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Abstract

Sign language gloss translation aims to trans-
late the sign glosses into spoken language texts,
which is challenging due to the scarcity of la-
beled gloss-text parallel data. Back-translation
(BT), which generates pseudo parallel data by
translating in-domain spoken language texts
into sign glosses, has been applied to alleviate
the data scarcity problem. However, the lack
of large-scale high-quality in-domain spoken
language text data limits the effect of BT. In
this paper, to overcome the limitation, we pro-
pose a Prompt based domain text Generation
(PGEN) approach to produce the large-scale
in-domain spoken language text data. Specifi-
cally, PGEN randomly concatenates sentences
from the original in-domain spoken language
text data as prompts to induce a pre-trained lan-
guage model (i.e., GPT-2) to generate spoken
language texts in similar style. Experimental
results on three benchmarks of sign language
gloss translation in varied languages demon-
strate that BT with spoken language texts gen-
erated by PGEN significantly outperforms the
compared methods. In addition, as the scale
of spoken language texts generated by PGEN
increases, the BT technique can achieve further
improvements, demonstrating the effectiveness
of our approach. We release the code and data
for facilitating future research in this field1.

1 Introduction

Sign language is the dominant form of communica-
tion for the deaf and hearing impaired community.
Sign language processing has received substantial
attention in the last few years and achieved signifi-
cant progress (Bragg et al., 2019; Yin et al., 2021;
Shterionov, 2021; De Coster et al., 2022). Among

∗Jinhui Ye and Wenxiang Jiao contributed equally to this
work. Work was mainly done when Jinhui Ye was interning at
Tencent AI Lab.

†Xing Wang is the corresponding author.
1Code and data are available at https://github.com/

Atrewin/PGen.
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Figure 1: The translation performance of back-
translation when scaling the generated spoken language
data from 1) our PGEN which uses the large pretrained
language model, and 2) selected in-domain data from
large-scale spoken language corpus. The red dashed
line denotes the baseline model without back-translation.
Best viewed in color.

them, sign language translation (SLT) aims to trans-
form continuous sign language videos into natural
spoken language texts (Bungeroth and Ney, 2004;
Camgoz et al., 2018). SLT consists of two sub-
tasks: (1) sign language understanding task that
recognizes the continued videos to the sign glosses;
and (2) spoken language gloss translation (SLGT)
task that generates the spoken language text of the
given sign glosses. In this work we focus on the
second sub-task, i.e., SLGT.

Data scarcity has been considered the ma-
jor limitation of sign language gloss transla-
tion (Moryossef et al., 2021; Zhang and Duh,
2021). To alleviate the data scarcity problem, back-
translation (Sennrich et al., 2016), which trans-
lates in-domain spoken language texts into sign
glosses to construct synthetic parallel data, has
been adopted and achieved certain success in SLGT.
However, the lack of large-scale high-quality in-
domain spoken language text data limits the capa-
bility of back-translation for the SLGT task (Zhang
and Duh, 2021). The common practice is adopt-
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ing data selection (Axelrod et al., 2011), or data
mining (Jiang et al., 2009) approaches to obtain
in-domain data. But theses approaches assume the
availability of enough in-domain data or expert
knowledge (e.g., language background to mine the
in-domain data in a specific language), which pre-
vents them from applying to gloss translation task
that has broader scenarios (e.g., more languages
and domains).

In this work, we propose a Prompt-based do-
main text Generation (PGEN) to generate large-
scale high-quality in-domain spoken language text
data, motivated by the advances in data augmenta-
tion with pretrained language models (PLMs). The
main idea is to induce the large PLMs to mimic
the style of original spoken language texts with
prompt-based learning techniques (Radford et al.,
2019; Liu et al., 2021). Our PGEN approach is able
to generate large-scale in-domain spoken language
texts based on the small-scale original monolingual
texts and maintains diversity (§2.1). Besides, our
approach can be performed without requiring large-
scale in-domain data or expert knowledge of the
sign language domain and maintain the high qual-
ity of generated in-domain spoken language texts.
Finally, we employ a sequence-sequence pretrained
model (e.g, mT5) to translate spoken language texts
generated by PGEN into sign glosses and synthe-
size gloss-text pseudo-parallel data (§2.2).

We conduct extensive analyses of the spoken
language texts generated by PGEN. We find that
the generated and original spoken language texts
share a similar word distribution (§3.2). To further
verify the effectiveness of PGEN, we also conduct
back-translation experiments for the SLGT task
with large-scale in-domain spoken language texts
generated by PGEN (§3.3). Experimental results
on three widely used benchmark datasets across
languages and domains show that back-translation
with spoken language texts generated by PGEN

significantly outperforms the compared methods.
Most importantly, as shown in Figure 1, when scal-
ing the spoken language texts generated by PGEN

in BT approach, the performance of the gloss-to-
text translation task can achieve constant improve-
ment while conventional data selection approach
failed. The contributions of our work are summa-
rized as follows:

• We propose a novel text generation approach,
i.e., PGEN, to produce large-scale in-domain
spoken language texts which share similar lin-

guistic properties as the original spoken lan-
guage texts.

