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Abstract

Training deep neural networks (DNNs) under
weak supervision has attracted increasing re-
search attention as it can significantly reduce
the annotation cost. However, labels from weak
supervision can be noisy, and the high capacity
of DNNs enables them to easily overfit the label
noise, resulting in poor generalization. Recent
methods leverage self-training to build noise-
resistant models, in which a teacher trained un-
der weak supervision is used to provide highly
confident labels for teaching the students. Nev-
ertheless, the teacher derived from such frame-
works may have fitted a substantial amount of
noise and therefore produce incorrect pseudo-
labels with high confidence, leading to severe
error propagation. In this work, we propose
Meta Self-Refinement (MSR), a noise-resistant
learning framework, to effectively combat label
noise from weak supervision. Instead of rely-
ing on a fixed teacher trained with noisy labels,
we encourage the teacher to refine its pseudo-
labels. At each training step, MSR performs a
meta gradient descent on the current mini-batch
to maximize the student performance on a clean
validation set. Extensive experimentation on
eight NLP benchmarks demonstrates that MSR
is robust against label noise in all settings and
outperforms state-of-the-art methods by up to
11.4% in accuracy and 9.26% in F1 score.

1 Introduction

Fine-tuning pre-trained language models has led
to great success across NLP tasks. Nonetheless, it
still requires a substantial amount of manual labels
to achieve satisfying performance on many tasks.
In reality, obtaining large amounts of high-quality
labels is costly and labor-intensive (Davis et al.,
2013). For certain domains, it is even infeasible due
to legal issues and lack of data or domain experts.
Weak supervision is a widely-used approach for
reudcing such cost by leveraging labels from weak
sources, e,g., heuristic rules, knowledge bases or
lower-quality inexpensive crowdsourcing (Ratner

et al., 2017; Zhou et al., 2020; Lison et al., 2020).
It has raised increasing attention in recent years,
and efforts have been made to quantify the progress
on weakly supervised learning, like the WRENCH
benchmark (Zhang et al., 2021).

Although weak labels are inexpensive to ob-
tain, they are often noisy and inherit biases from
weak sources. Training neural networks with weak
labels is challenging because of their immense
capacity, which leads them to heavily overfit to
the noise distribution, resulting in inferior gener-
alization performance (Zhang et al., 2017). Vari-
ous approaches have been proposed to tackle this
challenge. Earlier research focused primarily on
simulated noise (Bekker and Goldberger, 2016;
Hendrycks et al., 2018), required prior knowl-
edge (Ren et al., 2020; Awasthi et al., 2020) or
relied on context-free aggregation rules without
leveraging modern pre-trained language models
(Ratner et al., 2017; Fu et al., 2020).

Recently, Yu et al. (2021) proposed a contrastive
regularized self-training framework that achieved
state-of-the-art (SOTA) performance in several
NLP tasks from the WRENCH benchmark. It
trains a teacher network on weak labels, then it-
eratively applies the teacher to produce pseudo-
labels for training a new student model. To pre-
vent error propagation, it filters the pseudo-labels
with the model confidence scores and adds con-
trastive feature regularization to enforce more dis-
tinguishable representations. However, we find
that this approach is effective on easy tasks but
fragile on challenging ones, where the initial
teacher model already have memorized a substan-
tial amount of biases with high confidence. Con-
sequently, confidence-based filtering is misleading
and all future students will be reinforced with these
initial wrong biases from the teacher.

To address this weakness, one strategy is learn-
ing to reweight the pseudo-labels with meta learn-
ing (Ren et al., 2018; Shu et al., 2019; Wang et al.,
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2020). By this means, sample weights are dynam-
ically adjusted to minimize the validation loss in-
stead of prefixed with potentially misleading confi-
dence scores. Nevertheless, if the initial teacher is
weak and mostly produces incorrect pseudo-labels,
simply reweighting the labels does not suffice to
extract enough useful training signals.

