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Abstract

Tongue twisters are meaningful sentences that
are difficult to pronounce. The process of au-
tomatically generating tongue twisters is chal-
lenging since the generated utterance must sat-
isfy two conditions at once: phonetic diffi-
culty and semantic meaning. Furthermore, pho-
netic difficulty is itself hard to characterize
and is expressed in tongue twisters through
a heterogeneous mix of phenomena such as
alliteration and homophony. In this paper,
we propose PANCETTA: Phoneme Aware
Neural Completion to Elicit Tongue Twisters
Automatically. We leverage phoneme represen-
tations to capture the notion of phonetic diffi-
culty, and we train language models to gener-
ate original tongue twisters on two proposed
task settings. To do this, we curate a dataset
called TT-Corp, consisting of existing English
tongue twisters. Through automatic and hu-
man evaluation, as well as qualitative analysis,
we show that PANCETTA generates novel,
phonetically difficult, fluent, and semantically
meaningful tongue twisters.

1 Introduction

A tongue twister is a sentence which is both artic-
ulatorily difficult (i.e. colloquially speaking, hard
to say or "twisting") while at the same time being
meaningful and fluent. Some examples of tongue
twisters are shown in Table 1.

Together with riddles, rhymes, fables, and other
such creative artifacts, tongue twisters were histor-
ically often employed as a vehicle for early trans-
mission of native language diction, grammar, and
vocabulary to children, through parent-child inter-
action, playtime activity, and kindergarten instruc-
tion (Akinyemi, 2003; Mcgovern, 2021). Tongue
twisters have also been used as experimental aids
for research studies of speech production in cog-
nitive science and related disciplines, both among
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Figure 1: Overview of the phoneme-aware training in
the PANCETTA model.

healthy speakers and those with speech and audi-
tory disorders such as dysarthria (Kember et al.,
2017). They are also used as pedagogic aids in
speech therapy, as well as for treatment of speech
disorders and psychological disorders relating to
public speaking and elocution (Revathy and Ravin-
dran, 2016). An example of this was in a scene1

from The King’s Speech (2010), where George VI
repeats a tongue twister during therapy to reduce
his stutter. Lastly, tongue twisters find use as teach-
ing aids for English diction in EFL (English as a
Foreign Language) instructional settings (Prošić-
Santovac, 2009).

The coining of a novel, unique tongue twister
which spreads sufficiently to become normative and
well-recognized is rare, hence characterizing them
as long-tailed linguistic phenomena (Naik, 2022).
However, they are not limited to English, and are
found across the world’s languages, e.g., Persian
("Shish sikh jigar sikhi shi shezar.") (Jam, 2018)
and French ("Cinq chiens chassent six chats.")

Consider the idealized scenario where we have
a "mouth model" which a) maps different regions
of the mouth, palate, and the larynx to the dictio-

1https://youtu.be/7WJts0gKCRM?t=53
Code can be found at: https://github.com/

sedrickkeh/PANCETTA
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Task Input Tongue Twister Tongue Twister (Phoneme)

TT-Prompt
A good cook A good cook could cook as many cookies as

a good cook who could cook cookies.
@ gUd kUk kUd kUk æz mEni kUki:z
æz @ gUd kUk hu: kUd kUk kUki:z.

Chubby
jugglers

Chubby jugglers juggling oranges jovially. tS2bi dZ2g@lRz dZ2g@lIN Or@ndZ@z
dZoUveIli.

Does the Does the rapid rabid rabbit wrap it? d2z D@ ræp@d ræbId ræb@t ræp It?

TT-Keyword
shoes, dog If a dog chews shoes, whose shoes does he choose? If @ dOg tSu:z Su:z, hu:z Su:z d2z hi: tSu:z?
blood, death Bad dead bed-bugs bleed bug blood. bæd dEd bEd-b2gz bli:d b2g bl2d.
king, art,
wall

A truly rural frugal ruler’s mural was on the
wall.

@ tru:li rUr@l fru:g@l ru:lRz mjUr@l
wA:z A:n D@ wOl.

Table 1: Example inputs and target outputs for both the TT-Prompt and TT-Keyword task settings, along with the
phoneme representations of the tongue twisters.

nary of fundamental sounds, i.e. phones being
produced, and b) based on this grounding, can
quantify the hardness of producing one sound after
another by inducing a distance measure between
any phone pair. Assuming access to this idealized
model, one could deconstruct the process of gen-
erating a tongue twister as sampling a sequence of
preferably difficult/distant phone-phone transitions
starting with an initial sequence of one or more
phones (which could come from a prompt, or be
chosen uniformly, based on the task setting).

However, there are several impediments which
make realizing such an idealized model consider-
ably intractable. First, the dictionary of fundamen-
tal sounds at the granularity we use in practice,
i.e. at the level of phonemes, does not neatly map
to particular points of the palate (Ladefoged and
Johnson, 2014). Rather, each phoneme itself corre-
sponds to a set of actions involving multiple organs
and palatal regions. For instance, velar consonants
like k are produced based on tongue-velum (soft up-
per palate) interaction. Secondly, a tongue twister
as per its definition is not merely a difficult to pro-
nounce sequence of phonemes, but also one that
maps to a meaningful and fluent sequence of words.
How one can maintain this property in conjunction
with the process of sampling difficult transitions
from the mouth model’s space is unclear.

The automatic generation of tongue twisters has
largely been unexplored. This task is challenging
because it requires being able to model phonetic
difficulty of various syllables and tokens, which is
not something that existing language models are
trained to do. To achieve this, we have to work
in the phoneme space. Phonemes have previously
been used to aid in speech recognition (Sundarara-
man et al., 2021) and rhyme generation (Hopkins
and Kiela, 2017). We hypothesize that by working
with phonemes, we will be able to model and gen-
erate patterns that characterize phonetic difficulty.

Tongue twisters go beyond relatively simpler
phonetic phenomena such as alliteration, since they
employ a heterogeneous mix of strategies (Jor-
gensen, 1981) including alliteration itself (she sells
seashells), use of homophonic words/subwords
(sells/-shells, she/sea-), and alternating between
similar start phonemes for tokens (s and sh), some-
times even using multiple such phenomena in con-
junction within the same example to create the
cumulative effect of articulatory difficulty.