• We scale back-translation with the proposed
PGEN approach and achieve significant and
consistent improvements on three benchmark
SLGT datasets.

• We release the code and the large-scale syn-
thetic gloss-text datasets produced by the pro-
posed approach to promote the research in
sign language gloss translation field.

2 Methodology

The whole framework of this work includes two
components, i.e., the PGEN method for in-domain
text generation and the BT model (i.e., text-to-gloss
translation) for constructing synthetic data. We will
introduce more details for these two components in
this section. For clarity, we provide the definition
of SLGT (i.e., gloss-to-text translation task) and
notations used throughout the paper as below.

Task Definition. Let X and Y denote the gloss
annotations and spoken language texts, and X and
Y represent the sentence sets of corresponding lan-
guages. The dataset of gloss-text pairs can be ex-
pressed as Dg2t = {(xi,yi)}Ni=1, where xi ∈ X
is the annotations, yi ∈ Y is the spoken language
sentence and N is the number of pairs. Given a
sequence of gloss annotations, the task is to output
the corresponding fluent and semantically equiva-
lent sentence.

2.1 Prompt-Based Domain Text Generation

We exploit the large PLMs for domain text genera-
tion. Large PLMs have been successfully applied
for text generation in NLP, such as text classifi-
cation (Kumar et al., 2020) and medical dialogue
summarization (Chintagunta et al., 2021), for two
advantages: (1) PLMs are demonstrated to mem-
orize the knowledge of their training data (Car-
lini et al., 2021), which usually covers different
domains. With proper guidance (e.g., prompts),
we can export the memorized sentences that be-
long to the same domain as the sign language
text data. (2) Large PLMs are also able to gen-
erate abundant new sentences rather than only the
memorized sentence in training data (Qiu et al.,
2020). Therefore, we propose the Prompt-based
domain text Generation (PGEN) approach to pro-
duce large-scale in-domain spoken language text
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Figure 2: The overall framework of back-translation for gloss-to-text translation in this work. Procedures framed in
the red dashed box corresponds to our prompt-based domain text generation (PGEN) approach.

corpora based on the text part of the original small-
scale dataset Dg2t.

For the original text Dt = {yi}Ni=1 from Dg2t,
and a PLM MG, we attempt to generate an
in-domain spoken language text dataset D̂t =
{ŷi}Mi=1 with a much larger data size than Dt (i.e.,
M ≫ N ). As shown in Figure 2, our PGEN ap-
proach includes two phases:

• Prompt Tuning: Following (Kumar
et al., 2020), we finetune the PLM on the
original small-scale spoken text dataset
Dt with artificial prompts. Specifi-
cally, we randomly concatenate k sen-
tences from Dt as a training sample, i.e.,
[yi1 ; [SEP];yi2 ; [SEP]; . . . ;yik ; [EOS]], where
[SEP] and [EOS] represent the delimiter and
the end-of-sentence tokens, respectively. We
denote the finetuned PLM as MGFT

.

• Prompt-Based Generation: In the genera-
tion phase, we randomly select k−1 sentences
from Dt to form a prompt, i.e., prompt =
[yj1 ; [SEP];yj2 ; [SEP]; . . . ;yjk−1 ; [SEP]].
Then, we input the prompt into
MGFT

to generate the k-th sentence
ŷjk = MGFT

(prompt). We complete the
text generation process when the model
produces an [EOS] token.

According to the design of prompts, the number of
permutations for any k − 1 sentences from the full
set with N sentences is Ak−1

N = N !
(N−k−1)! ≫ N ,

which allows us to generate a large number of in-
domain sentences and maintain the diversity of D̂t.

2.2 Back-Translation

Generally, the BT model is trained on the same
dataset for the gloss-to-text task but in the opposite
direction, i.e., Dt2g = {(yi,xi)}Ni=1. However, the
data scale of Dt2g is too small to develop a well-
performing text-to-gloss translation model. Previ-
ous study (Hoang et al., 2018) on machine trans-
lation also suggests that the quality of BT models
heavily affects the performance of the final mod-
els. Therefore, we take advantage of pretrained
sequence-to-sequence models by finetuning them
on Dt2g to improve the performance of the BT
model. Specifically, we utilize a multilingual pre-
trained model, i.e., mT5 (Xue et al., 2020), to sup-
port the different languages (i.e., German, Chinese
and English) of the SLT benchmarks.

