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Abstract
Most current popular subword tokenizers are
trained based on word frequency statistics
over a corpus, without considering informa-
tion about co-occurrence or context. Neverthe-
less, the resulting vocabularies are used in lan-
guage models’ highly contextualized settings.
We present SAGE, a tokenizer that tailors sub-
words for their downstream use by baking in
the contextualized signal at the vocabulary cre-
ation phase. We show that SAGE does a bet-
ter job than current widespread tokenizers in
keeping token contexts cohesive, while not in-
curring a large price in terms of encoding effi-
ciency or domain robustness. SAGE improves
performance on English GLUE classification
tasks as well as on NER, and on Inference and
NER in Turkish, demonstrating its robustness
to language properties such as morphological
exponence and agglutination.

1 Introduction

Much of the research space in current NLP is
focused on advancing models: modifying pre-
training objectives, improving network architec-
tures, adding tasks and schemes for downstream
evaluation. Limited work is dedicated to a crucial
step underlying all modern large language models
(LLMs), namely the tokenization phase. In order
to process a given string of text, an LLM must first
obtain a vector representation of the input by seg-
menting it into tokens. Since out-of-vocabulary
(OOV) items inhibit the performance of models,
current tokenizers produce tokens which are possi-
bly proper subsegments of input words, known as
subwords. This method, popularized by systems
such as WordPiece (Schuster and Nakajima, 2012),
Byte-Pair Encoding (BPE; Sennrich et al., 2016)
and UNIGRAMLM (Kudo, 2018), allows any word
to be represented by one or more tokens, removing
the OOV problem while allowing more flexibility
in determining the token vocabulary size, which
ultimately affects model speed (mostly through

BPE His son Raj ash ri Sud h ak ar has p enn ed
dial og ues and songs for some films that
were dubbed into Telugu .

SAGE His son Raj ash r i Sud h a k a r has penn
e d dial ogues and songs for some films
that were dubbed into Telugu .

BPE This gene is a pseud og ene in humans
and most other prim ates .

SAGE This gene is a pseud ogene in humans
and most other prim ates .

BPE The St o og es work for Mir acle Det ective
Agency ,

SAGE The St o o g e s work for Mir acle Det
ective Agency ,

Table 1: The token og is selected by BPE (vocabulary
of size 16,000) for achieving the frequency objective,
but is discarded by SAGE for failing to be contextually
coherent. These examples from the corpus demonstrate
some different contexts.

the softmax generation targets) and performance
(through better ability to represent less-frequent
words).

One potential pitfall of both BPE and UNI-
GRAMLM, as well as their proposed variants (He
et al., 2020; Provilkov et al., 2020), is that they are
trained on word frequency statistics alone, without
considering information about word co-occurrence
or contexts. At the same time, the resulting vocabu-
laries are used in highly contextualized settings, the
LLMs, where a single subword such as og might ap-
pear in very different contexts derived from words
like dial og ues and pseud og ene. We propose a sys-
tem which prepares subwords for their downstream
use by baking in the contextualized signal at the
vocabulary creation step. Our model, SAGE, uses
the SKIPGRAM objective (Mikolov et al., 2013)
over a corpus as the basis for iteratively eliminating
candidate subwords from an initial large vocabulary
until the desired vocabulary size has been reached.
As Table 1 shows, SAGE succeeds in removing the
ambiguous og token, facilitating distinct contex-
tualization procedures for the example sentences
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(taken from Wikipedia).
We present our algorithm, SAGE, which is pred-

icated on iterative pruning of contextually noisy
tokens from the vocabulary, and compare its effects
on token properties and context cohesion with BPE
both in- and out-of-domain, in English and Turkish.
We then evaluate its performance on downstream
tasks by training a BERT-based LLM (Devlin et al.,
2019) on a vocabulary produced by both tokeniz-
ers in both languages, demonstrating substantial
improvements on most English GLUE tasks and
on NER, as well as Turkish NLI and NER. We em-
phasize that as opposed to most current tokenizer
variants, our model is a “plug and play” substitu-
tion for any subword token vocabulary, requiring
no modification in the inference protocol (or code)
when pre-training or applying an applicable LLM
from a popular shared library.1