Our contributions are as follows: (1) We cu-
rate a dataset, TT-Corp, of diverse tongue twisters.
(2) We present two new task settings (TT-Prompt
and TT-Keyword) for automatic tongue twister gen-
eration, and we design and evaluate simple base-
lines for these tasks. (3) We propose a phoneme-
aware method called PANCETTA, which models
and generates coherent and phonetically difficult
phrases by taking phonemes into account. We show
that PANCETTA generates higher-quality tongue
twisters through both automatic and human evalua-
tions and qualitative analysis of the outputs.

2 Task Settings and Dataset

2.1 Task Settings

We propose two settings for automatic tongue
twister generation. We call these tasks TT-Prompt
and TT-Keyword. Examples of these two tasks can
be found in Table 1, and they are detailed below:

1. Generating tongue twisters from prompts
(TT-Prompt): Given a few words to start a sen-
tence, the goal is to complete the sentence in a
coherent way such that the resulting generation is a
tongue twister. Prompts can be of varying lengths.

2. Generating tongue twisters from keywords
(TT-Keyword): Given a set of keywords, the goal
of this task is to generate a coherent tongue twister
which incorporates the semantics of the keywords.
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Tongue Twister Non-TT Version
There was a little witch
which switched from Chich-
ester to Ipswich. (ex.1)

There was a small en-
chantress which exchanged
from Chichester to Ipswich.

He wanted to desert his
dessert in the desert. (ex.2)

He desired to abandon his
sweet in the desert.

Tie a tight knot in the shape
of a nought. (ex.3)

Bind a taut gnarl in the form
of a zero.

Table 2: Examples of the synonym replacement process
to generate non-tongue twister versions of the tongue
twisters in TT-Corp. Different colors are used to indicate
which words are replaced by their synonyms.

The set of keywords can be of varying sizes. These
keywords do not necessarily have to appear verba-
tim and do not necessarily have to appear in order.

2.2 TT-Corp Dataset

As previously noted, tongue twisters are long-tailed
linguistic phenomena, and it is rare to find new
unique tongue twisters. Given this, we curate a
dataset of 644 unique English tongue twisters into
a dataset called TT-Corp. These tongue twisters
are compiled from various sources, ranging from
blog posts to English learning websites. A more
detailed list of these sources and data processing
details can be found in Appendix A. Despite the
seemingly small scale of this dataset, multiple stud-
ies have successfully generated creative text even
when training data is limited: 511 personifications
(Keh et al., 2022), 1400 MadLibs (Hossain et al.,
2017), 401 portmanteaus (Deri and Knight, 2015),
and 576 clippings (Mattiello, 2013).

We also create a non-tongue twister version of
each input in TT-Corp, which will later be used to
explore style transfer models (§3.1) and to train a
phonetic difficulty classifier (§3.2.1). This is done
through synonym replacement. First, we determine
the parts-of-speech of all the words in the sentence
and identify the nouns, verbs, and adjectives.2 We
then use WordNet (Fellbaum, 1998) to generate a
list of synonyms for each of these nouns, verbs,
and adjectives, and we select the highest ranked
replacement which shares the same part-of-speech.
Examples of this process are shown in Table 2.

One key advantage of this synonym replacement
process is that it can replace a word according to
its part-of-speech in the sentence. In the second ex-
ample in Table 2, the word "desert" appears twice –
first as a verb (which is replaced with "abandon"),

2The spaCy library (Honnibal and Montani, 2017) was
used to extract the POS tags.

and again as a noun (which is not replaced). How-
ever, this synonym replacement process does not
take the context of the words into account. In the
third example, while the individual synonym re-
placements make sense on their own, the final sen-
tence sounds quite unnatural. For our purposes,
however, this is not a significant issue: we do not
need the replacement sentences to be absolutely
perfect, as the quality of the ground-truth tongue
twister is more important. This will be explained
further when we use this parallel dataset in §3.2.1.

3 Methodology

As this is a new task, there are no existing meth-
ods that can easily generate novel tongue twisters.
The main challenge is how to incorporate phonetic
difficulty into our generations. To do so, we pro-
pose two baseline and two phoneme-aware models,
which are applicable to both the TT-Prompt and
TT-Keyword task settings (see Table 3).

3.1 Models

1. Grapheme-based Methods (g2g) – We treat
tongue twister generation as a seq2seq task, where
the prompt (for TT-Prompt) or keywords (for TT-
Keyword) is the input, and the tongue twister is the
target output. We fine-tune GPT-2 (Radford et al.,
2019) and GPT-J (Wang and Komatsuzaki, 2021)
using the input sequences "(X [SEP] Y)", where X
represents the prompt/keywords, Y represents the
tongue twister, and [SEP] is a separator token.

2. Style Transfer Methods – Given a prompt or
a set of keywords, we generate a sentence (not
necessarily a tongue twister) using GPT-2. This
is easy for TT-Prompt since GPT-2 is trained to
do causal language modeling. For TT-Keyword,
we need to first train a GPT-2 model to perform
keyword-to-text. We sample 10,000 sentences from
WikiText-103 (Merity et al., 2016) and extract their
keywords using KeyBERT (Grootendorst, 2020).
We then fine-tune GPT-2 using an "(X [SEP] Y)"
template as described in the g2g methods. Here,
X represents the keywords, and Y represents the
corresponding sentence.

We then attempt to convert these generated nat-
ural sentences into tongue twisters. We treat this
as a seq2seq task and train a seq2seq model using
our parallel dataset. During training, we use the
non-TT versions as inputs and the tongue twisters
as the ground truth target outputs. We use BART
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Method Name Models Used Description Phoneme
Representation Leverage Pretraining

Grapheme-based Methods GPT-2, GPT-J g2g ✗ ✓
Style Transfer Methods BART, T5 g2g + g2g ✗ ✓

PANCETTA-P GPT-2, BART g2p + p2p + p2g ✓ ✗

PANCETTA-J GPT-2, GPT-J g2g, p2p, g2p, p2g
(only g2g during test-time) ✓ ✓

Method Name Example
Grapheme-based Methods She sells → She sells seashells on the seashore.