2.3 Overall Framework

The workflow of our approach is illustrated in
Figure 2, which is divided into four steps: (1.1)
finetune the pretrained GPT-2 model on the origi-
nal small-scale spoken language text dataset; (1.2)
apply the finetuned GPT-2 model for in-domain
spoken language texts generation with artificial
prompts; (2.1) finetune the pretrained sequence-
to-sequence model (i.e., mT5) on the original
text-gloss dataset Dt2g to obtain the BT model;
(2.2) adopt the BT model to translate the gener-
ated in-domain spoken language texts into glosses
to synthesize a large-scale pseudo-parallel data,
which are combined with the original small-scale
dataset Dg2t to train the final gloss-to-text transla-
tion model.
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Dataset Language Pair Gloss-Text Pairs

Phoenix2014T DSL-German 7,086 / 519 / 642
CSL-Daily CSL-Chinese 18,401 / 1,077 / 1,176
ASLG-PC12 ASL-English 82,709 / 4,000 / 1,000

Table 1: Statistics of the three benchmark datasets for
gloss-to-text translation used in this work. The third
column presents the number of gloss-text pairs in the
training, validation and test sets, respectively.

3 Experiments

In this section, we conduct both intrinsic and ex-
trinsic evaluations (Kumar et al., 2020) for the
proposed PGEN approach. For intrinsic evalua-
tion (§3.2), we perform analyses on the domain
properties of spoken language texts generated by
PGEN. As for extrinsic evaluation (§3.3), we con-
duct sign gloss translation experiments using back-
translation approach with the generated texts. The
performance of the downstream task can indirectly
reflect the effectiveness of PGEN.

3.1 Experimental Setup

Dataset. We employ three widely used bench-
mark datasets for sign language translation,
namely, Phoenix2014T (Camgoz et al., 2018),
CSL-Daily2 (Zhou et al., 2021a), and ASLG-
PC123 (Othman and Jemni, 2012), which are in
German, Chinese and English, respectively. Statis-
tics of the datasets are presented in Table 1.

Model. As shown in Figure 2, there are three
kinds of models involved in this work for 1) in-
domain text generation, 2) gloss-to-text translation
and 3) back-translation, respectively. Details of the
model and training settings can be found in §3.2 ,
§3.3 and Appendix A.1.

3.2 Domain Text Generation

We perform intrinsic evaluation by analyzing the
domain properties of spoken language texts gen-
erated by PGEN. Unless otherwise stated, we
primarily conduct the analyses on the German
Phoenix2014T dataset. More results on ASLG-
PC12 and CSL-Daily datasets can be found in Ap-
pendix A.3.

We first adopt the pre-trained GPT-2 model (e.g.,
German GPT-24 for Phoenix2014T) and finetune

2http://home.ustc.edu.cn/~zhouh156/dataset/
csl-daily/

3https://github.com/kayoyin/transformer-slt
4https://huggingface.co/dbmdz/german-gpt2
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Figure 3: The word frequency distribution on different
types of spoken language texts. The X-axis represents
different words, while the Y-axis represents the normal-
ized word frequency. Best viewed in color. Analyses is
conducted on the German Phoenix2014T

the model on the artificial prompts created from the
text part of SLT dataset. Specifically, the PLM is
finetuned to predict the next token in the exact way
that GPT-2 was pretrained, with the same training
procedure and hyper-parameters. Then, we use
the finetuned PLM to generate in-domain spoken
language texts for each SLT task (§2.1). By default,
we set the hyper-parameter k to 20.

For comparison, we consider four types of spo-
ken language texts:

• TEXT-AUTHENTIC: The text side of the SLT
dataset.

• TEXT-PGEN: The spoken language texts gen-
erated by our PGEN approach with k = 20.

• TEXT-SELECTED: We use the cross-entropy
difference selection method (Moore and
Lewis, 2010) to collect in-domain texts data
from IWSLT17 Multilingual Task5 based on
the AUTHENTIC texts.

• TEXT-GENERAL: We randomly sample sen-
tences from the target text part of IWSLT17
Multilingual Task. TEXT-GENERAL can be
considered as the general domain spoken lan-
guage texts.

We measure the similarity of the other three spo-
ken language texts to the TEXT-AUTHENTIC at
both word level and sentence level.

Word Distribution. Recent study by Wang et al.
(2022) suggests that the word frequency distribu-
tions can reflect the domain difference of datasets.

5https://sites.google.com/site/
iwsltevaluation2017/TED-tasks
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Data JS↓
TEXT-PGEN vs. TEXT-AUTHENTIC 0.01
TEXT-SELECTED vs. TEXT-AUTHENTIC 0.18
TEXT-GENERAL vs. TEXT-AUTHENTIC 0.26

Table 2: The JS divergence between different types of
spoken language texts for Phoenix2014T dataset.