2 Subword Vocabulary Creation

The methods used to tokenize corpus in order to
later assign tokens with continuous vectors, or em-
beddings, have evolved over the years. Initially,
each word in the corpus was assigned its own em-
bedding (Collobert and Weston, 2008; Mikolov
et al., 2013). OOVs, i.e. words not appearing in
the original training corpus or below a certain fre-
quency threshold, would receive a special (but iden-
tical) “UNK” vector. Subword tokenizers (Schuster
and Nakajima, 2012; Wu et al., 2016) were intro-
duced to alleviate this issue, allowing segmentation
of all text into embeddable units (assuming no un-
seen characters, a much more relaxed constraint for
languages using alphabetical scripts). The training
process used to create a subword vocabulary from
which the model then decodes text input involves
optimizing an encoding objective over a large cor-
pus. To date, all tokenizers used in practice in
large models focus on efficiency and information-
theoretic objectives, and reduce the corpus to a
unigram frequency count of space-delimited words,
reducing calculation time but losing all contextual
signal. SAGE reintroduces the contextual depen-
dencies between words into vocabulary creation
via a two-stage process, namely over-application
of BPE followed by iterative pruning using ideas
inspired by UNIGRAMLM and SKIPGRAM. We
briefly present these algorithms before tying them
together into SAGE.

1Our code and models are available at www.github.
com/MeLeLbgu/SaGe.

Algorithm 1 Byte-pair encoding vocabulary cre-
ation (Gage, 1994; Sennrich et al., 2016)

Input: Corpus C, Vocabulary final size V .
Output: Vocabulary V of size V (ordered).

1: procedure BPE(C, V )
2: V ← All unique characters in C
3: while |V| < V do ▷ Merge tokens
4: ⟨tL, tR⟩ ←Most frequent bigram in C
5: tNEW ← tL ⊕ tR ▷ Make new token
6: V ← V ⊕ [tNEW ]
7: C.ReplaceAll(⟨tL, tR⟩, tNEW )
8: end while
9: return V

10: end procedure

Byte-Pair Encoding. The BPE algorithm cre-
ates a vocabulary “bottom-up”, starting with all sin-
gle characters from the alphabet, iteratively adding
tokens until reaching the desired vocabulary size.
In each iteration, the added token is the concate-
nation of the most frequent adjacent pair of ex-
isting tokens (see Algorithm 1). The default set-
ting of the algorithm’s most popular implementa-
tion (Kudo and Richardson, 2018) restricts token
addition within word boundaries, facilitating train-
ing from unigram frequencies. In addition, LLM
tokenizers using BPE (Liu et al., 2019; Radford
et al., 2019; Wolf et al., 2020) decode sequences
not by applying merges by order of the vocabulary,
as originally dictated by the algorithm, but through
greedy largest-subsequence left-to-right inference.

Unigram Language Model. UNIGRAMLM of-
fers a top-down vocabulary creation process, start-
ing with an initial vocabulary of all substrings in
the input corpus and pruning tokens iteratively until
reaching the desired vocabulary size. The pruning
procedure involves calculating the overall unigram
likelihood of the corpus with the current vocabulary
versus a vocabulary lacking the candidate pruning
token (see Algorithm 2 for details), which we refer
to as the ablation objective. Under this system,
decoding is ideally performed by considering prob-
abilities of all possible segmentations using, e.g.,
the Viterbi algorithm; again, common practice is to
use left-to-right greedy decoding.

Skipgram Objective. The SKIPGRAM objec-
tive (Mikolov et al., 2013) formalizes the relation
between a target token t and its context, asking
whether context tokens c within a window Wt of
pre-defined size can be predicted from t. These
predictions are done via sigmoid activation over
the inner product of embeddings trained for targets
(E(T )) and contexts (E(C)). When aggregated over
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Algorithm 2 UNIGRAMLM vocabulary creation
(Kudo, 2018). n argminX denotes the n bottom-
ranked elements in X .

Input: Corpus C, Vocabulary final size V , pruning batch
size k.