Style Transfer Methods She sells → She sells things on the beach. → She sells seashells on the seashore.
PANCETTA-P She sells → Si: sElz → Si: sElz si:SElz A:n D@ si:SOr → She sells seashells on the seashore.
PANCETTA-J She sells → She sells seashells on the seashore.

She sells seashells on the seashore. → Si: sElz si:SElz A:n D@ si:SOr.
Si: sElz si:SElz A:n D@ si:SOr. → She sells seashells on the seashore.
Si: sElz → Si: sElz si:SElz A:n D@ si:SOr.

Table 3: Summary of the models discussed in §3.1, along with some examples.

Figure 2: Overview of PANCETTA-P pipeline.

(Lewis et al., 2020) and T5 (Raffel et al., 2020)
models for this seq2seq task.

3. PANCETTA-P (Phoneme) – For the previous
g2g models, the fine-tuning was done only using
graphemes. Because graphemes are not always
representative of pronunciation, we hypothesize
that it may be difficult for such models to capture
information regarding the pronunciation. If we
instead had a generative model which works on the
phoneme space, then we could fine-tune this model
on the tongue twister phonemes and hope that it
can better capture these phonetic cues.

We first pretrain a GPT-2 model to perform
causal LM generation for phonemes. Pretraining
is done using WikiText: we first convert all the
WikiText sentences into their IPA phoneme rep-
resentations and train a GPT-2 model on it.3 For
TT-Keyword, instead of training a causal phoneme
LM, we train to generate from keywords, using
the (X [SEP] Y) template previously described.
While there are multiple g2p phonemization toolk-

3The deep-phonemizer Python package was used for
g2p transliteration.

its, there are no readily available p2g toolkits that
work well. Hence, we train our own p2g model. We
treat this as a seq2seq translation task, once again
using WikiText. We train a BART model with the
phonemes as the inputs and the graphemes as the
targets. Once both the p2p generation and the p2g
translation models are trained, we then fine-tune
the p2p models on the tongue twister phonemes
(all steps similar to g2g), then use the p2g model to
retrieve the grapheme representation of the outputs
(see Figure 2). Lastly, since there is no capital-
ization in the phoneme space, we have to fix the
capitalization of the generated outputs. We use the
FastPunct library for this.4 Unlike the previous
g2g methods, we only use GPT-2 (and not GPT-J)
for PANCETTA-P because GPT-J is too large to
pretrain in a reasonable fashion.

4. PANCETTA-J (Joint) – One drawback of
PANCETTA-P is that because we do our own pre-
training on the phoneme space, we are not able to
leverage the existing pre-training of large language
models. In order to leverage both the phoneme rep-
resentations and the pre-training of GPT, we pro-
pose PANCETTA-J. This is similar to g2g, but
instead of only training with the template (X [SEP]
Y), we train with 4 different templates, representing
4 different modalities. Specifically, we train with
the templates (PKG [SEP] TTG), <PKP [SEP]
TTP >, [TTG [SEP] TTP ], and {TTP [SEP] TTG},
where PK represents the prompts/keywords, TT
represents the tongue twisters, G represents the
grapheme representation, and P represents the
phoneme representation. These 4 modalities rep-
resent g2g, p2p, g2p, and p2g respectively. Here,
the type of surrounding brackets function similar

4https://github.com/notAI-tech/fastPunct
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to custom tokens which indicate the modality for
the model.

At test time, the model can be directly decoded
using g2g mode without requiring phoneme infor-
mation. We hypothesize that the phonetic struc-
tures learned during training time can serve as an
effective "scaffold" — being used explicitly only
during finetuning time (Swayamdipta et al., 2018).

3.2 Evaluation Metrics
3.2.1 Automatic Evaluation
As described in §1, a good tongue twister needs to
satisfy two criteria: it needs to be both difficult to
pronounce, as well as semantically coherent. We
consider these two notions separately.

1. Phonetic Difficulty: We fine-tune a pretrained
BERT-base classifier to differentiate between
tongue twisters and regular sentences. To train
this model, we use the parallel dataset of (TT, non-
TT) pairs as described in §2.2. We specifically use
these (TT, non-TT) pairs so that the model learns
to classify based on phonetic difficulty rather than
semantics. However, as mentioned in §2.2, some
replacement sentences may sound unnatural. To en-
sure that the classifier learns to differentiate tongue
twisters instead of picking up on these false signals,
we augment our dataset with additional negative
examples consisting of 500 sentences randomly
sampled from WikiText. Rather than directly train-
ing on the sentences, we first convert the sentences
to phoneme representations and train a classifier
on the phonemes. This trained BERT classifier
achieves an 83.4 F1-score on the test set of the
parallel dataset, indicating that it is indeed success-
ful at discriminating phonetically easy and difficult
sentences. To further verify that this metric success-
fully measures phonetic difficulty, we show that it
correlates well with human-annotated measures of
phonetic difficulty (§5.2 and Table 6).

2. Fluency: We not only want phonetically dif-
ficult sentences; they must also be fluent and co-
herent. To measure this, we use the generation
(log-perplexity) losses from a pretrained GPT-2.

3. Keyword Relevance (only for TT-Keyword):
In TT-Keyword, we want to ensure that the gener-
ated tongue twister is semantically similar to the
keywords used. To measure this, we use the BERT
embedding of keywords and compare it with the
embedding of the target sentence. More specifi-
cally, we use the BERTScore (Zhang* et al., 2020)

between the generated sentence and the "sentence"
consisting of the keywords separated by commas.

3.2.2 Human Evaluation

The human evaluation metrics are very similar to
the ones in §3.2.1. These are as follows: (1) Pho-
netic Difficulty ("How hard is the sentence to pro-
nounce? To get a better sense of the difficulty, try
saying the sentence out loud, quickly, and multiple
times.") and (2) Fluency ("Does it sound like good
English with good grammar?") Evaluations were
done on a scale of 1-5, with 5 being the highest.
Further details about human evaluation are in §4.2.

