
+ Span Pointer 86.93 84.45

RoBERTaLARGE 86.25 83.40
+ Span Pointer 87.37 85.07

Type: Scenario Modeling (Ours)

RAFBASE 87.11 86.00
RAFLARGE 87.52 86.14

Table 2: High-Resource Results. Exact Match (EM) on
TOPv2 (Chen et al., 2020b) and TOP (Gupta et al., 2018). We
compare various semantic parsing paradigms: autoregressive,
non-autoregressive, and scenario. RAF achieves strong per-
formance on TOPv2 and TOP, illustrating its competitiveness
with state-of-the-art models.

4.4 Low-Resource Setting

Having established our system is competitive in
high-resource settings, we now turn towards eval-
uating it in low-resource settings, where training
samples are not as readily available. Here, we
chiefly consider two setting types: a high diffi-
culty setting (TOPv2-DA) with 1-10 samples and a
medium difficulty setting (TOPv2-LR) with 100-
1,000 samples. The exact number of samples in a
few-shot training subset depend on both the sub-
set’s cardinality and sampling algorithm.

Tables 3 and 4 show results on the high
and medium difficulty settings, respectively.
RAF achieves competitive results in the
high-difficulty setting, outperforming both
CopyGenBASE and InventoryBASE by large
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alarm music timer weather

CopyGenBASE 47.24 25.58 16.62 47.24
CopyGenLARGE 36.91 23.84 32.64 53.08
InventoryBASE 62.13 23.00 28.92 54.53
InventoryLARGE 67.25 38.68 48.45 61.77
RAFBASE (ours) 62.71 35.47 55.06 61.05

Table 3: High-Difficulty Low-Resource Results. EM on the
1 SPIS split of TOPv2-DA (Desai et al., 2021). Compared to
Inventory and CopyGen baselines, RAF achieves competitive
performance with a fraction of parameter usage.

Weather Domain (SPIS)

10 25 50 100 500 1000

Type: Autoregressive Modeling (Prior)

RoBERTaBASE AR 69.71 74.90 77.02 78.69 — 86.36
BARTBASE AR 73.34 73.35 76.58 79.16 — 86.25
RINEBASE — 74.53 — — 87.80 —
RINELARGE — 77.03 — — 87.50 —

Type: Non-Autoregressive Modeling (Prior)

RoBERTaBASE NAR 59.01 72.12 73.41 78.48 — 87.42
+ Span Pointer 72.03 74.74 74.85 78.14 — 88.47

Type: Scenario Modeling (Ours)

RAFBASE 75.10 78.74 77.53 79.67 87.91 88.17

Table 4: Medium-Difficulty Low-Resource Results. EM
on various SPIS splits of the TOPv2 (Chen et al., 2020b)
weather domain. RAF largely outperforms autoregressive and
non-autoregressive models, trailing RoBERTa-Base + Span
Pointer only in a high-resource split.

margins; notably, on timer, we nearly double
InventoryBASE’s exact match score. RAF also per-
forms well in the medium-difficulty setting; our
system consistently outperforms prior autoregres-
sive, and non-autoregressive models.

4.5 Multilingual Setting

Finally, we consider a multilingual setting, where a
model trained on English samples undergoes zero-
shot transfer to non-English samples. In Table 5,
we see that, compared to XLM-RBASE NAR +
Span Pointer, RAF achieves +2.3 EM averaged
across all 5 non-English languages. Upon inspect-
ing this result more closely, RAF’s performance is
strong across both typologically similar languages
(+4.8 EM on Spanish, +3.5 EM on French) and
distinct languages (+2.7 EM on Hindi and Thai).

5 Ablations and Analysis

We perform model ablations on RAF, removing
core retrieval- and filling-related components we
originally introduced in §3 to better understand the
design decisions. From Tables 6 and Table 7, we
draw the following conclusions:

Negatives are important for accurate scenario
retrieval. The metric learning objective for re-
trieval, as introduced in §3.1.2, precisely delineates
between positive and negative samples. Our ab-
lations show model-based negatives and identity
masking are critical to achieve best performance;
when removing model-based negatives, for exam-
ple, retrieval accuracy drops by 3%+. We also
investigate training RAF with heuristic-based nega-
tives: a simple algorithm which finds top-k similar
scenarios with string-based edit distance (Appendix
C). However, heuristic-based negatives regress both
retrieval-only and end-to-end approach, suggesting
model-based negatives are more informative.

Sharing parameters between retrieval encoders
improves quality. Our retrieval module has two
encoders: an utterance encoder EU and a scenario
encoder ES . An important design decision we
make is tying both encoders’ parameters together
with RoBERTa (Liu et al., 2019); this improves
end-to-end performance by roughly +0.6 EM. We
believe that parameter sharing among retrieval en-
coders improves generalizability: because there are
more vastly more unique utterances than scenar-
ios, the scenario encoder may overfit to a select
set of scenarios, so weight tying enables the joint
optimization of both encoders.

Scenario fusion enables better end-to-end mod-
eling. Because RAF is composed of two neu-
ral modules—the retrieval and filling modules—
chaining them together arbitrarily may result in
information loss. The filling module chiefly uses
scenario token embeddings to reason over the re-
trieval module’s outputs. Our results show that sce-
nario fusion, initializing these embeddings using
the scenario encoder’s final state, improves upon
random init by +0.77 EM and +0.65 EM-S.