Output: Vocabulary V of size V .
1: procedure UNIGRAMLM(C, V )
2: V ← All substrings occurring more than once in C
3: while |V| > V do ▷ Prune tokens
4: X(j) ← tokenize(C, V)

5: L(V)←
|C|∑

j=1

log
(
P (X(j))

)

6: for all t ∈ V do: ▷ Calculate ablation objective
7: losst ← L(V \ {t})− L(V)
8: end for
9: P ← min(k, |V| − V ) argmint∈V(losst)

10: V ← V \ P ▷ Prune
11: end while
12: return V
13: end procedure

all tokens in a corpus, SKIPGRAM can be used as a
total likelihood measure, approximating its overall
contextual cohesion:

L(V, C) = −
∑

t∈tok(C,V)

∑

cj∈Wt

log
(
σ(E

(T )
t ·E(C)

cj )
)
.

(1)

As token vocabularies or their inference methods
change, so do the target sequences and their con-
texts, resulting in differences in aggregated likeli-
hood which can then act as scores comparing one
tokenization to another. We use this behavior as
the ablation objective for SAGE.

3 SAGE Vocabulary Creation

SAGE2 is a top-down tokenizer, following UN-
IGRAMLM’s general procedure, incorporating a
SKIPGRAM objective as its vocabulary trimming
rule. Given an initial vocabulary V and a corpus C,
SAGE computes a SKIPGRAM embedding space
over V which provides it with an overall likelihood
over C as in (1). It then proceeds to calculate the
loss of each token in the vocabulary were it to be
removed, eliminating the tokens incurring minimal
loss and re-tokenizing the corpus according to the
updated vocabulary, repeating this procedure until
reaching the desired vocabulary size V . Having
learned this vocabulary, downstream inference pro-
ceeds exactly as in the other segmentation-based
methods, in a greedy left-to-right manner. SAGE

can also be adapted to anticipate other decoding

2The name is not an acronym; it is intended to evoke
SkipGram while maintaining the “suffix” of BPE.

Algorithm 3 SAGE vocabulary creation.
n argminX denotes the n bottom-ranked elements
in X .

Input: Corpus C, Vocabulary final size V , basic tok-
enizer T , overshoot factor n, pruning batch size k, likelihood
recalculation frequency m, size of pruning candidate set M ,
embedding recalculation frequency l.

Output: Vocabulary V of size V .
1: procedure SAGE(C, V )
2: V ← T (C, n · V )
3: i← 0
4: while |V| > V do
5: if i ≡ 0 (mod l ×m) then
6: EV ←Word2Vec(V) ▷ Embedding table
7: end if
8: L(V, C)← SGObj(EV , C) ▷ Total likelihood (1)
9: if i ≡ 0 (mod m) then ▷ Update bottom set

10: for all t ∈ V do:
11: losst ← L(V \ {t}, C)− L(V, C)
12: end for
13: Vbot ←M argmint∈V(losst)
14: else ▷ Update losses for bottom set
15: for all t ∈ Vbot do:
16: losst ← L(V \ {t}, C)− L(V, C)
17: end for
18: end if
19: P ← min(k, |V| − V ) argmint∈Vbot

(losst)

20: Vbot ← Vbot \ P ▷ Prune
21: V ← V \ P
22: i← i+ 1
23: end while
24: return V
25: end procedure

algorithms, by changing the re-tokenization steps
accordingly.

In practice, applying the full process described
above introduces multiple sources of considerable
computational complexity: for example, calculat-
ing the ablation objective for each token in each it-
eration produces a quadratic amount of calculations
over the entire corpus; recalculating embeddings
for an updated vocabulary is similarly unreason-
able to perform at each iteration. We ameliorate
these and other sources of complexity using a se-
ries of heuristics found in preliminary experiments
to be minimally disruptive to precision of likeli-
hood calculations. We will now describe these
heuristics, all depicted in Algorithm 3. First, in-
stead of initializing the vocabulary as the full set
of possible character sequences in the corpus, as in
UNIGRAMLM, we use any existing noncontextual
tokenizer such as BPE to learn a vocabulary larger
than V by a factor of n, and begin the pruning pro-
cess from there. Next, instead of removing a single
token from the bottom of the loss-ranked vocab-
ulary, we remove a batch of the k bottom tokens
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Sentence fragment . . . use of an include directive is when referring to . . .
Tokenization using V use of an includ [e direct ive is when] ref er r ing to
Tokenization using V \ { includ} use of an inc l u [de direct ive is when] ref er r ing to