In this paper, we propose Meta Self-Refinement
(MSR) to go one step further. The teacher is jointly
trained with a meta objective such that the student,
after one gradient step, can achieve better perfor-
mance on the validation set. In each training step,
a copy of the current student performs one step
of gradient descent based on the teacher predic-
tions. The teacher will then update itself towards
the gradient direction that minimizes the validation
loss of the student. Finally, the actual student is
trained by the updated teacher. In MSR, teacher’s
predictions are iteratively refined, instead of only
“reweighted”, based on the meta objective. This
will enable more efficient data utilization since the
teacher still has the opportunity to refine itself to
provide the proper training signal, even if its initial
output label is wrong. To further stabilize the train-
ing, we enhance our framework with confidence
filtering when teaching the student and apply a lin-
early scaled learning rate scheduler to the teacher.

In summary, the main contributions are as fol-
lows: 1) We propose a meta-learning based self-
refinement framework, MSR, that allows robust
learning with label noise induced by weak supervi-
sion. 2) We analyze and quantify how label noise
impacts model predictions and representation learn-
ing. We find existing methods become less effec-
tive in challenging cases when the label noise can
be easily fitted. In contrast, MSR is more stable and
learns better representation. 3) Extensive experi-
ments demonstrate that MSR consistently reduces
the negative impact of the label noise, matching or
outperforming SOTAs on six sequence classifica-
tion and two sequence labeling tasks.1

2 Related Work

Learning with Noisy Labels. Learning in the
presence of label noise is a long-standing problem
(Angluin and Laird, 1988). Zhang et al. (2017)
show that deep neural networks can memorize
arbitrary noise during training, resulting in poor
generalization. Noise-handling techniques - by

1Code is available on: https://github.com/uds-lsv/
msr

modeling (Goldberger and Ben-Reuven, 2017; Pa-
trini et al., 2017; Hendrycks et al., 2018) or filter-
ing (Han et al., 2018; Li et al., 2020) the noisy
instances - are proposed to conquer the label noise.
While being effective, they typically assume that
the noise is feature-independent which may over-
simplify the noise generation process in realistic
settings (Gu et al., 2021; Zhu et al., 2022). Re-
cently, realistic and feature-dependent noise in-
duced by weak supervision has received significant
attention. To handle this type of noise, Awasthi
et al. (2020) propose an implication loss that jointly
denoises the noisy labels and weak sources. Ren
et al. (2020) denoise the weak label by considering
the reliability of different weak sources and aggre-
gating them into one cleaned label. Zhang et al.
(2021) release a benchmark, WRENCH, including
various weakly supervised datasets in both text and
image domains.

Self-Training. Self-training (Yarowsky, 1995;
Lee et al., 2013) is a simple yet effective framework
that is commonly used in semi-supervised learning
(SSL). It typically trains a teacher model to pro-
vide pseudo-labels for the student model. Different
methods have been proposed for better generaliza-
tion (Xie et al., 2020; Zoph et al., 2020; Mukher-
jee and Hassan Awadallah, 2020). Recently, self-
training has been adopted to tackle weak supervi-
sion. Karamanolakis et al. (2021) train a teacher
network that aggregates weak labels to form high-
quality pseudo-labels for the student. Liang et al.
(2020); Yu et al. (2021) initialize the teacher model
by training a classifier directly on the weak labels,
they apply early stopping to prevent this initial
teacher from memorizing the label noise. The stu-
dent is then trained on the highly confident pseudo-
labels provided by the teacher. While the core
assumption of self-training - that highly confident
pseudo-labels are reliable - is generally valid in
SSL, it may not be true for feature-dependent noise
induced by weak supervision, especially when the
noise is easy to learn. In this case, self-training
inevitably suffers more from error propagation and
fails to train robust models.