Intrinsic representations improve low-resource
performance. When comparing the high-level
scenario representation, we see that canonical (e.g.,
“[IN:GET_WEATHER [SL:LOCATION ]”) under-
performs intrinsic (e.g., “[ intent | get weather [slot
| location ] ]”) by a wide margin (-4.49%) in the tar-
get domain. This implies RAF better understands
scenarios’ natural language descriptions even if
they contain unseen, domain-specific terms. Fur-
thermore, we see leveraging all concepts (hand-
made, automatic, examples) achieves both com-
petitive source and target performance. Even
though excluding handmade improves target perfor-
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Zero-Shot Evaluation

en en→es en→fr en→de en→hi en→th Avg

XLM-RBASE NAR 78.3 35.2 32.2 23.6 18.1 16.7 25.2
+ Span Pointer 83.0 51.2 51.4 42.0 29.6 27.3 40.3

RAFBASE (ours) 81.1 56.0 54.9 40.1 32.1 30.0 42.6

Table 5: Multilingual Results. We perform zero-shot experiments where we fine-tune a parser on English (en), then evaluate it
a non-English language—Spanish (es), French (fr), German (de), Hindi (hi), and Thai (th)—without fine-tuning. Average EM
(Avg) is taken over the five non-English languages. RAF outperforms XLM-R-Base + Span Pointer by +2.3% on average.

Model EM EM-S

Classify and Fill 84.80 87.16
RAFBASE 87.03 89.34

- Hard Negatives 83.69 86.00
- Identity Masking 85.87 88.23
- Scenario Fusion 86.26 88.69
- Parameter sharing 86.76 89.10
- Repr. Sampling 86.70 89.05
+ Heuristic negatives 85.66 89.10

Table 6: Model Ablations. We assess several components
of our model, individually removing them and evaluating EM
(Exact Match) and EM-S (Exact Match of Scenarios, i.e.,
intent-slot templates without slot text) on TOPv2 (Chen et al.,
2020b) validation set.

Source Fine-Tuning Target Fine-Tuning

Model EM EM-S EM EM-S

Canonical Repr. 86.67 88.74 74.25 76.80
Intrinsic Repr. 87.10 89.15 78.74 81.70

- Automatic 87.02 89.06 78.92 81.80
- Handmade 86.85 88.87 79.27 82.29
- Examples 86.91 88.90 78.25 80.89

Table 7: Scenario representation ablation, where the target
domain is a 25 SPIS split of the TOPv2 (Chen et al., 2020b)
weather. Following the typical few-shot fine-tuning method-
ology, we perform source fine-tuning on all domains except
weather and reminder, then perform target fine-tuning on a
specific split.

mance (+0.53%), it regresses source performance
(-0.28%), suggesting sampling all representations
is more generalizable.

Runtime Latency Empirically we find that RAF
retains the runtime latency of Span Pointer, due
to it’s non-autoregressive decoding nature despite
leveraging the retrieval module. We find that the
difference is within 3ms P99 and significantly faster
than the autoregressive counter part (189ms). We
report the full experiment details in A.2.

Interpretablity RAF offers a more interpretable
modeling paradigm Due to (1) RAF encoding utter-
ances and scenarios into a joint embedding space
which we can directly visualize. We present two
case studies leveraging these visualizations: do-

main development (B.1) and error analysis (B.2).
(2) RAF retains modularity of components to iso-
late retrieval vs filling issues. In A.1 we show the
comparisons of retrieval vs filling to highlight po-
tential of each module, in particular on the TOPv2
eval dataset, oracle retrieval improves performance
+9.5% where oracle filling improves performance
+2.3% indicating the importance of retrieval.

5.1 Extra-Scenario Generalization
A core difference between scenario-based and non-
scenario-based (seq2seq; autoregressive or non-
autoregressive) models is that scenario-based mod-
els “know” of all scenarios beforehand, while
seq2seq models do not, and therefore have to purely
rely on generalization. We further quantify the im-
pact that this has by dividing overall EM using two
groups: (1) Known vs. Unknown - i.e scenarios in
the training dataset vs. scenarios only in the test
dataset and (2) In-Domain vs. Out-of-Domain -
scenarios with a supported intent vs. unsupported
intent (e.g., IN:UNSUPPORTED_*).

From the results in Table 8, we draw a couple of
conclusions. First on Unknown EM, even though
Span pointer, BART models are capable of generat-
ing novel scenarios not part of the train set they do
so poorly. RAF does much better on this given the
caveat that it adds the novel scenarios to its frame
index beforehand but it hasn’t seen any paired ut-
terance to them. Second, RAF outperforms on In-
Domain EM but underperforms on Out-of-Domain
EM. Because RAF leverages intrinsic descriptions
of scenarios, the word “unsupported” may not pre-
cisely capture what it means for an utterance to be
in- vs. out-of-domain.