Table 2: The effect of retokenization on a context window of width 2 (in brackets) surrounding a target token (in
bold). A left-side context token has been replaced as a result of an out-of-window vocabulary ablation.

each time, as does UNIGRAMLM.3 To avoid fre-
quent loss recalculation, we recompute the entire
likelihood set once every m ablation steps, and only
keep the bottom M tokens as pruning candidates
for the next m steps. Our preliminary experiments
support this decision, as we found the ranked list of
losses tends to stay relatively stable over dozens of
batch-pruning iterations. Lastly, to avoid the costly
re-training of the embedding matrix for all tokens
given the updated corpus, which only results in
minor changes in likelihood during subsequent iter-
ations, we only perform it every l iteration batches,
i.e. after the ablation of k ×m× l tokens. n, k, l,
m and M are all algorithm hyperparameters tuned
empirically based on desired runtime, corpus size
and vocabulary size.

Contextual Loss. In order to calculate the per-
token SKIPGRAM likelihood loss, all sentences
where a token t occurs need to be re-segmented
according to V \ {t}, and their new likelihoods
recorded. To support performing this calculation
on a large scale, we maintain a mapping of tokens
to sentences containing them, as well as these sen-
tences’ current likelihoods. This must be done at
the sentence level rather than the window level,
since a remaining suffix from an out-of-window
re-tokenization may combine with in-window char-
acters and form different token sequence replace-
ments at a given stage. Consider the example in
Table 2, where re-tokenization results in the re-
placement of a context token for a distant target.

Negative Sampling. The original SKIPGRAM

objective uses negative samples to estimate con-
text probabilities. Since our application of SKIP-
GRAM within the vocabulary creation algorithm
(independent of the embeddings training proce-
dure) includes only likelihood estimation with no
parameter updates, we do not sample negative to-
kens, a process which would introduce substantial
noise and complexity.

3As in UNIGRAMLM and other ablation-based vocabu-
laries, single-character tokens are never removed from the
vocabulary, in order to allow for all in-alphabet words to be
tokenized.

4 SAGE Vocabulary Properties

For an analysis of our modified algorithm’s advan-
tages, we trained vocabularies of a pre-determined
size using both BPE and SAGE. We selected
|V| = 16, 000, and obtained corpora for English
(750,000 lines from the August 2022 Wikipedia
dump) and Turkish (the entire text of the September
2022 Wikipedia dump), opting for languages that
share the Latin alphabet but differ in family (Indo-
European vs. Turkic) and, crucially, in morpholog-
ical properties: English is a low-exponence, low-
synthesis language, while Turkish features multiple
inflectional exponence and high verbal synthesis,
as well as highly agglutinative morphology (Bickel
and Nichols, 2013a,b). We used the following hy-
perparameter settings to compute the vocabularies:
Initial vocab size 20, 000 (or n = 1.25), l = 4,
k = 100, M = 1500, m = 10. We used the Gen-
sim package to train the SKIPGRAM models (Re-
hurek and Sojka, 2011), and Sentencepiece (Kudo
and Richardson, 2018) to obtain the initial BPE
vocabularies.4 More hyperparameters are detailed
in Appendix A.

We present an analysis of the resulting vocabu-
laries, highlighting the advantages and trade-offs
exhibited by context-based subword tokenization.
Generally speaking, most of the tokens discarded
from SAGE’s initial vocabulary appear in the base-
line BPE’s final vocabulary. Among the differ-
ences between the vocabularies are many short to-
kens that appear in BPE’s but not SAGE’s, proper
substrings of longer tokens also appearing in the
BPE vocabulary. This is due to BPE’s bottom-up
merge table construction, which forces retention of
the entire chain of tokens created: if the is part of
the vocabulary, either th or he must also be there.
While essential for the original intended decoding
process, actual implementations of greedy decod-
ing have no need for this property. SAGE’s ini-
tial vocabulary shares this characteristic, but the
trimming process allows any token to be ablated,

4Since BPE augments its vocabulary iteratively, the base-
line BPE vocabulary is a proper subset of that used to initialize
SAGE.
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Figure 1: Token length distribution of BPE’s vocabulary
vs. SAGE’s on English.