4 Experimental Setup

4.1 Implementation Settings

Prompt / Keyword Extraction: To extract
prompts for TT-Prompt, we simply consider the
first three words of each sentence by checking for
the whitespace character. To extract keywords for
TT-Keyword, we use the KeyBERT library (Groo-
tendorst, 2020), which returns keywords ranked
by their cosine similarity scores to the entire sen-
tence itself. For each sentence, we consider the
top 5 keywords as our set of keywords. When a
sentence has <5 keywords, we simply take all the
keywords. In our dataset, 39.56% of the examples
had <5 keywords.

Dataset splits: We split TT-Corp into a training-
validation-test split with a 70-15-15 ratio. We use
the same splits across all models and across both
TT-Prompt and TT-Keyword task settings, as well
as for training the phonetic difficulty classifier.

GPT-2 fine-tuning (g2g, PANCETTA-P,
PANCETTA-J): We use the pretrained GPT2-base
(124M params.) and fine-tune for 5 epochs with a
learning rate of 5e-5 and 100 warmup steps.

BART pretraining ( PANCETTA-P): For the
p2g model, we pretrain BART-base (139M params.)
on WikiText-103 phonemes. We split WikiText into
train-validation-test splits of 80-10-10. The final
training set has size 523k. Training was done for 20
epochs with batch size of 16, learning rate of 5e-4,
and weight decay of 0.1 with a cosine scheduler.

BART & T5 fine-tuning (Style Transfer): We
fine-tune BART-large (406M params.) & T5-large
(737M params.) for 30 epochs with a batch size of
16, learning rate of 2e-5, and 400 warmup steps.

GPT-J fine-tuning (g2g, PANCETTA-J): Be-
cause GPT-J is too large (6B parameters), we use
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TT-Prompt TT-Keyword
Method Phon. Difficulty Fluency ↓ Phon. Difficulty Fluency ↓ Keyword Relevance

g2g (GPT-2) 0.774 5.433 0.786 5.224 0.795
g2g (GPT-J) 0.848 5.643 0.856 5.593 0.794

Style Transfer (GPT-2+BART) 0.672 4.356 0.472 3.662 0.783
Style Transfer (GPT-2+T5) 0.631 4.256 0.414 4.309 0.780

PANCETTA-P (GPT-2+BART) 0.794 5.986 0.871 6.596 0.801
PANCETTA-J (GPT-2) 0.785 5.244 0.803 5.058 0.803
PANCETTA-J (GPT-J) 0.866 5.718 0.888 5.169 0.800

Gold Outputs 0.925 5.745 0.925 5.745 0.812

Table 4: Automatic evaluation averages for both TT-Prompt and TT-Keyword. The best-scoring method for each
metric is highlighted in bold. Higher scores are better for all metrics except for fluency.

a compressed version of GPT-J, 5 which incorpo-
rates various techniques such as 8-bit quantization
(Dettmers et al., 2021) and low-rank adaptation
(Hu et al., 2021). To fine-tune, we use 10 epochs, a
batch size of 1, and a learning rate of 1e-5.

For the GPT models (i.e. GPT-2 and GPT-J), gen-
eration was done using nucleus sampling (p=1.0,
temperature=0.8). Meanwhile, for the BART and
T5 models, generation was done using beam search
with a beam size of 5. Additional hyperparame-
ters and details on implementation can be found in
Appendix C.

4.2 Human Evaluation Settings

Human evaluation was done on Amazon Mechani-
cal Turk (AMT). We selected annotators with >97%
HIT approval rate from Anglophone countries. 6

In each HIT, we present the generated outputs for
each example in randomized order, and each test
example was evaluated by exactly 2 annotators.

We conduct two rounds of annotation, one
for TT-Prompt and another for TT-Keyword.
Within each round, we further subdivide annotat-
ing GPT-2 experiments and GPT-J experiments.
This GPT-2/GPT-J split only applies to g2g and
PANCETTA-J models; for the style-transfer and
PANCETTA-P models, we keep the same mod-
els for both rounds of evaluation. This is done to
ensure that we only have one independent variable
so that the changes in performance are due to the
methodologies rather than the size of the models.
Another reason for subdividing GPT-2/GPT-J ex-
periments is so that we do not subject annotators to
information overload from having to annotate too
many similar examples. Owing to the same consid-
eration, we also decided to omit human evaluation
on the Style Transfer T5 baseline because we found
it very similar to Style Transfer BART.

5https://huggingface.co/hivemind/gpt-j-6B-8bit
6More details about the human eval are in Appendix B.

5 Results and Analysis

5.1 Automatic Evaluation Results

Table 4 shows the average results for the metrics
outlined in §3.2.1. From the phonetic difficulty
results, we see that our proposed PANCETTA
models score higher than the baselines. More
specifically, comparing g2g (GPT-2) (0.774) vs
PANCETTA-J (GPT-2) (0.785) and comparing
g2g (GPT-J) (0.848) vs PANCETTA-J (GPT-J)
(0.866), we see that incorporating phoneme repre-
sentations indeed aids in producing more phonet-
ically difficult sentences. This pattern also holds
true for TT-Keyword, where both GPT-2 and GPT-
J see increases in performance after incorporating
phonemes. We also observe that PANCETTA-P
performs reasonably well in phonetic difficulty and
has the highest score of the non-GPT-J models for
both TT-Prompt and TT-Keyword. In fact, for TT-
Keyword, PANCETTA-P is able to get very close
to PANCETTA-J (GPT-J), which is remarkable,
considering that it is only using a GPT-2 model.