Thus, we count the word frequencies for the above
four spoken language texts and present the re-
sults by both visualization and the Jensen-Shannon
(JS) divergence (Lin, 1991). For a fair compar-
ison, we sample the same number of texts from
the other three spoken language texts as TEXT-
AUTHENTIC (i.e., 7086 for Phoenix2014T).

Figure 3 visualizes the word frequency dis-
tributions of top 10000, in which the words
are ranked according to their frequencies in the
TEXT-AUTHENTIC corpus. We can observe that
TEXT-PGEN (blue line) shows a similar distri-
bution as TEXT-AUTHENTIC (red line) while
TEXT-SELECTED and TEXT-GENERAL differ from
TEXT-AUTHENTIC significantly. This result quali-
tatively shows that the spoken language texts gen-
erated by our PGEN approach are more close to the
domain of TEXT-AUTHENTIC (e.g. the domain of
sign language).

To quantitatively measure the distance between
these distributions, we compute the JS divergence
expressed as:

JS (P ||Q) =
1

2

(
KL(P ||P +Q

2
) + KL(Q||P +Q

2
)

)
,

where KL(·||·) denotes the Kullback–Leibler diver-
gence (Kullback and Leibler, 1951) of two distribu-
tions (i.e., P and Q). Table 2 lists the JS divergence
from the other three corpora to TEXT-AUTHENTIC.
We find that the JS divergence from TEXT-PGEN

to TEXT-AUTHENTIC is much smaller than the oth-
ers, further demonstrating that the spoken language
texts generated by PGEN are closer to the domain
of TEXT-AUTHENTIC. These demonstrate the ef-
fectiveness and generalizability of the proposed
PGEN approach.

Domain Classifier. The word frequency distribu-
tion only characterizes one aspect of the domain.
More features, for example, the styles of texts, can
not be explicitly modeled. Thus, we follow Du et al.
(2020) to train a domain classifier to distinguish
the in-domain and the general domain data with

Test Data In-domain General

TEXT-AUTHENTIC 99.38% 0.62%
TEXT-PGEN 98.60% 1.40%
TEXT-SELECTED 56.23% 43.77%
TEXT-GENERAL 0.31% 99.69%

Table 3: The domain classification results of different
spoken language texts on Phoenix2014T dataset.

the consideration of all potential features implic-
itly. We perform a binary classification task with
equal examples (i.e., train/valid as 7086/519) from
TEXT-GENERAL and TEXT-AUTHENTIC, respec-
tively. To train the domain classifier, we finetune
the German BERT6 on the above dataset (Sun et al.,
2019). Specifically, we use the German BERT to
encode the input sentence and feed the [CLS] token
vector as a reasonable sentence embedding to the
domain discriminator. For testing, we also sam-
ple the same number of examples from the other
three spoken language text corpora as the test set
of TEXT-AUTHENTIC (i.e., 642) and predict their
domains (i.e., general or in-domai).

The results are listed in Table 3. We observe that
the domain classifier successfully predicts the true
labels of TEXT-AUTHENTIC and TEXT-GENERAL,
indicating the significant domain differences be-
tween sign language spoken texts and general spo-
ken language texts. As for TEXT-PGEN, the ex-
amples are categorized into authentic texts with
very high accuracy (i.e., 98.60%), while the value
is much lower for TEXT-SELECTED (i.e., 56.23%).
These results again demonstrate that our PGEN

approach can produce better in-domain spoken lan-
guage texts than the compared methods.

3.3 Sign Language Gloss Translation

We perform extrinsic evaluation for the proposed
PGEN by applying back-translation with the gen-
erated spoken language texts to the sign language
gloss translation task. For the different SLT tasks in
1, we adopt the corresponding German7, Chinese8

and English9 GPT-2 models to generate in-domain
spoken language texts with PGEN.

For the gloss-to-text translation task, we follow

6https://huggingface.co/
bert-base-german-cased

7https://huggingface.co/dbmdz/german-gpt2
8https://huggingface.co/uer/

gpt2-chinese-cluecorpussmall
9https://huggingface.co/gpt2
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Dev Set Test Set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Phoenix2014T
Camgoz et al. (2018) 44.40 31.83 24.61 20.16 44.13 31.47 23.89 19.26
Camgoz et al. (2020b) 50.69 38.16 30.53 25.35 48.90 36.88 29.45 24.54
Yin and Read (2020) 49.05 36.20 28.53 23.52 47.69 35.52 28.17 23.32
Transformer 43.05 32.57 25.50 20.81 43.71 33.40 26.45 21.73