More frequent in
SAGE BPE

e s es ic
ing ist ings ff
ation ate ations ates

Table 3: Tokens with high difference in frequency be-
tween tokenizations (English models).

including those in the middle of merge chains. An-
other difference found between the vocabularies
is the strong preference of SAGE for word-initial
tokens. 83% of the tokens that appear in SAGE’s
vocabulary but not in BPE’s are word-initial, com-
pared to only 22% of the BPE-only tokens. This is
reasonable, since a token surviving SAGE’s abla-
tion steps exhibits high loss for the condition of its
removal, which is arguably the case when a nearby
target word needs to predict a word-initial context.

Token Length. Figure 1 shows a histogram of
token lengths (in characters) for the 16,000-token
SAGE and BPE vocabularies in English (results on
Turkish are similar). SAGE clearly selects longer
tokens for its vocabulary, again a sensible outcome
given their higher chance of being contextually
coherent. The difference is most stark with tokens
of length 2 and 3; when considering only tokens
appearing in exactly one of the final vocabularies,
we find that 56% of BPE-only tokens are of length
2 and 3, while 55% of SAGE-only tokens are of
length 5 and above.

Token Frequency. We compute the frequency of
tokens in the encoding form of the English train-
ing corpus, once using SAGE vocabulary and once

Figure 2: Number of subwords required to tokenize a
word, collected over the original English training cor-
pus.

using BPE’s. In Table 3 we show some of the
tokens with the biggest difference in frequency be-
tween SAGE and BPE tokenizations. We can see
SAGE reverts to single-character tokens consider-
ably more often than BPE (also demonstrated in
the last example in Table 1). We view this as a fea-
ture of context-based tokenization—its vocabulary
is partitioned between (mostly short) tokens that are
highly ambiguous in context and (mostly long) to-
kens that have coherent contexts. At the same time,
BPE is rife with tokens that are medially ambigu-
ous contextually, whose resulting embeddings can
be neither useful nor completely ignorable, adding
noise to the representation sequences. As a result,
SAGE breaks down complex suffixes, which in
English are compositional, into their constituent
morphology. The suffix ings is thus dismantled to
ing s, whereas BPE reserves a token for it, mostly
unhelpful in itself.

Subword Fertility. Fertility, as defined in the
statistical machine translation literature, refers to
the average number of subwords produced per to-
kenized word. Figure 2 exhibits a histogram of
all English corpus words by their subword length,
using the BPE vocabulary and the SAGE vocabu-
lary. Although SAGE retains more words as single
tokens, it trades them off with more words hav-
ing five subwords or more, compared with BPE’s
abundance of words with 2 and 3 subwords. This
follows the trend described so far, of SAGE’s pref-
erence for dismantling unknown words into mean-
ingless single-character tokens rather than confus-
ing, ambiguous length-2 and length-3 tokens. We
believe that BPE’s behavior harms text understand-
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Figure 3: Number of distinct neighbors each token encounters in a width-5 window, top 200, Turkish.

ing in suggesting that these ambiguous fragments
(consider “og”) have some meaning that an LLM
can try and learn, whereas SAGE’s single-character
breakdown indicates a word that’s truly unknown
and cannot be inferred by composing constituent
in-vocab subwords.

Fertility translates to a trade-off in encoding
efficiency to SAGE’s contextual advantage: a sam-
ple of 150K lines from English Wikipedia is en-
coded by 4 million BPE tokens, optimizing only
an information-theoretic objective, whereas SAGE

produces 4.5 million. Having said that, this inef-
ficiency might be further offset during LLM pre-
training: we propose that contextually coherent
tokens will require fewer update steps in order to
achieve useful embedding parameters, helping the
model converge faster compared to BPE tokens.
We leave testing this hypothesis to future work.

Contextual Exponence. To determine the degree
to which SAGE effectively optimizes tokens’ con-
textual soundness, which is its ultimate goal, we
plot the number of distinct neighbors each token
encounters throughout the training corpus, ranked
from high to low, in Figure 3. The very top of
the ranking is occupied by single-character tokens
which are context-null by design, which SAGE

makes the most of by placing in almost all contexts.
After a few dozen tokens, SAGE’s context counts
dip below BPE’s, a trend which continues all the
way through the vocabulary, making up a more
contextually coherent set. These findings hold for
English as well as Turkish, and replicate when tak-
ing a context window of size 2, different from that
used during SAGE construction.