6 Related Work

Scaling Semantic Parsing A critical theme in se-
mantic parsing is reducing data requirements to
stand up new domains and scenarios. Existing
works rely on leveraging large language models
such as BART (Lewis et al., 2020) with augmenta-

437



Model EM Known EM Unknown EM ID EM OOD EM

RAFBASE 87.14 88.30 59.96 88.67 44.11
SpanPointerBASE 86.76 88.50 46.20 88.07 49.70
BARTBASE 86.72 88.33 49.15 88.03 49.69

Table 8: Comparing EM on Known vs. Unknown and In-Domain (ID) vs. Out-of-Domain (OD) frames. RAF
performs better on unknown frames, but struggles with out-of-domain frames.

tions for scaling. In particular Chen et al. (2020b)
introduce a meta-learning approach to improve do-
main scaling in the low-resource setting. Other
works such as (Liu et al., 2021; Zhu et al., 2020;
Mansimov and Zhang, 2021) aim to improve scal-
ing through new decoding formulations. Desai et al.
(2021) introduce the concept of intrinsic modeling
where we provide a human-readable version of the
semantic parsing ontology as context to encoding
to improve few-shot generalization.

Our work leverages the intrinsic modeling
paradigm by building a function R to convert each
intent-slot scenario into a readable representation
via intent slot descriptions and example priming.
Furthermore, our bi-encoder based retrieval setup
allows us to inject additional context into each sce-
nario and cache it to an index in order to retain
inference efficiency.

Retrieval Based Semantic Parsing Finally,
there has been a recent trend towards dense re-
trieval in various NLP domains such as machine
translation (Cai et al., 2021), question answering
(Karpukhin et al., 2020), text generation (Cai et al.,
2019) and language modeling (Borgeaud et al.,
2018). Recent works also introduce retrieval-based
semantic parsing: RetroNLU (Gupta et al., 2021)
and CASPER (Pasupat et al., 2021) both leverage
a retrieval step to provide examples as context to
seq2seq models.

Our approach differs in two ways: (1) We
phrase our problem as utterance-to-scenario re-
trieval rather than utterance-to-utterance retrieval.
This allows us to look into supporting new scenar-
ios with minimal-to-no-data required for retrieval.
(2) Prior work leverage a separate module (Pasu-
pat et al., 2021) or separate iteration (Gupta et al.,
2021) for retrieval. We conduct our retrieval after
encoding but prior to decoding as an intermediate
step for non-autoregressive parsing. This allows
our model to retain similar inference speed to one
shot non-autoregressive decoding despite leverag-
ing retrieval.

7 Conclusion

In this paper, we tackle scenario-based semantic
parsing with retrieve-and-fill (RAF), a coarse-to-
fine model which (a) retrieves a scenario with the
best alignment to an utterance and (b) fills the sce-
nario with utterance spans in leaf positions. Exper-
iments show our model achieves strong results in
high-resource, low-resource, and multilingual set-
tings. The modular nature of our architecture also
lends itself well to interpretability and debuggabil-
ity; we perform several case studies uncovering the
inner-workings of our approach.

8 Limitations

Although RAF has shown promising results on
task oriented parsing, we identify the following
limitations.

Use of Scenario Index Critically we introduce
the scenario based parsing task, a problem where
we assume knowledge of all possible scenarios
across train/test/eval. This new task is inspired by
how domain development usually happens 1)De-
fine scenarios 2) collect and annotate utterances.
While powerful and applicable when grammars and
downstream applications can provide a scenario
index, it prohibits generating novel scenarios or
intent/slot combination that have not been indexed,
where as prior seq2seq approaches are capable of
this. We argue that such generalization is not a
priority in pipelined task oriented assistant systems
as the downstream application usually handles a
set of pre-defined scenarios. Refer to §5.1 for more
analysis/commentary on this.

Training Cost RAF has a high training cost due
to the use of dense retrieval models and model
based negative sampling. While inference is cheap
due to a cached index and non-autoregressive de-
coding. During training, we must compute for-
ward/backward over 2 large encoders (utterance
encoder/scenario encoder) which uses significant

438



memory and prohibits larger batch sizes. Addition-
ally, model based negative samples requires two
training iterations: first with in-batch negatives,
second using the first stage model to identify hard
negative samples from the model.
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Barlas Oğuz, Kushal Lakhotia, Anchit Gupta, Patrick
Lewis, Vladimir Karpukhin, Aleksandra Piktus,
Xilun Chen, Sebastian Riedel, Wen tau Yih, Sonal
Gupta, and Yashar Mehdad. 2021. Domain-matched
pre-training tasks for dense retrieval. arXiv preprint
arXiv:2107.13602.

Panupong Pasupat, Yuan Zhang, and Kelvin Guu. 2021.
Controllable semantic parsing via retrieval augmen-
tation. arXiv preprint arXiv:2110.08458.

Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. 2017. Regularizing
Neural Networks by Penalizing Confident Output
Distributions. In Proceedings of the International
Conference on Learning Representations (ICLR):
Workshop Track.

Subendhu Rongali, Luca Soldaini, Emilio Monti, and
Wael Hamza. 2020. Don’t Parse, Generate! A Se-
quence to Sequence Architecture for Task-Oriented
Semantic Parsing. In Proceedings of the Web Confer-
ence (WWW).

Akshat Shrivastava, Pierce Chuang, Arun Babu, Shrey
Desai, Abhinav Arora, Alexander Zotov, and Ahmed
Aly. 2021. Span Pointer Networks for Non-
Autoregressive Task-Oriented Semantic Parsing. In
Proceedings of the Findings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul Bennett, Junaid Ahmed, and Arnold
Overwijk. 2020. Approximate nearest neighbor neg-
ative contrastive learning for dense text retrieval.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing Dense
Retrieval Model Training with Hard Negatives. arXiv
preprint arXiv:2104.08051.