For fluency, style transfer models score better
than the other models. This is likely because style
transfer models first generate a regular sentence,
then attempt to "tongue twisterize" it. However,
there is no guarantee that the sentence can even
be reasonably converted to a tongue twister, result-
ing in minimal changes being made to the original
GPT-generated sentence, thereby leading to good
fluency scores when using perplexity. Meanwhile,
we see that PANCETTA-P has the worst perplex-
ity score. However, it is important to note that even
the ground truth tongue twisters score poorly here
(around the same scores as PANCETTA mod-
els). Tongue twisters do not usually use typical
English tokens in standard sequences, thereby re-
sulting in worse perplexity scores. Nonetheless, flu-
ency/perplexity is still important as a sanity check
for the basic qualities of the generated text (whether
the generation is coherent, if it makes unnecessary
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TT-Prompt TT-Keyword
Method Phonetic Difficulty Fluency Phonetic Difficulty Fluency

g2g (GPT-2) 3.056 3.736 3.847 4.139
Style Transfer (GPT-2+BART) 2.569 3.639 3.500 3.819
PANCETTA-P (GPT-2+BART) 3.528 3.778 3.722 3.764

PANCETTA-J (GPT-2) 3.153 3.764 3.889 3.931
Gold Outputs 3.361 3.931 3.833 4.000

g2g (GPT-J) 3.521 3.979 3.791 3.708
Style Transfer (GPT-2+BART) 3.271 3.75 3.25 3.750
PANCETTA-P (GPT-2+BART) 3.854 3.708 3.833 3.896

PANCETTA-J (GPT-J) 3.708 3.646 3.979 3.604
Gold Outputs 3.750 4.000 4.104 3.729

Table 5: Human evaluation averages for TT-Prompt and TT-Keyword. The top half of the table correspond to
methods using GPT-2 as the base architecture, while the bottom half of the table correspond to methods using GPT-J
as the base architecture. Top method scores for each metric are highlighted in bold.

grammatical errors, etc.). To this end, the fluency
scores of PANCETTA models are adequate.

Lastly, for keyword relevance, most scores are
close to each other. The three PANCETTA mod-
els have the three highest scores, indicating that
PANCETTA is able to generate difficult tongue
twisters without compromising the task at hand.

5.2 Human Evaluation Results

Table 5 shows the average results for the human
evaluation. As with the automatic evaluations, we
see an increase in phonetic difficulty when we intro-
duce phonemes into the training process. Compar-
ing g2g (GPT-2) and PANCETTA-J (GPT-2), we
see an increase from 3.056 to 3.153 for TT-Prompt
and from 3.847 to 3.889 for TT-Keyword. This
trend also occurs for GPT-J models. Despite not
being able to leverage existing GPT pretraining,
PANCETTA-P also works very well, outperform-
ing all non- PANCETTA models in all but one
setting. These positive results indicate that incor-
porating phonetic information is indeed helpful.

In terms of phonetic difficulty, we observe that
for TT-Prompt, PANCETTA-P works best for
both GPT-2 and GPT-J, while for TT-Keyword,
PANCETTA-J works best for both GPT-2 and
GPT-J. This may be because generating from key-
words is generally more difficult than complet-
ing a prompt, so PANCETTA-J benefits from
existing pretraining. Meanwhile, in terms of flu-
ency, g2g methods work best for 2 settings, and
PANCETTA-P works best for 2 settings. Tongue
twisters usually use words in creative and unnatural-
sounding ways, and this may sometimes negatively
affect fluency, so the "most fluent" sentence may
not necessarily be the best tongue twister. Never-
theless, all the fluency metrics for PANCETTA
models are around 3.7 to 3.8, indicating good flu-
ency. Overall, we conclude that PANCETTA

Task Pearson Correlation Spearman Correlation
TT-Prompt 0.117 (p=0.076) 0.116 (p=0.079)

TT-Keyword 0.102 (p=0.177) 0.134 (p=0.075)

Table 6: Corr. between human annotations and auto-
matic metrics (BERT classifier) for phonetic difficulty.

substantially improves phonetic difficulty while
maintaining a competitive level of fluency.

To verify the validity of using our BERT clas-
sifier to automatically measure phonetic difficulty,
we compute correlations between the classifier’s
scores and human-annotated phonetic difficulty
scores (Table 6). We observe that the correlations
are > 0.1 with relatively low p-values, which is an
adequate score when comparing various automatic
and human-annotated metrics (Gangal et al., 2022).
While this can be further improved and is a limita-
tion of our work, we also note that the automatic
phonetic difficulty metric scores the gold outputs
the highest (at 0.925) and the style transfer models
lowest, which indicates that it is able to decently
capture the notion of phonetic difficulty.

5.3 Qualitative Analysis
Table 7 shows sample generations for both TT-
Prompt and TT-Keyword. We observe that both
PAN-P and PAN-J are able to use a wide vari-
ety of tongue twister techniques, such as rhyme
(grape/crepe/crate- in ex.1 PAN-P), alliteration
(kneadle/knuckle in ex.3 PAN-J), alternating final
sounds (land/lamb in ex.2 PAN-P), alternating ini-
tial sounds (six-/sheik in ex.4 PAN-J), and repeti-
tion. They are also able to generate proper nouns
to suit the sentence, such as "Donna" and "Nee-
dles Nood" in ex.3 PAN-P. They can also combine
multiple such techniques in a single tongue twister,
such as stick/stock and land/lamb in ex.2 PAN-P.

Comparing this with the baseline methods (g2g
and Style T.), we see that the generated outputs of
the g2g baseline are decent and somewhat tongue
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Method Text
Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g The pirates pirated the pepper pot.
Style T. The pirates pirated more than $50 million in online gambling in 2013.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J The pirates pirated the paired prince with a pair of paired pistols.
Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock

upon your stock or some joker who is slicker is going to trick you of
your liquor if you fail to lock your liquor with a lock?

g2g If you stick two sticks together, you get two sticks tied together.
Style T. If you stick with the same line, you have different things going for you.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J If you stick a stock stick on the stock stick you stick, who’s going to

stick it on the stock stick you stick?

Method Text
Inputs (ex.3) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g One noodle needs a kneeler to lean on
Style T. Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J Don’t kneadle a knuckle with a knuckle needle!
Inputs (ex.4) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other

thirty-three thankful thieves throughout Thursday.
g2g The thieve thanked the thankful thief on Thursday.
Style T. Thanked by Thnx for the idea, I thought it was an idea that I wanted to

do a spoof of Thankful Thankful and Thnx.
PAN-P Thankful thieves thought that they thought they thrilled the throne

throughout Thursday.
PAN-J These sixty sheiks sent these thousand and sixty sheiks sixty sheiks

thanking them for shouting these sixty sheiks sixty shouts on Thursday.