Meta-Learning. Recently, different works lever-
aged meta-learning techniques to develop noise-
robust learning frameworks. The idea is to optimize
an outer learner (e.g., sample weights) that guides
the inner learner (the classifier) to generalize well.
Often, a clean validation dataset is used as a proxy

1044

https://github.com/uds-lsv/msr
https://github.com/uds-lsv/msr


Figure 1: Sentiment analysis dataset annotated with rule-based
weak sources. A weak source is triggered if a specific textual
pattern is matched, after which a pre-defined label is then
assigned. Otherwise, it abstains. Depending on how many
weak sources are triggered, a text may obtain zero, one, or
multiple weak labels.

for estimating the generalization performance. Ren
et al. (2018) attempt to down weight training sam-
ples that increase the validation loss. Shu et al.
(2019) employ a neural network to infer such sam-
ple weights and show a significant boost on per-
formance under feature-independent noise. Wang
et al. (2020) reweight the training samples by their
pseudo-labels instead of the original noisy labels.
In this work, we aim to leverage meta-learning in a
more flexible manner by refining the pseudo-labels
instead of reweighting them. Approach-wise, the
most related works are (Pham et al., 2021; Zhou
et al., 2022) used for semi-supervised learning and
model distillation, which also refine the teacher’s
parameters based on the student feedback. How-
ever, they work with samples from clean distribu-
tions, while we anticipate the noise memorization
effect and enhance our framework with teacher
warm-up and confidence filtering to suppress the
error propagation.

3 Problem Formulation

Let X and Y be the feature and label space, re-
spectively. In standard supervised learning, one is
given a clean dataset Dc = {(xi, yi)}Ni=1, where N
is the number of samples. The clean labels yi are
supposed to be annotated by human experts.

In weak supervision, a dataset is labeled by weak
sources rather than humans. Weak sources can
have diverse forms like lexical rules, knowledge
bases, pre-trained models, lower-quality inexpen-
sive crowdsourcing, etc. Figure 1 shows an ex-
ample of text labeled via weak supervision. Com-
pared to manual annotations, weak labels contain

more mistakes. We denote the dataset labeled by
weak sources by Dw = {(xi, ŷi)}Ni=1 where ŷi is
the weak label.2 Since weak sources might not
cover all data, we may have a set of unlabeled data
Du in addition to Dw. We use Da = Dw ∪ Du

to denote the full set of data. Moreover, as we
do not make any assumption on the quality of the
weak labels, their distribution can deviate arbitrar-
ily from the distribution of clean labels. Learning
with only weak labels can lead to unbounded model
errors (Menon et al., 2016; Gu et al., 2021). Hence,
following standard practice in weak supervision,
we assume the access to a small clean validation
set Dv = {(xvi , yvi )}Mi=1 where M ≪ N . Dv is
used for early stopping, hyper-parameter tuning or
meta-learning so that the learned model will not
fully overfit the noisy weak labels (Ren et al., 2018;
Shu et al., 2019; Zhang et al., 2021).

4 Meta Self-Refinement

We propose a novel meta-learning based frame-
work, named Meta Self-Refinement (MSR), to
tackle the label noise induced by weak supervision.
In contrast to conventional self-training methods,
where the teacher model is fixed after being trained
on weakly labeled data, MSR enables the teacher
to refine itself based on student performance on the
clean validation set, yielding higher-quality labels
and more accurate confidence estimates. In this
section, we first provide an overview of its training
objective (section 4.1), then go into the training
details (section 4.2). Figure 2 illustrates the full
training process.

4.1 Training Objective
MSR contains a teacher network f and a student
network g, both are functions that map X → Y . f
is initialized by fine-tuning a pre-trained language
model (PLM) on the weakly labeled data Dw:

f1 = argmin
f

E(xi,ŷi)∈Dw
L(ŷi, f(xi)) (1)

where L denotes the loss function. We use the cross
entropy loss throughout the paper:

L(p, q) = −Ey∼p(y) log q(y) (2)

p and q are distributions over the label space Y .
The initial student network, g1, is the PLM without
fine-tuning on any data.