Qile Zhu, Haidar Khan, Saleh Soltan, Stephen Rawls,
and Wael Hamza. 2020. Don’t Parse, Insert: Multi-
lingual Semantic Parsing with Insertion Based De-
coding. arXiv preprint arXiv:2010.03714.

440

http://arxiv.org/abs/2007.00808
http://arxiv.org/abs/2007.00808


A Analysis

A.1 Retrieval vs. Filling
We now turn towards better understanding the as-
pects our model struggles with. Because RAF
jointly optimizes both the retrieval and filling mod-
ules, one question we pose is whether the retrieval
or filling task is more difficult. We create three
versions of RAF: (1) standard retrieval + standard
filling, (2) oracle retrieval + standard filling, and (3)
standard retrieval + oracle filling. By comparing
models (1), (2), and (3), we can judge the relative
difficulty of each task.

We begin by evaluating these models in a high-
resource setting; on the TOPv2 eval dataset, the
standard model gets 87.03%, retrieval oracle gets
96.56%, and filling oracle gets 89.34%. Here, the
gap between models (1)-(2) is +9.53%, while
the gap between models (1)-(3) is +2.31%, indi-
cating the retrieval module is the main perfor-
mance bottleneck. We also perform experiments
in low-resource and multilingual settings, display-
ing results in Tables 9 and 10, respectively. These
results also confirm the same trend: in both settings,
the retrieval oracle achieves the best performance,
notably achieving +18.3% averaged across 5 multi-
lingual transfer experiments.

Despite retrieval having the most room for im-
provement, we also see some evidence filling strug-
gles in certain multilingual transfer cases; for ex-
ample, providing gold spans can improve en→th
transfer by +16.7%. As such, there is ample op-
portunity for optimizing the retrieval and filling
modules in future work.

A.2 Runtime Latency
We compare the latency of the non-autoregressive
Span Pointer Networks against RAF to show
that there is minimal degradation, despite the
improved generalization from RAF. In order to
measure latency, we measure wall clock time
(ms) of the SpanPointerBASE, RAFBASE, and
AutoregressiveBASE, all models use a 12-layer
RoBERTaBASE encoder with a 1 layer transformer
decoder. We run the benchmark on the TOPv2
source domain evaluation set (17k utterances across
6 domains) on a Tesla V100 GPU, using batch size
of 1. In table 11 we report P50, P90, and P99. Our
results find that there is less than a 3ms in latency
increase in P99 for RAF compared to SpanPointer
due to the non-autoregressive nature, despite lever-
aging our retrieval based model in RAF, and both

models are significantly faster than the autoregres-
sive counter part.

B Visualizations

Because RAF encodes utterances and scenarios
into a joint embedding space, we can directly visu-
alize this space to further understand our models’
inner-workings. We present two case studies: do-
main development (§B.1) and error analysis (§B.2).

B.1 Domain Development
Figure 3 presents an example of performing domain
development on the weather domain. Here, we
train RAF with 4 dataset sizes (0 SPIS, 10 SPIS, 25
SPIS, and 1,000 SPIS) to simulate zero-shot, few-
shot, low-resource, and high-resource settings, re-
spectively. Each utterance (from the high-resource
split) is projected using an utterance encoder and
colored according to its gold scenario. Interestingly,
the zero-shot setting has multiple, apparent clusters,
but the overall performance is poor given many sce-
narios overlap with each other. The clusters spread
further apart as the dataset size increases, suggest-
ing the scenarios become more well-defined.

B.2 Error Analysis
While we have demonstrated how RAF refines the
utterance-scenario space as we increase dataset
size, we now dive deeper into how each space can
be used to further analyze domain semantics. In fig-
ure 4, using our high-resource-trained RAF model,
we create multiple scenario spaces: each utterance
is projected using an utterance encoder and col-
ored according to its predicted frame. We use these
scenario spaces in several debugging exercises:

• Slot Ambiguity: In Figure 4 (a), we in-
vestigate the scenario [IN:CREATE_ALARM
[SL:ALARM_NAME ] [SL:DATE_TIME ]. Here,
we notice a cluster of predictions with the
frame [IN:CREATE_ALARM [SL:DATE_TIME
] missing the [SL:ALARM_NAME ]. These map
to utterances such as “I want to wake up at
7 am” where the annotation has “wake up”
is SL:ALARM_NAME; however, our model does
not identify this. There are other examples,
such as “wake me up at 7 am”, which are an-
notated without SL:ALARM_NAME, leading to
ambiguity of whether or not “wake up” is an
alarm name.

• Incorrect Annotations: In Figure 4 (b), we
investigate the scenario [IN:PLAY_MUSIC
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Weather Domain (SPIS)

0 10 25 50 100 500 1000 Avg

RAFBASE
Standard Retrieval + Standard Filling 26.19 75.10 78.74 77.53 79.67 87.91 88.17 73.33
Oracle Retrieval + Standard Filling 81.68 90.43 92.13 91.97 93.35 95.74 96.27 91.65
Standard Retrieval + Oracle Filling 27.67 77.84 81.70 79.92 81.78 89.88 90.44 75.60

Table 9: Evaluating whether retrieval or filling is the most challenging components of RAF in low-resource settings.
We fine-tune several variants of RAF, using either a standard / oracle retriever and a standard / oracle filler, on
various SPIS splits of the TOPv2 (Chen et al., 2020b) weather domain. RAF with oracle retrieval achieves the best
performance, suggesting utterance→scenario retrieval is the most difficult piece to model.