Table 7: Qualitative examples for both TT-Prompt (first 2
examples) and TT-Keyword (last 2 examples). We report
only the best performing model based on phonetic difficulty
from automatic evaluations for each type (in brackets): literal
input, gold output, g2g (GPT-J), Style Transfer (BART),
PANCETTA-P (GPT-2+BART), and PANCETTA-J (GPT-
J). Additional examples can be found in Appendix D.

twister-like but usually are very short and simple,
often relying too much on alliterations. Meanwhile,
the outputs for the style transfer methods are gen-
erally not tongue twisters. As discussed in §5.1,
this is likely because it commonly fails at fully
converting a regular sentence into a tongue twister.

For TT-Prompt, we observe that even with a non-
alliterative prompt such as "If you stick" (ex.2),
the PANCETTA models can still generate good
tongue twisters, whereas the g2g method attempts
to use repetition but the generated text is not that
difficult to pronounce. Meanwhile, for the TT-
Keyword setting, PAN-J is able to incorporate the
semantics of the words, rather than just copying
the words themselves: in ex.4, PAN-J replaces
"thirty/thieves" in the keywords with "sixty/sheiks".
Lastly, comparing PAN-P and PAN-J, we see that
PAN-J sentences generally sound smoother, while
PAN-P sentences sometimes end rather abruptly
("in a farm." in ex.2; "and the Need?" in ex.3). In
addition, some of the outputs from PAN-P lack co-
herence (ex.3). This is likely because PAN-P uses
a phoneme language model and hence is unable
to leverage the large-scale pretraining from GPT
models. On the other hand, this lack of large-scale

pretraining can potentially free up PAN-P to use
more diverse tongue twister techniques, such as
rhymes (ex.1) and proper nouns (ex.3) which are
less common in PAN-J.

6 Related Work

Automatic tongue twister generation is a largely
unexplored task. Existing systems mostly use
synonym replacements (Zeng, 2019) on existing
tongue twisters, which requires a large list of
tongue twisters to begin with and cannot generate
novel ones from scratch. Carey (2017) generates
tongue twisters using sound vectors, and Joshipura
(2020) trains an LSTM on a small tongue twister
dataset, but neither are able to produce novel and
semantically coherent examples. Furthermore, no
methods currently exist for the TT-Keyword task.

There have been multiple studies on creative gen-
eration of various figures of speech such as similes
(Chakrabarty et al., 2020), metaphors (Chakrabarty
et al., 2021), and personifications (Keh et al., 2022).
However, these other creative linguistic constructs
don’t require working with another modality in the
same way that tongue twister generation relies on
phonemes. Among these creative linguistic con-
structs, the closest ones to tongue twisters would
likely be alliterations (Hopkins and Kiela, 2017),
rhymes (Xue et al., 2021), and poetry (Ghazvinine-
jad et al., 2017; Cruys, 2020). Notably, DeepHaiku
(Gonsalves, 2022) also explores using phonemes
and a multitask objective in order to generate
haikus. However, tongue twister generation goes
beyond alliterations and rhymes; rather it is a mix
of all these various techniques. In addition, it dif-
fers from poetry generation because poetry gener-
ation focuses on generating rhythmic verses and
syllables, whereas the main focus of tongue twister
generation is on phonetic difficulty.

Using phonemes in language modeling has been
previously explored in the speech domain for au-
tomatic speech recognition (Sundararaman et al.,
2021; Belinkov et al., 2019; Xu et al., 2021). In this
paper, we trained a BART model to do p2g transla-
tion. Other existing methods include expectation
maximization (Knight et al., 2006), A* search (Cor-
lett and Penn, 2010), and Hidden Markov Models
(Hopkins and Kiela, 2017).

There is also work on more general constrained
text generation tasks. An example is Feng et al.
(2019), who propose Semantic Text Exchange to
adjust a text’s topic-level semantics. Lin et al.
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(2020) introduce a generative commonsense reason-
ing task using keyword-to-text generation called
CommonGen. SAPPHIRE (Feng et al., 2021b) and
VisCTG (Feng et al., 2022) investigate approaches
to improve performance on CommonGen, the latter
using per-example visual grounding.

7 Conclusion and Future Work

In this paper, we proposed the task of automatic
tongue twister generation, and explored it under
two settings: TT-Prompt and TT-Keyword. We
curated a dataset called TT-Corp of 600+ English
tongue twisters from various sources and proposed
PANCETTA, a training methodology which in-
corporates phoneme representations. We imple-
mented two variants: PANCETTA-P (Phoneme),
which trains a phoneme-based language model, and
PANCETTA-J (Joint), which jointly incorporates
both phoneme-level information and grapheme-
level information during training time. Through
empirical results and qualitative evaluations, we
showed that incorporating phonemes is indeed help-
ful in producing effective tongue twisters which are
harder to pronounce while staying fluent.

While PANCETTA works well at generation,
the generation process lacks interpretability. This
is most notable when looking at the phonetic dif-
ficulty classifier. Currently, the classifier does not
identify and separately score elements of phonetic
difficulty or come up with an explicit decomposi-
tion. We believe that such explicit decomposition
can be very useful in the future for understand-
ing more about tongue twisters and the "mouth
model" discussed in §1. In addition, the procedure
of fine-tuning a pretrained model in 4 different
modes involving both graphemes and phonemes,
devised here to fine-tune PANCETTA-J, can also
be adopted more generally as a data augmentation
(Feng et al., 2021a, 2020) method for LM fine-
tuning, creating a (pseudo) count of 4N training ex-
amples given N initial ones. Lastly, tongue twisters
can potentially be incorporated in dialogue agents,
adding creativity and personality (Li et al., 2020).

Limitations

As mentioned in §7, our current model and classifer
are deficient in terms of their interpretability on
certain aspects, and would greatly benefit from
addition to their interpretability on these fronts.