2Multiple weak sources may be triggered simultaneously
by a sample. In this case, we can use different aggregation
methods like majority voting to determine the final weak label.
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Figure 2: Illustration of our proposed Meta-Self Refinement method (MSR). (a) We start by fine-tuning a PLM on weak labels
with early stopping, which yields an initial teacher f1. (b) At each training step t, ft gets training signals by performing a
“teaching experiment” on g̃t: a copy of the student network gt. g̃t is updated by fitting ft with the loss function La. ft is then
updated to minimize the validation loss Lv of g̃t+1. (c): gt is updated by fitting ft+1 with confidence filtering under the loss La.

In conventional self-training, f1 is used to pro-
vide pseudo-labels to train the student. By select-
ing higher-quality pseudo-labels via confidence
filtering (Yu et al., 2021) or uncertainty estima-
tion (Mukherjee and Hassan Awadallah, 2020), the
student can often outperform its teacher. However,
as the teacher is trained solely on the weak labels,
it can easily inherit unexpected biases and provide
misleading signals to the student. In MSR, instead
of using a fixed teacher to provide pseudo-labels,
we use student performance on the clean validation
set as a feedback signal to dynamically refine the
teacher. Specifically, the objective for the teacher
f , formulated as in Equation 3, is that the student
network, after fitting the teacher’s output labels on
Da, can perform best on the validation set Dv:

f⋆ = argmin
f

E(xv
i ,y

v
i )∈Dv

L(yvi , g′f (xvi ))

g′f = argmin
g

Exi∈Da L(f(xi), g(xi))
(3)

where g′ is the student network after fitting output
labels from f on Da. Intuitively, MSR aims to
find the best teacher to help the student achieve the
lowest validation loss. After finding the optimal
teacher f⋆ in Equation 3, the student can then be
obtained by learning from the output labels of f⋆:

g⋆ = argmin
g

Exi∈Da L(f⋆(xi), g(xi)) (4)

4.2 Training Details
Finding the exact f⋆ in Equation 3 involves solving
two nested loops of optimization, and each loop
can be computationally expensive given the large
size of Da. We resort to an online approximation

Algorithm 1: MSR Algorithm
Input: Initial teacher network f1 trained according to

Eq. 1. Student network g1, number of training
steps T , teacher’s learning rate scheduler
R(t), confidence threshold τ , Da, Dv .

Result: fT , gT
1 for t← 1 . . . T do
2 {xi} ← SampleMiniBatch( Da)
3 {xv

i , y
v
i } ← SampleMiniBatch( Dv)

// Teacher Update
4 g̃t ← Copy(gt)
5 g̃t+1 ← g̃t − λs Exi ∇g̃tL(ft(xi), g̃t(xi))
6 ft+1 ← ft−R(t)E(xv

i ,y
v
i )∇ftL(yv

i , g̃t+1(x
v
i ))

// Student Update

7 w(ft+1(xi))← 1(1− H(ft+1(xi))

log(k)
≥ τ)

8 gt+1 ← gt −
λs Exi ∇gtw(ft+1(xi))L(ft+1(xi), gt(xi))

9 end

to merge Equation 3 and 4 into an iterative training
pipeline. At each training step t, the teacher ft is
first updated based on the meta-objective of “learn-
ing to teach”, the student gt is then trained by the
updated teacher.

Teacher Update. To update the teacher in an
efficient way, we approximate the inner loop in
Equation 3 with a single-step gradient descent of
the student network. Namely, the objective of the
teacher is changed so that the current student, af-
ter one single gradient descent step of fitting the
teacher, can perform best on the validation set. To
do so, the teacher will first conduct a “teaching ex-
periment” on a copy of the current student, denoted
as g̃t. g̃t is updated for one gradient descent step to
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fit the teacher’s pseudo labels3:

g̃t+1 = g̃t − λs Exi∼Da ∇g̃tL(ft(xi), g̃t(xi))

where λs is the learning rate of the student net-
work. Afterwards, we update the teacher network
to minimize the validation loss of g̃t+1:

ft+1 = ft − λt E(xv
i ,y

v
i )∼Dv

∇ftL(yvi , g̃t+1(x
v
i ))

where λt is the learning rate of the teacher net-
work. It requires calculating second derivatives
over ft. We always use soft labels from the teacher
for L(ft(xi), g̃t(xi)), so the whole process is fully
differentiable. Note that g̃t is only used in the
“teaching experiment” to help update the teacher. It
will be discarded after the teacher is updated.

