@inproceedings{zhao-etal-2023-loft,
title = "{L}o{FT}: Enhancing Faithfulness and Diversity for Table-to-Text Generation via Logic Form Control",
author = "Zhao, Yilun and
Qi, Zhenting and
Nan, Linyong and
Flores, Lorenzo Jaime and
Radev, Dragomir",
editor = "Vlachos, Andreas and
Augenstein, Isabelle",
booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.eacl-main.40",
doi = "10.18653/v1/2023.eacl-main.40",
pages = "554--561",
abstract = "Logical Table-to-Text (LT2T) generation is tasked with generating logically faithful sentences from tables. There currently exists two challenges in the field: 1) Faithfulness: how to generate sentences that are factually correct given the table content; 2) Diversity: how to generate multiple sentences that offer different perspectives on the table. This work proposes LoFT, which utilizes logic forms as fact verifiers and content planners to control LT2T generation. Experimental results on the LogicNLG dataset demonstrate that LoFT is the first model that addresses unfaithfulness and lack of diversity issues simultaneously. Our code is publicly available at \url{https://github.com/Yale-LILY/LoFT}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2023-loft">
<titleInfo>
<title>LoFT: Enhancing Faithfulness and Diversity for Table-to-Text Generation via Logic Form Control</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yilun</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhenting</namePart>
<namePart type="family">Qi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Linyong</namePart>
<namePart type="family">Nan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lorenzo</namePart>
<namePart type="given">Jaime</namePart>
<namePart type="family">Flores</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dragomir</namePart>
<namePart type="family">Radev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2023-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Dubrovnik, Croatia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Logical Table-to-Text (LT2T) generation is tasked with generating logically faithful sentences from tables. There currently exists two challenges in the field: 1) Faithfulness: how to generate sentences that are factually correct given the table content; 2) Diversity: how to generate multiple sentences that offer different perspectives on the table. This work proposes LoFT, which utilizes logic forms as fact verifiers and content planners to control LT2T generation. Experimental results on the LogicNLG dataset demonstrate that LoFT is the first model that addresses unfaithfulness and lack of diversity issues simultaneously. Our code is publicly available at https://github.com/Yale-LILY/LoFT.</abstract>
<identifier type="citekey">zhao-etal-2023-loft</identifier>
<identifier type="doi">10.18653/v1/2023.eacl-main.40</identifier>
<location>
<url>https://aclanthology.org/2023.eacl-main.40</url>
</location>
<part>
<date>2023-05</date>
<extent unit="page">
<start>554</start>
<end>561</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LoFT: Enhancing Faithfulness and Diversity for Table-to-Text Generation via Logic Form Control
%A Zhao, Yilun
%A Qi, Zhenting
%A Nan, Linyong
%A Flores, Lorenzo Jaime
%A Radev, Dragomir
%Y Vlachos, Andreas
%Y Augenstein, Isabelle
%S Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics
%D 2023
%8 May
%I Association for Computational Linguistics
%C Dubrovnik, Croatia
%F zhao-etal-2023-loft
%X Logical Table-to-Text (LT2T) generation is tasked with generating logically faithful sentences from tables. There currently exists two challenges in the field: 1) Faithfulness: how to generate sentences that are factually correct given the table content; 2) Diversity: how to generate multiple sentences that offer different perspectives on the table. This work proposes LoFT, which utilizes logic forms as fact verifiers and content planners to control LT2T generation. Experimental results on the LogicNLG dataset demonstrate that LoFT is the first model that addresses unfaithfulness and lack of diversity issues simultaneously. Our code is publicly available at https://github.com/Yale-LILY/LoFT.
%R 10.18653/v1/2023.eacl-main.40
%U https://aclanthology.org/2023.eacl-main.40
%U https://doi.org/10.18653/v1/2023.eacl-main.40
%P 554-561
Markdown (Informal)
[LoFT: Enhancing Faithfulness and Diversity for Table-to-Text Generation via Logic Form Control](https://aclanthology.org/2023.eacl-main.40) (Zhao et al., EACL 2023)
ACL