Our models and datasets are limited to English
tongue twisters (Bender and Friedman, 2018). In

addition, when we convert to the phoneme space,
we only use IPA phonemes. We selected IPA be-
cause it is the most common and most readily
available phonemization method. However, there
also exist many other phonemization methods such
as the ARPAbet / CMU Pronouncing Dictionary
(Weide, 2005), the SAMPA (Wells, 2005), or the
Festival phonemization scheme (Black and Lenzo,
2003). We also choose to use deep-phonemizer for
g2p transliteration. There are many other available
phonemization tools such as Epitran (Mortensen
et al., 2018) and the phonemizer Python pack-
age (Bernard and Titeux, 2021). It would be inter-
esting to explore how the performance will change
if we try other phoneme alphabets or phonemiza-
tion methods.

In addition, we see in §5 that the style transfer
models do not really work that well. In this paper,
we only tried simple BART and T5 seq2seq models.
One possible way to expand on this would be to try
other more sophisticated style transfer methods.

Due to computational resources, we were not
able to explore larger models and had to use a com-
pressed version of GPT-J, which may have slightly
affected the performance.

Ethics

The TT-Corp dataset we propose and release herein
has undergone a per-example, manual, vetting pro-
cess during its curation and pre-processing stage, as
described further in Appendix A.2, which removes
examples which may exhibit offensive words, pro-
fanities, racism, gender bias, and other malicious
language.

We do collect human evaluation ratings using
crowd-sourcing, specifically through AMT. How-
ever, we neither solicit, record, nor request any
kind of personal or identity information from the
annotators. Our AMT annotation was conducted
in a manner consistent with terms of use of any
sources and intellectual property and privacy rights
of AMT crowd workers. Crowdworkers were fairly
compensated: $0.56 per fluency and phonetic diffi-
culty HIT, for roughly 2 min tasks. This is at least
2 times the minimum U.S.A. wage of $7.25 per
hour ($0.56 per 2 mins is around $16.8 per hour).

NLG models are known to suffer from biases
learnable from training or finetuning on data, such
as gender bias (Dinan et al., 2020). However, our
work and contribution does not present or release
any completely new model architectures, and is
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primarily concerned with more careful adaptation
and finetuning of existing pretrained models for
a particular class of creative linguistic constructs
(i.e. tongue twisters). The frailties, vulnerabilities,
and potential dangers of these models have been
well researched and documented, and a specific
re-investigation would be repetitive and beyond the
scope and space constraints of this paper.

We do not foresee any explicit way that mali-
cious actors could specifically misuse finetuned
models that could be trained on our data, beyond
the well-researched, aforementioned misuse that is
possible in general with their instantiation for any
transduction task or dataset (e.g. summarization).
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A Additional Details — Dataset
Collection

A.1 Sources

We curate our tongue twisters from a heterogeneous
mix of online sources, including but not limited to
the ones listed below:

1. University of Arkansas

2. The r/tonguetwister Subreddit

3. Various AskReddit threads

4. Mondly.com

5. Uebersetzung

6. Marcus Stuart’s LOL Tongue Twisters book

7. Language Avenue

8. Bilingual Monkeys

9. Pun.me

10. ESL

11. Sweetrhymes

12. EngVid

13. IvyPanda

A.2 Vetting

We then perform the following filtering steps to
retain only a collection of high-quality dataset ex-
amples:

• Remove near-repetitive examples to ensure
each example is unique

• Remove excessively short or meaningless ex-
amples lacking sentence structure, e.g. blue
blood, bad blood

• Remove poems or rhymes

• Remove examples containing offensive words,
racism, gender bias or other harmful and mali-
cious language of any nature, to prevent mod-
els learnt from this data from further ingrain-
ing or amplifying such phenomena.
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B Appendix B: Evaluation Details

To prevent annotator judgements for one attribute
from inadvertently influencing the other, we con-
duct the studies for soliciting Fluency and Phonetic
Difficulty scores separately.

Averaging over the 4 settings described in §4.2 (
TT-Keyword/TT-Prompt × GPT-2/GPT-J), a total
of 20 unique AMT annotators participated in the
study for Fluency, each performing 3.6 HITs on
average. Annotators were compensated $0.56 per
HIT, each of which was designed to take < 2 mins
on average.

Averaging over the 4 settings, 16.51 unique
AMT annotators participated in the second, sepa-
rate study for Phonetic Difficulty, each performing
4.36 HITs on average. Annotators were compen-
sated $0.56 per HIT, each of which was designed
to take < 2 mins on average.

C Further Implementation Details

In §4.1, we detailed the hyperparameters used for
pre-training BART, as well as for fine-tuning GPT-
2, GPT-J, BART, and T5. We conduct a hyperpa-
rameter search to check which values led to the
best performance. For learning rate, we tried {1e-6,
5e-6, 1e-5, 2e-5, 2e-5, 1e-4}; for batch size, we
tried {2,4,8,16}; and for number of epochs, we
tried {2, 5, 10, 20}. These search bounds were
selected based on known commonly-used values
for these models. We start with a baseline model
of lr=2e-5, bsz=8 and 10 epochs, and individu-
ally change each setting to investigate its effect on
performance. One trial was conducted per hyper-
parameter setting. We use a maximum sequence
length of 256. In terms of other hyperparameters,
we mostly used default values which are known to
work for these models. This includes the warmup
steps and learning rate decays, which we detail
in §4.1. (Note: the above hyperparameter search
settings are for fine-tuning. We could not do an ex-
tensive hyperparameter search for pre-trainig due
to time constraints. We ran pre-training twice to
test the effect of learning rate 1e-4 vs. 5e-4, and
ultimately selected 5e-4.)

Model selection was done based on the epoch
with the best validation loss. We report the best
validation losses for each training process below:
GPT-2 pre-training=0.77, GPT-2 fine-tuning (TT-
Prompt)=1.08, GPT-2 fine-tuning (TT-Keyword)
=0.95, GPT-J fine-tuning (TT-Prompt)=1.23, GPT-
J fine-tuning (TT-Keyword)=1.19, BART-fine-

tuning (TT-Keyword) = 1.31, BART-fine-tuning
(TT-Prompt) = 1.30, T5-fine-tuning (TT-Keyword)
= 1.45, T5-fine-tuning (TT-Prompt) = 1.52.