Student Update. After obtaining ft+1, the real
student network is updated with the same objective
as in Equation 4, except that we use the updated
teacher ft+1 instead of f⋆. As the teacher has per-
formed the “teaching experiment”, it will provide
more useful signals to guide the student.4

Teacher Learning Rate Scheduler. We find the
teacher is rather sensitive to its learning rate in prac-
tice. If the learning rate is large from the start, the
teacher may over-adjust itself due to the large per-
formance gap between the teacher and the student.
If the learning rate is small, the teacher will adjust
itself too slowly so that more noisy pseudo-labels
are passed to the student network. Therefore, we
apply a linear learning rate scheduler R(t) = tλt

T
to the teacher network where t denotes the current
iteration and λt is the targeted learning rate for the
teacher. By this means, the teacher’s learning rate
will gradually increase as it gets better at teaching.

Confidence-Based Label Filtering. Despite hav-
ing the opportunity to refine itself, the teacher in-
evitably produces some wrong pseudo labels dur-
ing training, especially at early iterations of self-
refinement. To further reduce error propagation, we
only select labels with high confidence to guide the

3We use SGD for illustration purposes. The AdamW
(Loshchilov and Hutter, 2019) optimizer is used in our ex-
periments.

4In theory, if the teacher network is strong enough to gen-
eralize among different batches, we can directly update the
real student in the “teaching experiment”, in the hope that the
teacher from the last step can also work in the current batch.
However, in practice, we find this mismatch leads to poor
performance.

student model. The student is updated as follows:

gt+1 = gt − λs Exi∼Da ∇gtL(ft+1(xi), gt(xi))

× 1(1− H(ft+1(xi))

log(k)
≥ τ)

where 1 is the indicator function, H(ft+1(xi)) is
the entropy of the distribution ft+1(xi), k is the
number of classes in Y and τ is a pre-defined
confidence threshold. log(k) is the upper bound
of the entropy for k-classification tasks. By this
means, only low-entropy (high-confidence) predic-
tions from the teacher are learned. Note that the fil-
tering strategy is only applied to the actual student
update step, not during the teaching experiment.
Otherwise, the teacher will ignore low-confident
samples as they do not contribute to teacher update.

Putting all together, Algorithm 1 summarizes the
self-refinement process.

5 Experimental Settings

Datasets. WRENCH (Zhang et al., 2021) is a
well-established benchmark for weak supervision
and offers weak labels for various datasets. We
compare different baselines on six NLP datasets
from WRENCH including both sequence classifi-
cation and Named-Entity Recognition (NER) tasks.
For sequence classification, we include AGNews
(Zhang et al., 2015), IMDB (Maas et al., 2011),
Yelp (Zhang et al., 2015), and TREC (Li and Roth,
2002). For NER tasks, CoNLL-03 (Sang and
De Meulder, 2003) and OntoNotes 5.0 (Pradhan
et al., 2013) are used. In addition, we further in-
clude two sequence classification datasets in low-
resource languages, Yorùbá and Hausa (Hedderich
et al., 2020), to involve evaluation cases in diverse
languages. Table 1 summarizes the basic statistics
of the datasets. Majority voting over weak sources
is used to determine a single label for each sample.

Dataset Task # Class # Train # Val # Test

AGNews Topic 4 96,000 12,000 12,000
IMDB Sentiment 2 20,000 2,500 2,500
Yelp Sentiment 2 30,400 3,800 3,800

TREC Question 6 4,965 500 500
Yorùbá Topic 7 1,340 189 379
Hausa Topic 5 2,045 290 582

CoNLL03 NER 4 14,041 3,250 3,453
OntoNotes5.0 NER 18 115,812 5,000 22,897

Table 1: Dataset statistics. Refer to Appendix A for more
details on datasets.