Zero-Shot Evaluation

en en→es en→fr en→de en→hi en→th Avg

RAFBASE
Standard Retrieval + Standard Filling 81.1 56.0 54.9 40.1 32.1 30.0 42.6
Oracle Retrieval + Standard Filling 91.0 68.9 71.6 67.5 47.5 48.9 60.9
Standard Retrieval + Oracle Filling 83.8 66.5 62.8 45.5 40.2 46.7 52.3

Table 10: Evaluating whether retrieval or filling is the most challenging components of RAF in low-resource settings.
See Table 9 for a description of our methodology; we use MTOP (Li et al., 2021) for evaluation instead.

Figure 3: Visualizing the semantic space for the weather domain as the model is trained on more and more data. We
visualize the index prior to any training (0 SPIS) to low-resource (10, 25 SPIS) and high resource (1000 SPIS). The
graphs are TSNE projections of the utterance vectors used for retrieval color coded by the scenario each utterance
belongs to.

Figure 4: Depicting scenario visualizations, where each is a TSNE projection of utterances belonging to
the specified scenario color coded by the predicted scenario. (A) covers the scenario [IN:CREATE_ALARM
[SL:ALARM_NAME ] [SL:DATE_TIME ] showing a case of ambiguity of alarm names. (B) covers the scenario
[IN:PLAY_MUSIC [SL:MUSIC_TYPE ] where annotations are missing the slot “music type”. (C) covers the scenario
[IN:SET_DEFAULT_PROVIDER_MUSIC [SL:MUSIC_PROVIDER ] showing how our model requires more support
here as the predictions for this scenario span OOD and music domain.
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Model P50 P90 P99

SpanPointerBASE 28.30 29.62 37.78
RAFBASE 28.92 31.40 39.94
AutoregressiveBASE 90.29 155.11 228.92

Table 11: Runtime latency (ms) comparison of
SpanPointerBASE, RAFBASE, and AutoregressiveBASE us-
ing batch size 1 on the TOPv2 source evaluation set.

[SL:MUSIC_TYPE ]. Here, we notice
a cluster of predictions with the frame
[IN:PLAY_MUSIC [SL:MUSIC_GENRE
] [SL:MUSIC_TYPE ] adding the
[SL:MUSIC_GENRE ]. These map to ut-
terances such as “Play 1960s music” where
here the annotation only has “music” as
SL:MUSIC_TYPE, but our model predicts
“1960s” as SL:MUSIC_GENRE. We believe this
is an incorrect annotation in this cluster.

• Underfitting: In Figure 4
(c), we investigate the scenario
[IN:SET_DEFAULT_PROVIDER_MUSIC
[SL:MUSIC_PROVIDER ]. This cluster
is highly diverse, consisting of predic-
tions from other music intents (e.g.,
IN:PLAY_MUSIC) and out-of-domain intents
(e.g., IN:UNSUPPORTED_MUSIC). This sce-
nario may need more data in order to be more
properly defined.

C Heuristic negatives

In order to understand the importance of model
based hard negatives, we develop a simple heuris-
tic to curate a set of hard negative scenarios for each
gold scenario. Our heuristic involves selecting the
top-N scenarios that share the top level intent but
have the lowest Levenshtein edit distance (Leven-
shtein, 1966) compared to the gold scenario. The
full algorithm is described in Algorithm 1.

In §5 and Table 6 we present the full results de-
picting the importance of model based negative
sampling. We show that while our heuristic im-
proves on top of no hard negatives (in-batch neg-
atives only), it still lags behind model based hard
negatives (-1.37%).

D Intrinsic Descriptions

In table 12 we provide brief examples of the various
representation functions used in RAF training.

Algorithm 1 Heuristic-based negative sampling
via edit distance.

1: procedure EDIT DISTANCE NEGATIVES

2: S← all scenarios
3: s*← current scenario
4: Ssame intent ←

Scenarios with the same top level intent as Si
5: heap← min heap of score and structure
6: for Si ∈ Ssame intent do
7: score← LevenshteinDistance(s*, Si)
8: heappush(heap, score, Si)

return heap

In tables 13, 14, 15, and 16 we present the in-
trinsic hand made descriptions used for each in-
tent/slot on TOPv2 (Chen et al., 2020b) and MTOP
(Li et al., 2021) respectively. §3.1.3 describes the
various scenario representations used in full detail.

E Hyperparameters

In this section we describe the hyper parameters
for training our various RAF models.

Architecture Parameters. For our RAF archi-
tectures we leverage a shared RoBERTa (Liu et al.,
2019) or XLM-R (Conneau et al., 2020) encoder
for both the utterance and scenario encoders. We
augment each of these encoders with an additional
projection layer with a hidden dimension of 768
(base models) or 1024 (large models). For our span
pointer decoder we leverage a 1 layer transformer
decoder with the same hidden dimension as the
respective encoder (1L, 768/1024H, 16/24A).