+ Scaling BT(General) 43.52 32.42 25.30 20.62 42.68 32.06 25.09 20.40
+ Scaling BT(Selected) 44.20 33.02 25.86 21.06 44.29 33.25 25.97 21.09
+ Scaling BT(PGen) 48.68 37.94 30.58 25.56 48.30 37.59 30.32 25.54

ASLG-PC12
Yin and Read (2020) 92.67 88.72 85.22 81.93 92.88 89.22 85.95 82.87
Transformer 91.85 87.53 83.73 80.19 92.04 88.07 84.56 81.25

+ Scaling BT(General) 91.59 87.43 83.81 80.45 91.97 88.19 84.89 81.79
+ Scaling BT(PGen) 93.23 88.91 85.63 82.04 93.51 89.74 86.55 83.35

CSL-Daily
Transformer 49.63 35.62 25.52 18.64 49.41 35.57 25.55 18.72

+ Scaling BT(General) 54.66 39.80 29.23 21.78 54.07 39.34 28.99 21.75
+ Scaling BT(PGen) 60.48 46.92 36.95 29.72 60.21 46.76 36.90 29.75

Table 4: Gloss-to-text translation performance on Phoenix2014T, ASLG-PC12 and CSL-daily. "+ Scaling
BT(PGen)" represents that training data is increased by 40 times with BT, in which the monolingual is gen-
erated by our PGen approach.

Yin and Read (2020) to train a Transformer model
with 2 encoder layers and 2 decoder layers. For
back-translation, we first finetune the mT5 pre-
trained model on the authentic text-gloss parallel
data and then use it to translate the collected spoken
language texts (sampled from TEXT-PGEN, TEXT-
SELECTED or TEXT-GENERAL) into glosses. Fol-
lowing Wu et al. (2019), we train the Transformer
model on the combination of the authentic and
synthetic parallel data, and then finetune it on the
authentic gloss-to-text parallel data.

For evaluation, we follow previous studies (Cam-
goz et al., 2018, 2020b; Zhou et al., 2021a) to eval-
uate the performance of gloss-to-text translation
with BLEU score (Papineni et al., 2002), ROUGE-
L (Lin, 2004), and METEOR (Banerjee and Lavie,
2005) scores. Specifically, we report the BLEU-
1,2,3,4 scores to reflect the translation quality at
different phrase levels.

Table 4 lists the main results of the gloss-to-
text translation performance on the Phoenix2014T,
ASLG-PC12 and CSL-daily datasets. By scaling
the BT synthetic data to 40 times of the authentic
parallel data with the different types of spoken text
data, TEXT-PGEN (i.e., “+ Scaling BT(PGen)”)
improves the performance over the baseline Trans-
former model significantly and consistently (e.g.,

up to 11.03 BLEU-4 points on CSL-daily), while
TEXT-GENERAL and TEXT-SELECTED only im-
prove slightly or even hurt the performances (e.g.,
down to 1.33 BLEU-4 points on Phoenix2014). We
also report the translation performance in terms of
ROUGE-L and METEOR in Appendix A.4. These
demonstrate the effectiveness and generalizability
of the proposed PGEN approach.

4 Analysis

To gain a deeper understanding on our PGEN ap-
proach, we conduct extensive analyses in terms of
ablation study and translation outputs.

4.1 Ablation Study

We conduct three ablation studies regarding the
prompt length, the back-translation model and
the scale of synthetic data on the Phoenix2014T
dataset. We introduce more details as below:

Prompt Length. We first investigate the impact
of the prompt length k on the gloss-to-text transla-
tion task, which decides how many sentences are
concatenated as prompts for generation via PGEN.
Specifically, we increase k from 0 to 35 to induce
the PLM to generate in-domain spoken language
texts with a data size 5 times of the authentic par-
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Text-to-Gloss Dev Set Gloss-to-Text Dev Set
BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-1 BLEU-2 BLEU-3 BLEU-4

Transformer – – – – 43.05 32.57 25.50 20.81
+ BT Model SC 57.72 39.41 27.86 19.66 44.80 34.33 27.47 22.86
+ BT Model mT5 59.78 43.70 32.58 25.01 46.87 35.95 28.59 23.54

Table 5: Translation performance with different back-translation models on text-to-gloss and gloss-to-text tasks.
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Figure 4: Gloss-to-text translation performance with
respect to different prompt sizes. The X-axis represents
the number of sentences in one prefix, while the Y-axis
represents the BLEU-4 score.

allel data. Then, we perform back-translation with
the generated spoken language texts on the gloss-
to-text translation task, individually. The results
are shown in Figure 4, in which we observe that the
performance of gloss-to-text translation constantly
improves with the increase of prompt length. This
is because a larger prompt length can provide more
domain signals so as to encourage the generation
of higher-quality spoken language texts with closer
domain and higher diversity (see Appendix A.2).
However, the larger prompt length requires more
computation memory, slowing down the generation
process. Therefore, we set the prompt length to 20
throughout the work for a good tradeoff between
the generation quality and the computation costs.