Implementation. RoBERTa-base (Liu et al.,
2019) is used as the PLM for English datasets and
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multilingual BERT-base (Devlin et al., 2019) for
non-English ones. We utilize the higher5 library
to perform second-order optimization. Refer to
Appendix B for detailed hyper-parameter configu-
rations.

Baselines. We compare our method with prior
work on learning with noisy labels. 1) Majority ap-
plies majority vote on the weak labels. Ties are bro-
ken by randomly selecting a weak label. 2) Snorkel
(Ratner et al., 2017) trains a labeling model that ag-
gregates weak labels from different weak sources.
3) FT-WL fine-tunes PLMs on the weak labels.
4) FT-WLST further applies classic self-training
(Lee et al., 2013) on the model obtained by FT-WL.
5) L2R (Ren et al., 2018) uses a meta-learning
framework to reweight weakly labeled samples. 6)
Meta-Weight-Net (Shu et al., 2019) also applies
meta-learning based sample reweighting. How-
ever, the weights are computed through an external
reweighting network. 7) Denoise (Ren et al., 2020)
iteratively corrects wrong annotations in the train-
ing set, and the classifier learns with the corrected
labels. 8) UST (Mukherjee and Hassan Awadallah,
2020) is a self-training based method that assigns
higher weights to samples that the teacher is cer-
tain about. The uncertainties are measured via MC-
dropout on the predictions (Gal and Ghahramani,
2016). 9) COSINE (Yu et al., 2021) trains its stu-
dent network with pseudo-labels which the teacher
is highly confident about. In addition, contrastive
regularization is introduced to further alleviate er-
ror propagation.

For our proposed framework, we report the per-
formances of both Teacher-Init (f1): the initial
teacher trained directly on weak labels, and MSR:
the final student model (gT ). f1 is obtained by
running FT-WL five times and selecting the best
one among them according to the validation per-
formance. For a fair comparison, the same f1 is
used as the initial teacher for all self-training based
models. Finally, we also include the results of fine-
tuning PLMs on the clean versions of each dataset,
denoted by FT-CL, to represent the upper bound
performance.

6 Results

Comparison with Baselines. Table 2 shows
a comparison among different methods. MSR
matches or outperforms SOTAs on all eight

5https://github.com/facebookresearch/higher

datasets. FT-WL outperforms majority voting over
the weak labels in all cases except Hausa, which
leads to a minor drop. This confirms that PLMs
encode useful knowledge in their parameters, en-
abling them to generalize better than weak rules
they are trained on. This phenomenon is particu-
larly noticeable on AGNews, IMDB, and Yelp: di-
rect fine-tuning on the noisy labels (FT-WL) can al-
ready achieve decent performance (accuracy above
83%). We consider them easy tasks since label
noise has only a minor impact on performance of
PLMs and decent generalization can be attained
even without specific noise-handling. Applying
self-training to such simple tasks lead to further
performance improvement. COSINE, a SOTA self-
training based model, can even perform compara-
bly to the fully supervised model on these three
datasets. On the other five datasets, however, FT-
WL performs poorly and conventional self-training
methods provide little performance boost (even a
disservice on OntoNotes). This implies that self-
training relies on a well-performed initial teacher
to work effectively. On challenging datasets where
the initial teacher is weak, it struggles to achieve
further performance gain. Meta-learning based
methods such as L2R performs better than CO-
SINE on these challenging datasets. MSR can fur-
ther boost the performance on all the challenging
datasets by up to 11.4% in accuracy or 9.26% in
F1 score while maintaining comparable results on
simpler datasets.

Error Decomposition. Let y′, ŷ, y denote the
model prediction, the noisy weak label, and the
clean label, respectively. To investigate how the
label noise influences the model predictions, we de-
compose model prediction errors into three types:
(1) Type-A error: y′ = ŷ; ŷ ̸= y (2) Type-B error:
y′ ̸= ŷ ̸= y and (3) Type-C error: y′ ̸= y; y = ŷ.
Type-A/B errors correspond to situations in which
a model complies with an incorrect weak label ŷ,
or predicts another incorrect class label. If, on the
other hand, the weak label ŷ is correct, a Type-C
error arises if the model predicts a label different
than ŷ. A higher Type-A error rate indicates that a
model memorizes more label noise from the weak
sources, while a model that underfits fails to learn
useful knowledge from the weak sources can have
a higher Type-C error rate.