Optimization Parameters. We train our models
with the Adam (Kingma and Ba, 2015) optimizer
along with a warmup and linear decay. We train our
models across 8 GPUs with 32GB memory each.
Additionally we optionally augment our models
with the R3F loss (Aghajanyan et al., 2021) based
on validation set tuning in each setting. To deter-
mine hyperparameters, we conduct hyperparameter
sweeps with 56 iterations each. The hyperparam-
eters for the high resource runs on TOPv2 (Chen
et al., 2020b) are described in Table 17.
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R Type R Example

type-only [ intent [ slot ] ]
automatic-span [ add time timer [ measurement unit ] ]
automatic-type-span [ intent | add time timer [ slot | measurement unit ] ]
automatic-type-span-exs [ intent | add time timer [ slot | measurement unit | sec / min / hr ] ]
curated-span [ add time to timer [ unit of measurement ] ]
curated-type-span [ intent | add time to timer [ slot | unit of measurement ] ]
curated-type-span-exs [ intent | add time to timer [ slot | unit of measurement | sec / min / hr ] ]

Table 12: List of intrinsic representations used for encoding scenarios in RAF.
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Intent Token Description

IN:ADD_TIME_TIMER add time to timer
IN:ADD_TO_PLAYLIST_MUSIC add music to playlist
IN:CANCEL_MESSAGE cancel message
IN:CREATE_ALARM create alarm
IN:CREATE_PLAYLIST_MUSIC create playlist music
IN:CREATE_REMINDER create reminder
IN:CREATE_TIMER create timer
IN:DELETE_ALARM delete alarm
IN:DELETE_REMINDER delete reminder
IN:DELETE_TIMER delete timer
IN:DISLIKE_MUSIC dislike music
IN:GET_ALARM get alarm
IN:GET_BIRTHDAY get birthday
IN:GET_CONTACT get contact
IN:GET_DIRECTIONS get directions
IN:GET_DISTANCE get distance between locations
IN:GET_ESTIMATED_ARRIVAL get estimated arrival time
IN:GET_ESTIMATED_DEPARTURE get estimated departure time
IN:GET_ESTIMATED_DURATION get estimated duration of travel
IN:GET_EVENT get event
IN:GET_EVENT_ATTENDEE get event attendee
IN:GET_EVENT_ATTENDEE_AMOUNT get amount of event attendees
IN:GET_EVENT_ORGANIZER get organizer of event
IN:GET_INFO_CONTACT get info of contact
IN:GET_INFO_ROAD_CONDITION get info of road condition
IN:GET_INFO_ROUTE get info of route
IN:GET_INFO_TRAFFIC get info of traffic
IN:GET_LOCATION get location
IN:GET_LOCATION_HOME get location of my home
IN:GET_LOCATION_HOMETOWN get location of my hometown
IN:GET_LOCATION_SCHOOL get location of school
IN:GET_LOCATION_WORK get location of work
IN:GET_MESSAGE get message
IN:GET_RECURRING_DATE_TIME get recurring date or time
IN:GET_REMINDER get reminder
IN:GET_REMINDER_AMOUNT get amount of reminders
IN:GET_REMINDER_DATE_TIME get date or time of reminder
IN:GET_REMINDER_LOCATION get location of reminder
IN:GET_SUNRISE get info of sunrise
IN:GET_SUNSET get info of sunset
IN:GET_TIME get time
IN:GET_TIMER get timer
IN:GET_TODO get todo item
IN:GET_WEATHER get weather
IN:HELP_REMINDER get help reminder
IN:IGNORE_MESSAGE ignore message
IN:LIKE_MUSIC like music
IN:LOOP_MUSIC loop music
IN:NEGATION negate
IN:PAUSE_MUSIC pause music
IN:PAUSE_TIMER pause timer
IN:PLAY_MUSIC play music
IN:PREVIOUS_TRACK_MUSIC play previous music track
IN:REACT_MESSAGE react to message
IN:REMOVE_FROM_PLAYLIST_MUSIC remove from music playlist
IN:REPLAY_MUSIC replay music
IN:PREVIOUS_TRACK_MUSIC play previous music track
IN:REACT_MESSAGE react to message
IN:REMOVE_FROM_PLAYLIST_MUSIC remove from music playlist
IN:REPLAY_MUSIC replay music
IN:REPLY_MESSAGE reply to message
IN:RESTART_TIMER restart timer
IN:RESUME_TIMER resume timer
IN:SELECT_ITEM select item
IN:SEND_MESSAGE send message
IN:SEND_TEXT_MESSAGE send text message
IN:SET_DEFAULT_PROVIDER_MUSIC set default music provider
IN:SILENCE_ALARM silence alarm
IN:SKIP_TRACK_MUSIC skip music track
IN:SNOOZE_ALARM snooze alarm
IN:START_SHUFFLE_MUSIC start shuffling music
IN:STOP_MUSIC stop music
IN:SUBTRACT_TIME_TIMER subtract time from timer
IN:UNSUPPORTED_ALARM unsupported alarm request
IN:UNSUPPORTED_EVENT unsupported event request
IN:UNSUPPORTED_MESSAGING unsupported messaging request
IN:UNSUPPORTED_MUSIC unsupported music request
IN:UNSUPPORTED_NAVIGATION unsupported navigation request
IN:UNSUPPORTED_TIMER unsupported timer request
IN:UNSUPPORTED_WEATHER unsupported weather request
IN:UPDATE_ALARM update alarm
IN:UPDATE_DIRECTIONS update directions
IN:UPDATE_REMINDER update reminder
IN:UPDATE_REMINDER_DATE_TIMER update date time of reminder
IN:UPDATE_REMINDER_TODO update todo of reminder
IN:UPDATE_TIMER update timer

Table 13: List of intrinsic handmade descriptions for
intents in TOPv2 (Chen et al., 2020b).