Back-Translation Model. In §2.2, we state that
the quality of BT models heavily affects the per-
formance of final models. To validate this claim,
we compare two back-translation models: a Trans-
former model trained from scratch (i.e., “+ BT
Model SC”) and the finetuned mT5 (Xue et al.,
2020) model (i.e., “+ BT Model mT5”). As shown
in the left of Table 5, the finetuned mT5 model pro-
duces higher-quality pseudo parallel data according
to BLEU scores on the validation set of the text-to-

gloss translation (i.e., back-translation) task. Con-
sequently, the performance of gloss-to-text transla-
tion is considerably improved when synthesizing
data by “+ BT Model mT5”, which reconfirms our
claim. Therefore, throughout this work, we adopt
the finetuned mT5 model for back-translation.

Scale of Synthetic Data. In §2.1, we show the
potential of PGEN in generating large-scale in-
domain spoken language texts. Let us recap Fig-
ure 1, where we increase the scale of spoken lan-
guage texts used for back-translation. We observe
that scaling the spoken language texts generated by
PGEN can improve the performance of the gloss-
to-text translation task consistently while that by
retrieval degrades the performance. It suggests that
our approach can scale the BT technique to play its
maximum effect for gloss-to-text translation, which
has not been achieved in previous studies.

4.2 Translation Output

We conduct further analyses to understand how the
proposed approach improves the gloss-to-text trans-
lation quality. Specifically, we analyze the trans-
lation outputs of Phoenix2014 in Table 4 by the
compare-mt10 toolkit in terms of word frequency
and sentence length.

Words Frequency. Previous study (Fadaee and
Monz, 2018) shows that the back-translation im-
proves the translation performance by improving
the low-frequency word predictions. Meanwhile,
our analyses in §3.2 suggest that the spoken langu-
gae texts generated by our PGEN shows a similar
word frequency distribution as TEXT-AUTHENTIC.
We wonder how such consistency benefits the pre-
diction of low-frequency words in gloss-to-text
translation. Specifically, we first categorize the
vocabulary into three groups based on the word
frequency in the training data, including High:
frequency ∈ [2000,+∞); Medium: frequency
∈ [100, 2000); Low: frequency ∈ (0, 100]. Then,

10https://github.com/neulab/compare-mt
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Data Word Frequency

Low Medium High

TEXT-AUTHENTIC 28.86 49.94 58.27
+ TEXT-PGEN 33.23 52.98 60.17
+ TEXT-SELECTED 24.65 49.87 58.58
+ TEXT-GENERAL 25.45 49.12 58.12

Table 6: Prediction accuracy (F1 score) of target words
in the test set with respect to word frequency. As the
higher F1 score, the better, we mark the improvement
by green and degradation by red background.

Data Sentence Length

Short Medium Long

TEXT-AUTHENTIC 21.73 22.61 10.00
+ TEXT-PGEN 21.87 27.29 20.15
+ TEXT-SELECTED 16.24 23.93 12.80
+ TEXT-GENERAL 16.68 23.97 9.47

Table 7: Translation quality (BLEU score) of examples
in the test set with respect to sentence length.

we utilize compare-mt to calculate the prediction
accuracy of target words in the test set with respect
to the three groups.

Table 6 lists the results for different models with
scaling back-translation (e.g. 40 times synthetic
data ). As seen, scaling back-translation with in-
domain spoken language texts of TEXT-PGEN im-
proves the prediction of words in all three groups,
especially for low-frequency words. However, the
situation is much different for TEXT-SELECTED

and TEXT-GENERAL such that they bring little im-
provement for high-frequency words and inversely
harm the performance on low-frequency words. It
indicates that back-translation becomes ineffective
when the domains of spoken language texts and au-
thentic parallel data are mismatched, which implies
the importance of our PGEN approach.

Sentence Length. We investigate the translation
quality of examples with varied lengths, which
can be biased during generating or retrieving spo-
ken language texts. Similar to word frequency,
we also categorize the examples of test set into
three groups based on the sentence length, includ-
ing Long: (20,+∞) tokens; Medium: (10, 20]
tokens; Short: (0, 10] tokens.

Table 7 lists the corresponding results. Clearly,
long sentences are more difficult to trans-
late (Zheng et al., 2020) and our PGEN can par-

ticularly improve the translation quality of medium
and long sentences. In contrast, the other methods
show little improvement on medium and long sen-
tences and degrade the performance on short sen-
tences significantly. This demonstrates the better
stability of our approach regarding the distribution
of sentence length over the compared methods.