All training was done on Google Colaboratory
environments using V100 GPUs with 16GB mem-
ory. Pre-training GPT-2 for the p2p model took 90
minutes per epoch, and pre-training BART for the
p2g model took 70 minutes per epoch. In terms
of fine-tuning on TT-Corp, GPT-2 takes around
1 minute per epoch, GPT-J around 2 minutes per
epoch, BART around 1 minute per epoch, and T5
around 1 minute per epoch.

D Additional Qualitative Examples

In §5.3, we only report the best performing models
for each of the methods. In Table 8, we extend
this to all models for all the methods. We also
provide a few more examples for both TT-Prompt
and TT-Keyword.
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Method Text
Inputs (ex.1) The pirates pirated ...
Gold out. The pirates pirated private property.
g2g (GPT2) The pirates pirated the property.
g2g (GPTJ) The pirates pirated the pepper pot.
Style T. (BART) The pirates pirated more than $50 million in online gambling in 2013.
Style T. (T5) The pirates pirated more than $50 million in online gambling in 2013,

according to a government-backed study.
PAN-P The pirates pirated a little grape crepe. The pirate dread cratered a little.
PAN-J (GPT2) The pirates pirated the music and the Roman river carried the criminals

off.
PAN-J (GPTJ) The pirates pirated the paired prince with a pair of paired pistols.
Inputs (ex.2) If you stick ...
Gold out. If you stick a stock of liquor in your locker, it is slick to stick a lock

upon your stock or some joker who is slicker is going to trick you of
your liquor if you fail to lock your liquor with a lock?

g2g (GPT2) If you stick a weight silky liquor on your wrist, you should stick a
weight silky liquor on your inner wrist.

g2g (GPTJ) If you stick two sticks together, you get two sticks tied together.
Style T. (BART) If you stick with the same line, you have different things going for you.
Style T. (T5) If you stick with the same line, you have different things going for yout.
PAN-P If you stick a stock of land in a lamb and a lamb in a farm.
PAN-J (GPT2) If you stick a stock of liquor in your locker it is slick to put a lock on

your stock.
PAN-J (GPTJ) If you stick a stock stick on the stock stick you stick, who’s going to

stick it on the stock stick you stick?
Inputs (ex.3) I saw Susie ...
Gold out. I saw Susie sitting in a shoe shine shop.
g2g (GPT2) I saw Susie sitting on the sofa with a big black basket of biscuits.
g2g (GPTJ) I saw Susie sitting on a buttercup.
Style T. (BART) I saw Susie and then she came and took me to the kitchen where we

cleaned.
Style T. (T5) I saw Susie and then she came and took me to the kitchen where we

cleaned up and we started talking about the new dog," she recalled.
PAN-P I saw Susie sitting on a seasawe horse. and I saw haunted houses.
PAN-J (GPT2) I saw Susie sitting in a speck of sheared sheep’s sheep’s sheep’s sheep

skin.
PAN-J (GPTJ) I saw Susie sitting on a butter bucket with a black butter bucket sat on

her butter bucket.
Method Text
Inputs (ex.4) needles, noodles, kneadle, don, need
Gold out. I don’t need your needles to kneadle noodles.
g2g (GPT2) Don’s dirt feet meet your earrings at the bottom of the dirt cany bore

trail.
g2g (GPTJ) One noodle needs a kneeler to lean on
Style T. (BART) Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
Style T. (T5) Near the end of his reign, Leiblau had to send a delegate to Parliament,

to support his friend King Gules of Northumbria.
PAN-P If Donna Needles Need, who is Needles Nood, and the Need?
PAN-J (GPT2) If you crave a soft chew toy, buy a chew toy that needs to chew.
PAN-J (GPTJ) Don’t kneadle a knuckle with a knuckle needle!
Inputs (ex.5) thieves, thankful, thanked, thirty, thursday
Gold out. The thirty-three thankful thieves thought that they thanked the other

thirty-three thankful thieves throughout Thursday.
g2g (GPT2) Twelve thieves today took sixty dollars from Thies’ birthday party.
g2g (GPTJ) The thieve thanked the thankful thief on Thursday.
Style T. (BART) Thanked by Thnx for the idea, I thought it was an idea that I wanted to

do a spoof of Thankful Thankful and Thnx.
Style T. (T5) Thanked by Thnx for the idea, I thought it was an idea that I wanted

to do a spoof of Thankful Thankful and Thnx, so it went to the video
website, Twitter, and did some research on a T shirt.

PAN-P Thankful thieves thought that they thought they thrilled the throne
throughout Thursday.

PAN-J (GPT2) I’m grateful tonight for thanking the valiant brave thieves.
PAN-J (GPTJ) These sixty sheiks sent these thousand and sixty sheiks sixty sheiks

thanking them for shouting these sixty sheiks sixty shouts on Thursday.
Inputs (ex.6) snails, silently, sailed, slimy
Gold out. Six slimy snails sailed silently.
g2g (GPT2) Six silently sullen sullen snails slid silently across the sea.
g2g (GPTJ) Slimy snails sailed silently.
Style T. (BART) The ship was spotted by U.S. Coast Guard helicopter from a distance

of four thousand, seven hundred nautical miles.
Style T. (T5) The ship was spotted by Uas was was was was by by by by by by by.
PAN-P Sailed from static line seven and all silently from Trondheim at seven

on Sunday night.
PAN-J (GPT2) Sailing silently on the sleigh.
PAN-J (GPTJ) Six squandered snails silently sailed in a slivy ship.

Table 8: Additional qualitative examples for both TT-Prompt
(first 3) and TT-Keyword (last 3): literal input, gold out-
put, g2g (GPT-2), g2g (GPT-J), Style Transfer (BART),
Style Transfer (T5), PANCETTA-P (GPT-2+BART),
PANCETTA-J (GPT-2), and PANCETTA-J (GPT-J).
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