Slot Token Description

SL:AGE age of person
SL:ALARM_NAME alarm name
SL:AMOUNT amount
SL:ATTENDEE attendee
SL:ATTENDEE_ADDED attendee to be added
SL:ATTENDEE_EVENT attendee of event
SL:ATTENDEE_REMOVED attendee to be removed
SL:ATTRIBUTE_EVENT attribute of event
SL:BIRTHDAY birthday
SL:CATEGORY_EVENT category of event
SL:CATEGORY_LOCATION category of location
SL:CONTACT contact
SL:CONTACT_RELATED contact related
SL:CONTENT_EMOJI content text with emoji
SL:CONTEnT_EXACT content text
SL:DATE_TIME date or time
SL:DATE_TIME_ARRIVAL date or time of arrival
SL:DATE_TIME_BIRTHDAY date or time of birthday
SL:DATE_TIME_DEPARTURE date or time of departure
SL:DATE_TIME_NEW new date or time
SL:DATE_TIME_RECURRING recurring date or time
SL:DESTINATION travel destination
SL:DURATION duration
SL:FREQUENCY frequency
SL:GROUP group
SL:JOB job
SL:LOCATION location
SL:LOCATION_CURRENT current location
SL:LOCATION_HOME location of my home
SL:LOCATION_MODIFIER location modifier
SL:LOCATION_USER location of user
SL:LOCATION_WORK location of work
SL:MEASUREMENT_UNIT unit of measurement
SL:METHOD_RETRIEVAL_REMINDER method of retrieving reminder
SL:METHOD_TIMER method of timer
SL:METHOD_TRAVEL method of traveling
SL:MUSIC_ALBUM_TITLE title of music album
SL:MUSIC_ARIST_NAME name of music artist
SL:MUSIC_GENRE genre of music
SL:MUSIC_PLAYLIST_TITLE title of music playlist
SL:MUSIC_PROVIDER_NAME name of music provider
SL:MUSIC_RADIO_ID id of music radio
SL:MUSIC_TRACK_TITLE title of music track
SL:MUSIC_TYPE type of music
SL:MUTUAL_EMPLOYER mutual employer
SL:MUTUAL_LOCATION mutual location
SL:MUTUAL_SCHOOL mutual school
SL:NAME_APP name of app
SL:NAME_EVENT name of event
SL:OBSTRUCTION_AVOID obstruction to avoid
SL:ORDINAL ordinal
SL:ORGANIZER_EVENT obstruction to avoid
SL:ORDINAL ordinal
SL:ORGANIZER_EVENT organizer of event
SL:PATH path
SL:PATH_AVOID path to avoid
SL:PERIOD time period
SL:PERSON_REMINDED person to be reminded
SL:PERSON_REMINDED_ADDED added person to be reminded
SL:PERSON_REMINDED_REMOVED removed person to be reminded
SL:POINT_ON_MAP point on map
SL:RECIPIENT message recipient
SL:RECURRING_DATE_TIME recurring date or time
SL:RECURRING_DATE_TIME_NEW new recurring date or time
SL:RESOURCE resource
SL:ROAD_CONDITION road condition
SL:ROAD_CONDITION_AVOID road condition to avoid
SL:SEARCH_RADIUS search radius
SL:SENDER message sender
SL:SOURCE travel source
SL:TAG_MESSGE tag of message
SL:TIMER_NAME timer name
SL:TIME_ZONE time zone
SL:TODO todo item
SL:TODO_NEW new todo item
SL:TYPE_CONTACT contact type
SL:TYPE_CONTENT content type
SL:TYPE_INFO info type
SL:TYPE_REACTION reaction type
SL:TYPE_RELATION relation type
SL:UNIT_DISTANCE unit of distance
SL:WAYPOINT waypoint
SL:WAYPOINT_ADDED waypoint to be added
SL:WAYPOINT_AVOID waypoint to avoid
SL:WEATHER_ATTRIBUTE weather attribute
SL:WEATHER_TEMPERATURE_UNIT unit of temperature

Table 14: List of intrinsic handmade descriptions for
slots in TOPv2 (Chen et al., 2020b).
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Intent Token Description