Figure 4: Distribution of token neighbors/frequency
ratio for a width-5 window in English (top) and Turkish
(bottom); BPE (left) and SAGE (right)
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These findings can arguably be attributed to a fre-
quency artifact, where SAGE simply outputs more
tokens with lower frequency in order to provide
them with fewer contexts. We thus present a nor-
malized analysis in Figure 4, depicting the ratio
between each token’s number of unique neighbors
and its frequency, distributed over the entire vocab-
ulary. SAGE provides substantially lower ratios in
both languages, supporting our original claim.

4.1 Robustness to Domain Change

One possible limitation of the SAGE objective is
that it increases the reliance on the original training
corpus compared to word-count-only algorithms.
In and of itself, this should not necessarily be
viewed as a problem, assuming the collected cor-
pus is a faithful representative of an LLM’s use
case.5 To this end, we collected comparable cor-
pora from non-Wikipedia domains and ran our anal-
ysis on the SAGE and BPE vocabularies trained on
Wikipedia. Our findings suggest that while SAGE

loses its relative advantage in context-dependence
over BPE, it does not fall behind it (i.e. it has not
overfit to the Wikipedia domain). We present a
fertility chart for an English corpus of 7.5M words
from Quora questions6 in Figure 5, depicting simi-
lar trends to that on Wikipedia (Figure 2) but with
smaller differences between SAGE and BPE; the
neighbor-to-frequency ratio aggregation chart in
Figure 6 differs from Figure 4 (top) substantially
but shows that SAGE and BPE tokens do not di-
verge significantly on this measure. We repeated
the experiment on English legal text centered on
US congress bills (Henderson et al., 2022) and on a
2.6M-word Turkish corpus of online reviews,7 and
observed similar trends.

These results indicate that while a consider-
able amount of the longer tokens preferred by
SAGE were selected to optimize contextuality in
the source domain, as it was designed to do, there
is no “short blanket” effect for text originating in
different domains. This could either be due to wide-
scope advantages of some of the tokens selected by
SAGE, or due to an intrinsic deficiency in BPE’s
long-tail tokens, or a combination of both.

5Indeed, existing literature recommends adding pre-
training steps on new domains before fine-tuning models for
them (e.g., Han and Eisenstein, 2019).

6https://huggingface.co/datasets/
chenghao/quora_questions

7https://huggingface.co/datasets/
cansen88/turkishReviews_5_topic

Figure 5: Number of subwords required to tokenize a
word using the original Wikipedia-trained vocabularies,
collected over a English Quora questions corpus.

Figure 6: Distribution of token neighbors/frequency
ratio for a width-5 window in English, based on a
Wikipedia-trained vocabulary and collected over a En-
glish Quora questions corpus.

5 Downstream Evaluation

In order to evaluate the utility of our tokenization
algorithm for major NLP tasks, we compare SAGE

to a BPE vocabulary of the same size by means
of pre-training a BERT-parameterized model (De-
vlin et al., 2019) using an expedited training
scheme (Izsak et al., 2021). We then evaluate the
LLM’s performance both on sequence classifica-
tion via the English GLUE benchmark (Wang et al.,
2018) and the Turkish partition of XNLI (Conneau
et al., 2018), and on named entity recognition in
English (Wang et al., 2019) and Turkish (Al-Rfou
et al., 2015). We use the default settings from
Huggingface’s library implementations of the fine-
tuning processes (Wolf et al., 2020) and do not
perform hyperparameter tuning for either model.

We present our results on sequence-level tasks
in Table 4. SAGE tokenization improves perfor-
mance on nearly all tasks with particularly sub-
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MRPC MNLI COLA QNLI SST2 STSB QQP XNLItur
(F1) (Acc %) (Matt.) (Acc %) (Acc %) (Pear.) (Acc %) (Acc %)

BPE .7918 62.76 .0777 66.17 80.54 .3094 82.75 41.20
SAGE .8004 64.00 .0985 74.83 79.85 .3387 84.69 46.46

Table 4: Performance on sequence-level tasks for BERT models trained on different 16k-size vocabularies. XNLItur
is Turkish, the rest are English GLUE tasks. All results averaged over three runs on the dev set with different seeds.