Figure 3 visualizes the three types of errors
on three challenging datasets: TREC, Hausa and
CoNLL-03. The blue bars represent model robust-
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Method AGNews
(Acc)

IMDB
(Acc)

Yelp
(Acc)

TREC
(Acc)

Yorùbá
(Acc)

Hausa
(Acc)

CoNLL-03
(F1)

OntoNotes
(F1)

Fully-Supervised Result
FT-CL 92.61 93.20 96.91 96.67 77.24 81.57 92.27 85.74

Label Models
Majority 63.84 71.04 70.21 60.80 58.05 47.93 60.38 58.92
Snorkel (Ratner et al., 2017) 62.67 71.60 68.92 59.60 62.80 47.94 62.88 58.46

DNN Baselines
FT-WL 85.73±0.43 83.43±0.91 87.71±1.46 66.80±1.44 64.12±0.83 46.13±0.43 69.20±0.33 67.26±0.62

FT-WLST† (Lee et al., 2013) 88.61±0.71 89.50±0.65 95.32±0.70 76.00±2.21 67.28±1.12 49.22±1.39 69.87±0.36 64.13±1.45

L2R (Ren et al., 2018)⋄ 87.28±1.00 82.76±1.59 93.34±0.91 83.40±2.01 70.45±0.69 55.67±0.88 79.15±1.34 70.66±0.74

Meta-Weight-Net⋄ (Shu et al., 2019) 85.96±0.80 86.72±0.50 86.97±0.74 69.39±1.27 70.00±2.12 48.63±0.96 69.54±1.43 69.11±1.20

Denoise (Ren et al., 2020) 83.45±0.68 76.22±0.92 71.56±0.56 61.80±1.30 66.10±1.52 49.31±0.93 72.96±0.51 67.64±1.06

UST† (Mukherjee and Hassan Awadallah, 2020) 87.78±0.59 86.74±1.18 91.23±0.90 77.20±2.29 68.12±0.71 47.67±0.91 69.48±1.69 66.98±0.99

COSINE† (Yu et al., 2021) 89.34±0.76 90.52±1.06 95.48±0.13 82.60±1.09 68.87±0.82 49.66±1.32 70.60±0.87 64.59±1.08

Our Framework
Teacher-Init (f1) 86.37±0.00 85.00±0.00 89.92±0.00 69.00±0.00 65.44±0.00 46.74±0.00 69.73±0.00 68.25±0.00

MSR† ⋄ 89.92±0.64 89.16±0.91 95.00±0.35 94.80±0.29 72.56±0.78 59.11±0.78 88.41±0.63 74.59±0.84

Table 2: Accuracy and F1 score (in %) on eight NLP tasks. The mean and standard deviation over five trials are reported.
Teacher-Init is the best model checkpoint selected from the five trials of FT-WL (according to the validation performance). For a
fair comparison, all self-training-based models use the same Teacher-Init checkpoint. MSR matches or outperforms SOTAs on
all tasks. † self-training based method. ⋄ meta-learning based method.
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Figure 3: Prediction error decomposition of various weak supervision baselines, evaluated on the test sets. A model is considered
robust against label noise if it manages to predict the correct labels despite the wrong weak labels (the robustness is represented
by the blue bars). Otherwise, it conforms to the weak label (Type-A error) or predict another incorrect label (Type-B error),
which has a negative effect on generalization. The Type-C error rate quantifies the proportion of incorrect model predictions
when weak labels are correct. MSR consistently reduces the Type-A error rate and attains a high level of noise robustness.
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Figure 4: Accuracy vs. confidence thresholds.