IN:FOLLOW_MUSIC follow music
IN:GET_JOB get job
IN:GET_GENDER get gender
IN:GET_UNDERGRAD get undergrad education
IN:GET_MAJOR get college major
IN:DELETE_PLAYLIST_MUSIC delete playlist
IN:GET_EDUCATION_DEGREE get education degree of person
IN:GET_AGE get age of person
IN:DISPREFER dislike item
IN:RESUME_MUSIC resume music
IN:QUESTION_MUSIC question about music
IN:CREATE_CALL create a caoo
IN:GET_AIRQUALITY get airquality
IN:GET_CALL_CONTACT get contact for caller
IN:SET_UNAVAILABLE set status to unavailable
IN:END_CALL end call
IN:STOP_SHUFFLE_MUSIC stop shuffle of music
IN:PREFER prefer item
IN:GET_LANGUAGE get language
IN:SET_AVAILABLE set available
IN:GET_GROUP get group
IN:ANSWER_CALL answer call
IN:GET_CONTACT_METHOD get method to contact
IN:UPDATE_METHOD_CALL update method of call
IN:GET_ATTENDEE_EVENT get attendee for event
IN:UPDATE_CALL update call
IN:GET_LIFE_EVENT get life event
IN:REPEAT_ALL_MUSIC repeat all music
IN:GET_EDUCATION_TIME get education time
IN:QUESTION_NEWS question about news
IN:GET_EMPLOYER get employer
IN:IGNORE_CALL ignore call
IN:REPEAT_ALL_OFF_MUSIC turn of repeat
IN:UNLOOP_MUSIC turn loop off
IN:SET_DEFAULT_PROVIDER_CALLING set default provider for calling
IN:GET_AVAILABILITY get avalability of contact
IN:HOLD_CALL hold call
IN:GET_LIFE_EVENT_TIME get time of life event
IN:SHARE_EVENT share event
IN:CANCEL_CALL cancel call
IN:SET_RSVP_YES set rsvp to yes
IN:PLAY_MEDIA play media
IN:GET_TRACK_INFO_MUSIC get information about the current track
IN:GET_DATE_TIME_EVENT get the date time of the event
IN:SET_RSVP_NO set rsvp to no
IN:MERGE_CALL marge call
IN:UPDATE_REMINDER_LOCATION update the location of the reminder
IN:GET_MUTUAL_FRIENDS get mutual friends
IN:GET_MESSAGE_CONTACT get information about message contact
IN:GET_LYRICS_MUSIC get lyrics about the song
IN:GET_INFO_RECIPES get information about recipe
IN:GET_DETAILS_NEWS get news details
IN:GET_EMPLOYMENT_TIME get employment time
IN:GET_RECIPES get a recipe
IN:GET_CALL get call
IN:GET_CALL_TIME get time of the call
IN:GET_CATEGORY_EVENT get the category of the event
IN:RESUME_CALL resume the call
IN:IS_TRUE_RECIPES ask question about recipes
IN:SET_RSVP_INTERESTED set rsvp to interested
IN:GET_STORIES_NEWS get news stories
IN:SWITCH_CALL switch call
IN:REWIND_MUSIC rewind the song
IN:FAST_FORWARD_MUSIC forward the song

Table 15: List of intrinsic handmade descriptions for
intents in MTOP (Li et al., 2021).

Slot Token Description

SL:GENDER gender of person
SL:RECIPES_TIME_PREPARATION time to prepare recipe
SL:RECIPES_EXCLUDED_INGREDIENT exclude ingredient for recipe
SL:USER_ATTENDEE_EVENT attendee of event
SL:MAJOR major
SL:RECIPES_TYPE type of recipe
SL:SCHOOL school
SL:TITLE_EVENT title of event
SL:MUSIC_ALBUM_MODIFIER type of album
SL:RECIPES_DISH recipe dish
SL:NEWS_TYPE type of news
SL:RECIPES_SOURCE source of recipe
SL:RECIPES_DIET diet of recipe
SL:RECIPES_UNIT_NUTRITION nutrition unit of recipe
SL:MUSIC_REWIND_TIME time to rewind music
SL:RECIPES_TYPE_NUTRITION nutrition type of recipe
SL:CONTACT_METHOD method to contact
SL:SIMILARITY similarity
SL:PHONE_NUMBER phone number
SL:NEWS_CATEGORY category of news
SL:RECIPES_INCLUDED_INGREDIENT ingredient in recipe
SL:EDUCATION_DEGREE education degree
SL:RECIPES_RATING rating of recipe
SL:CONTACT_REMOVED removed contact
SL:NEWS_REFERENCE news reference
SL:METHOD_RECIPES method of recipe
SL:LIFE_EVENT life event
SL:RECIPES_MEAL recipe meal
SL:NEWS_TOPIC news topic
SL:RECIPES_ATTRIBUTE recipe attribute
SL:EMPLOYER employer
SL:RECIPES_COOKING_METHOD cooking method of recipe
SL:RECIPES_CUISINE cuisine of recipe
SL:MUSIC_PLAYLIST_MODIFIER music playlist modifier
SL:RECIPES_QUALIFIER_NUTRITION nutrition qualifier of recipe
SL:METHOD_MESSAGE method to send message
SL:RECIPES_UNIT_MEASUREMENT unit of measurement in recipe
SL:CONTACT_ADDED added contact
SL:NEWS_SOURCE news source

Table 16: List of intrinsic handmade descriptions for
slots in MTOP (Li et al., 2021).
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Parameter RAF Models

RoBERTaBASE RoBERTaLARGE XLM-RBASE

Params 134M 372M 288M
Epochs 40
Optimizer Adam
Weight Decay 0.01
ϵ 1e-8
Warmup Period (steps) 1000
Learning Rate Scheduler Linear Decay
Learning Rate 0.00002 0.00003 0.00002
Batch Size 40 12 16
Sampled Negatives 1 1 1
βLRetrieval 2.69 4 2.69
LfillingLabel Smoothing Penalty 0.2
# GPU 8
GPU Memory 32GB 32GB 32GB

Table 17: Hyperparameter values for RAF architectures.
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