English Turkish

BPE .7142 .4660
SAGE .7502 .5475

Table 5: Performance (F1) on NER tasks of BERT Turk-
ish and English models trained on different subword
vocabularies of size 16,000. All results averaged over
three runs on the dev set with different seeds.

stantial improvements (1.3–8 accuracy points) on
NLI datasets. Results on NER are presented in
Table 5, again showing SAGE’s dominance over
BPE. Due to the length of the training pipeline lead-
ing from vocabulary creation through pre-training
to fine-tuning, it is difficult to find individual ex-
amples where difference in tokenization leads to
direct changes in prediction; we attribute the con-
sistent overall gains in downstream performance
mostly to the LLM pre-training step, where the
design of SAGE’s context-friendly vocabulary en-
ables a more coherent contextual signal to flow
through the transformer layers during backpropaga-
tion. We note that in general, our models fare worse
on GLUE tasks compared to Izsak et al. (2021).
We attribute this in part to the smaller token vocab-
ulary size, and more substantially to the smaller
pre-training corpus we used in our experiments.

6 Related Work

In recent years, a growing body of research has
demonstrated the shortcomings of existing tok-
enization algorithms in the context of represent-
ing linguistic phenomena in different languages
across different tasks (Banerjee and Bhattacharyya,
2018; Klein and Tsarfaty, 2020; Hakimi Parizi and
Cook, 2020; Rust et al., 2021; Maronikolakis et al.,
2021; Mielke et al., 2021; Hofmann et al., 2021),
as well as the statistical properties affecting their
downstream performance (Bostrom and Durrett,
2020). Our work addresses the concerns raised in
this line of work by introducing an improved sub-
word vocabulary creation method which leverages

the contextual aspects of the main intended use
case, namely LLMs. Previous work towards this
goal includes algorithms which offer robustness
within an existing subword vocabulary (Provilkov
et al., 2020; He et al., 2020; Hiraoka, 2022), neces-
sitating modification of either training, inference,
or both procedures in the context of LLMs. Others
have considered tuning the size of a subword vo-
cabulary (Salesky et al., 2020), or selecting from
an enlarged set of possible segmentations (Asgari
et al., 2020), for optimizing performance on down-
stream tasks.

Some alternative tokenization methods focus on
the application of a model which considers the
expected downstream tasks together with the pre-
training corpus (Hiraoka et al., 2020), to the de-
gree of jointly optimizing the tokenizer with the
downstream model (Hiraoka et al., 2021). In ad-
dition to the massive changes in training and in-
ference procedures this approach incurs, we note
that it is difficult to apply to large contextualized
models due to the long path from tokenization
to prediction; SAGE overcomes this problem by
“nudging” only the LLM vocabulary itself towards
a contextualization-friendly segmentation.

The concept of subword tokenization made its
rise alongside that of contextualized representa-
tions, meaning that little work exists where SKIP-
GRAM or other static models are trained over
proper subword segmentations. Recently, Kaushal
and Mahowald (2022) did so for a proof-of-concept
of a spelling prediction model, in lieu of training
full LLMs. To our knowledge, no work to date has
used a static embedding-based objective to score
token sequence likelihood for a separate task (as
we do for vocabulary trimming).

Finally, we acknowledge the recent efforts
to do away with tokenization altogether, be it
through character-only (Clark et al., 2022) or byte-
only (Xue et al., 2022) models, or through encoding
characters visually and passing them through a vi-
sion model (Salesky et al., 2021; Rust et al., 2022).
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These represent an even more radical departure
from the established application of LLMs, and we
look forward to testing their abilities against our im-
proved contextual subword tokenization methods.
We note that while these models have been fac-
ing issues regarding scaling, mostly on the decod-
ing side, SAGE vocabularies are ready to be used
immediately within existing popular LLM imple-
mentations. Furthermore, recent work has shown
the limited utility of character-level transformers
in semantic tasks, even for morphologically rich
languages with nontrivial orthography-morphology
relations (Keren et al., 2022).