5 Related Work

Sign Language Gloss Translation. SLGT trans-
lates sign gloss to spoken language texts, which has
attracted more attention in recent years with the de-
velopment of neural machine translation (NMT).
For example, Camgoz et al. (2018) released the
PHOENIX14T and for the first time proposed a
neural SLT model to translate from spatial represen-
tations or sign glosses. Recent studies attempt to
improve both SLR and gloss-to-text translation for
the better performance of SLT. Yin and Read (2020)
proposed the STMC-Transformer network (Zhou
et al., 2020) to improve SLR and exploited Trans-
former for gloss-to-text translation. Camgoz et al.
(2020b) formulated SLR and gloss-to-text transla-
tion in the multi-task form while Li et al. (2020)
explored the hierarchical structure for learning sign
video representations. More recently, multi-cue
characteristics of sign language have also been uti-
lized for improving SLT (Camgoz et al., 2020a;
Zhou et al., 2021b; Kan et al., 2022). Different
from these works, we improve SLT by focusing on
the gloss-to-text translation task in the perspective
of spoken language generation.

Data Augmentation. Data augmentation has
been proposed and proven valuable and effective in
machine translation research (Sennrich et al., 2016;
Zhang and Zong, 2016; Wang et al., 2018; Jiao
et al., 2020, 2021). To address the data scarcity
issue in gloss-to-text translation, there have been
studies on producing synthetic gloss-text pairs for
data augmentation. One stream is to extract dis-
crete phrases from natural texts based on linguis-
tic rules (Moryossef et al., 2021). Another is to
adopt BT technique (Sennrich et al., 2016) to gen-
erate glosses from natural texts by a pretrained
text-to-gloss translation model. However, the lim-
ited in-domain spoken language texts prevent BT
from playing its maximum effect for the gloss-to-
text translation task. While we may collect in-
domain texts from public websites as Zhou et al.
(2021a), it is unreliable due to both the require-
ment for domain knowledge and the accessibility
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of websites. Our approach exploits the knowledge
and generalization capability of large PLMs to pro-
duce in-domain texts with prompt learning. While
large PLMs have been successfully applied for text
generation in NLP (Kumar et al., 2020; Chinta-
gunta et al., 2021), we craft the prompts to theo-
retically guarantee that we can produce large-scale
in-domain texts based on the small-scale original
spoken language texts data.

6 Conclusion

In this paper, we propose the PGEN approach to
produce large-scale in-domain monolingual texts
based on the original small-scale texts of the gloss-
text parallel data. With PGEN, we scale back-
translation and achieve significant and consistent
improvements on three benchmark datasets for
SLGT task. Extensive analyses suggest that our
approach generates monolingual texts with similar
linguistic properties as the original monolingual
texts, thus outperforms the compared methods in
terms of both low-frequency word prediction and
long sentence translation. Future work includes
exploring ChatGPT for sign language translation
task by using proper prompts (Jiao et al., 2023).

7 Limitations

We identify two limitations of our PGEN approach:

• We rely on the seed in-domain spoken lan-
guage texts and the pretrained models. There-
fore, a bit of expert knowledge is still required
for the selection of the seed dataset, and the
pretrained models need to be carefully se-
lected to ensure a large data coverage and a
strong generalization ability.

• We only investigate the sign language transla-
tion without considering the sign language un-
derstanding part. Since the latter part may in-
troduce errors into glosses, it requires the sign
gloss translation models to be robust to noisy
inputs. We leave this for the future work.
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A Appendix

A.1 Model Training

We perform extrinsic evaluation for the proposed
PGEN by applying back-translation with the gen-
erated spoken language texts to the sign language
gloss translation task. For the Chinese and English
SLT tasks, we adopt the corresponding English11

and Chinese12 GPT-2 models to generate in-domain
spoken language texts with PGEN.

For the gloss-to-text translation task, we follow
Yin and Read (2020) to train a Transformer model
with 2 encoder layers and 2 decoder layers. We use
Adam (Kingma and Ba, 2015) with β = (0.9, 0.98)
and ϵ = 10−6 for optimization. We adopt the warm-
up learning rate scheduler, which linearly increases
from 1.0 × 10−4 to a peak of 5.0 × 10−4 within
2000 steps, and then decays with the inverse square
root schedule. The dropout rate is 0.3 and the label
smoothing is 0.1.

For back-translation, we first finetune the mT5
pre-trained model on the authentic text-gloss par-
allel data and then use it to translate the collected
spoken language texts (sampled from TEXT-PGEN

or TEXT-SELECTED) into glosses. Following Wu
et al. (2019), we train the Transformer model on the
combination of the authentic and synthetic parallel
data, and then finetune it on the authentic gloss-to-
text parallel data.