7 Conclusion

In this work, we introduced SAGE, a context-aware
tokenizer built using insights from BPE, UNI-
GRAMLM, and SKIPGRAM, and showed that it
achieves better results when used in an LLM-pre-
train-then-fine-tune schema on two typologically
distant languages on both the sequence and token
levels. We believe that further investigation into
incorporating context in tokenization models can
improve results even further, and intend to also
extend our efforts toward other languages and writ-
ing systems, as well as to multilingual tokenizers.
For example, we plan to apply SAGE in the con-
text of Abjads like Hebrew and Arabic, as well
as languages written in alphasyllabaries such as
Devanagari.

Within SAGE itself, there is room for improve-
ment. The algorithm is still relatively slow, taking
roughly a day to run on a strong CPU, making it dif-
ficult to apply to a truly large corpus, to start from
a larger initial vocabulary, or to conduct exhaus-
tive search over the hyperparameters. We intend to
keep optimizing it, and continue evaluation against
other subword and character-only schemas.

Limitations

We acknowledge several limitations of SAGE, a
novel algorithm still in its development stages.
First, scaling the vocabulary creation framework
up from corpus-level unigram statistics to context
dependence incurs many points where linear fac-
tors turn into quadratic, and worse. We introduced
several heuristics to alleviate this issue in §3, how-
ever SAGE still takes longer to train compared to
BPE and other tokenizers, by roughly a factor of
ten. While having no effect on downstream pre-
training and fine-tuning steps, it does mean hy-

perparameters are more difficult to tune. Second,
the prohibitive resources required to implement
a full LLM pipeline has limited our downstream
evaluation setup to ten individual tasks on two lan-
guages. Ideally, as more languages with more di-
verse scripts and typological properties are exam-
ined, better generalizations can be made about the
utility of integrating context into subword tokenizer
vocabularies. Finally, we still do not have a well-
formed theory of integrating multiple domains, lan-
guages, or scripts together into a single vocabulary.
This question has interested researchers in recent
years (e.g., Chung et al., 2020; Rust et al., 2021;
Zhang et al., 2022), yet a tokenizer-internal solu-
tion (as opposed to data balance manipulation) still
seems to have eluded the community. This question
affects SAGE more than other tokenizers, given its
reliance on context, which changes starkly when
considering multiple sources of text in unison.
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Final Vocab Size 16K
Initial Vocab Size 20K
k (tokens to prune each batch) 100
M (size of pruning candidate set) 1500
m (likelihood recalculation frequency) 10
l (embedding recalculation frequency) 4
SAGE window size 5
Word2Vec window size 5
Word2Vec vector dimension 50
Word2Vec negative samples 15

Table 6: Hyperparameters for vocabulary creation.

A Hyperparameters

In Table 6, 7, and 8, we present the hyperparame-
ters used for training the various elements in our
experiments.

B Computing Resources

For our experiments we used Quadro RTX 8000
GPU.

layer norm type pytorch
model type bert-mlm
hidden act gelu
hidden size 1024
num hidden layers 24
num attention heads 16
intermediate size 4096
hidden dropout prob 0.1
attention probs dropout prob 0.1
encoder ln mode pre-ln
lr 1e-3
train batch size 4032
train micro batch size per gpu 32
lr schedule time
curve linear
warmup proportion 0.06
gradient clipping 0.0
optimizer type adamw
weight decay 0.01
adam beta1 0.9
adam beta2 0.98
adam eps 1e-6
total training time 24.0
optimizer type adamw
validation epochs 3
validation epochs begin 1
validation epochs end 1
validation begin proportion 0.05
validation end proportion 0.01
validation micro batch 16
deepspeed yes
data loader type dist

Table 7: Hyperparameters for pre-training BERT-
architecture models using the academic-budget-bert
code (Izsak et al., 2021).

max seq length 128
evaluation strategy steps
per device train batch size 16
gradient accumulation steps 1
per device eval batch size 16
learning rate 5e-5
weight decay 0.1
max grad norm 1.0
lr scheduler type polynomial
warmup steps 50

Table 8: Hyperparameters for fine-tuning tasks using
scripts from the academic-budget-bert package.
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