Table 8 presents the hyper-parameters of differ-
ent transformer models used in this work.
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Figure 5: Diversity and domain closeness of sign lan-
guage texts generated by PGEN measured by Self-
BLEU and JS with respect to different prompt sizes.

11https://huggingface.co/gpt2
12https://huggingface.co/uer/

gpt2-chinese-cluecorpussmall

A.2 Diversity and Quality
Figure 5 shows the diversity and domain closeness
of sign language texts generated by PGEN mea-
sured by Self-BLEU and JS scores with respect
to prompt length. Lower Self-BLEU (Zhu et al.,
2018) and JS scores indicate higher diversity and
closer domain, respectively.

A.3 Intrinsic Analsys Results for ASLG-
PC12 and CSL-Daily Datasets

We extend the intrinsic analyses to both ASLG-
PC12 and CSL-Daily datasets. Tabel 9 shows
the JS divergence between different types of spo-
ken language texts on the two SLT datasets. As
seen, the JS divergence from TEXT-PGEN to
TEXT-AUTHENTIC is much smaller than TEXT-
GENERAL to TEXT-AUTHENTIC. Table 10 lists the
domain classification results on the ASLG-PC12
and CSL-Daily datasets. The results indicate the
significant domain differences between sign lan-
guage spoken texts and general spoken language
texts, and our PGEN approach can produce in-
domain spoken language texts.

Clearly, the results on both ASLG-PC12 and
CSL-Daily datasets are consistent with that in sec-
tion 3.2, which demonstrates the effectiveness and
generalizability of the proposed PGEN approach.

A.4 Other Metrics
Table 11 presents the ROUGE-L and METEOR
scores of the gloss-to-text translation performance
on the Phoenix2014T, ASLG-PC12 and CSL-daily
datasets.
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Parameter Text-to-Gloss Gloss-to-Text
Transformer mT5 Pretrain Finetune

encoder-layers 2 12 6 6
decoder-layers 2 12 6 6
learning rate 7 · 10−4 7 · 10−4 7 · 10−4 7 · 10−4

learning rate scheduler inverse_sqrt inverse_sqrt inverse_sqrt inverse_sqrt
Adam β (0.9, 0.98) - (0.9, 0.98) (0.9, 0.98)
warmup-updates 2000 - 4000 1000
label-smoothing 0.1 0.1 0.1 0.1
dropout 0.3 0.1 0.1 0.5
batch-size 2048 2048 2048 2048

Table 8: Hyperparameters of translation models.

Data ASLG-PC12 CSL-Daily

TEXT-PGEN vs. TEXT-AUTHENTIC 0.02 0.08
TEXT-GENERAL vs. TEXT-AUTHENTIC 0.18 0.14

Table 9: The JS divergence results on the ASLG-PC12 and CSL-Daily datasets.

Test Data In-domain General

TEXT-AUTHENTIC 98.63% 1.37%
TEXT-PGEN 99.44% 0.56%
TEXT-GENERAL 1.58% 98.42%

ASLG-PC12

Test Data In-domain General

TEXT-AUTHENTIC 99.86% 0.14%
TEXT-PGEN 98.57% 1.43%
TEXT-GENERAL 0.24% 99.76%

CSL-Daily

Table 10: The domain classification results on the ASLG-PC12 and CSL-Daily datasets.
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Dev Set Test Set
ROUGE-L METEOR ROUGE-L METEOR

Phoenix2014T
Camgoz et al. (2018) 46.02 - 45.45 -
Yin and Read (2020) 47.36 46.09 46.58 44.85
Transformer 47.77 43.46 47.48 42.36

+ Scaling BT(General) 46.43 42.35 46.12 42.24
+ Scaling BT(Selected) 48.16 43.35 47.95 42.96
+ Scaling BT(PGen) 50.89 45.50 49.25 44.78

ASLG-PC12
Yin and Read (2020) 82.41 95.93 95.87 96.46
Transformer 91.45 92.85 94.74 95.30

+ Scaling BT(General) 91.65 92.95 94.96 95.50
+ Scaling BT(PGen) 94.82 96.79 96.43 96.79

CSL-Daily
Transformer 40.94 23.78 40.87 23.53

+ Scaling BT(General) 55.76 36.28 44.64 35.62
+ Scaling BT(PGen) 62.31 50.48 60.54 50.35

Table 11: Gloss-to-text translation performance on Phoenix2014T, ASLG-PC12 and CSL-daily. "+ Scaling
BT(PGen)" represents that training data is increased by 40 times with BT, in which the monolingual is generated by
our PGen approach.
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