ness, i.e., how often the model predicts correctly
when ŷ ̸= y. It clearly shows that direct fine-
tuning on weak labels (FT-WL) has a much higher
Type-A error rate compared with the model trained
on clean data (FT-CL), suggesting that the model
quickly memorizes the label noise. On the other
hand, the disparity in type C error rate is much
smaller, indicating that all models do not under-
fit and the knowledge from the weak sources is

properly transferred. The Type-B error shows simi-
lar trends and does not differ much across models.
Overall, Type-A error has the strongest impact on
model performance. All the noisy-handling models
mainly help with reducing Type-A errors. We also
observe that while COSINE reduces Type-A errors
on TREC, it barely works on the other two datasets.
Only MSR manages to consistently reduce Type-A
errors by over 20% on all three datasets.

Accuracy vs Confidence. As confidence-based
filtering is a key component in both COSINE and
MSR, we show the accuracy of model predictions
with different confidence thresholds in Figure 4. As
can be seen, even using a high confidence threshold
for COSINE, the accuracy is still low, which is
why it struggles to improve on challenging datasets.
MSR, on the contrary, consistently attains higher
accuracy with higher confidence thresholds, and
thereby confidence-based filtering on top of MSR
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Figure 5: Projected feature space of different models on TREC using t-SNE (Van der Maaten and Hinton, 2008). The circles
represent training samples that are predicted as class 1. a)-c): development of MSR during training. Circles are colored by the
predicted class (i.e., class 1, in purple). The validation samples are represented by crosses and colored according to the ground
truth labels. The MSR student gradually improves its feature space to embed the training and validation samples from the same
class in the same area. d)-f): training samples are colored according to their ground truth labels; model confidence is reflected by
the size of the circles. Teacher-Init and COSINE misclassify samples with high confidence. MSR attains a cleaner cluster.

help lead to better performance.

Impact of Label Noise on Feature Space. We
also analyze how the label noise influences repre-
sentation learning. Figure 5 illustrates the projected
feature space of different models on TREC. For a
clear visualization, we present only training sam-
ples predicted as class 1 by the models in the form
of circles. In figs. 5a to 5c, we further visualize the
feature space of validation samples (represented
by crosses). As can be seen, initially the feature
space of class 1 overlaps with that of other classes
from the validation set. As the training proceeds,
when the teacher keeps refining itself, the MSR
student gradually reduces such overlap and learns a
well-split representation space. In figs. 5d to 5f, we
compare the feature space between different mod-
els. The training samples are colored according to
their ground truth classes to highlight the misclas-
sification ratio (the more colorful the clusters, the
higher the misclassification ratio). We observe that
Teacher-Init makes many wrong predictions with
high degree of confidence. In this case, utilizing
the confidence score for denoising is fragile. This
may explain why COSINE, despite offering a more
compact cluster, still has a considerable amount
of misclassification. Finally, MSR has a consid-
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Figure 6: Accuracy vs. number of validation samples.

erably cleaner cluster and is less affected by error
propagation than COSINE.

Effects of Validation Data Size. The model per-
formance reported in Table 2 is based on the origi-
nal data splits from the WRENCH benchmark. The
size of the validation sets is mostly less than 15%
of the training sets. Typically, they are used to per-
form early stopping and model selection. For meta-
learning based methods, they additionally rely on
the validation sets for meta-update and might be
more sensitive to validation size. Hence, we study
how the validation size affects different models. In
particular, we randomly sample a subset from the
original validation set Dv and repeat the same train-
ing process. Figure 6 presents the results. We find
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that the validation size indeed has a greater impact
on meta-learning approaches. However, MSR still
retains its high generalization performance even
with as few as 100 validation samples, suggesting
that MSR is very data efficient in performing the
self-refinement.

Configuration Seq. Classification
(Acc)

NER
(F1)

Teacher-Init 73.75 68.99

Student 83.43 81.50
Teacher 82.38 (↓ 1.05%) 80.26 (↓ 1.24%)

w/o Teacher Scheduler 81.80 (↓ 1.63%) 80.15 (↓ 1.35%)
w/o Confidence Filtering 82.32 (↓ 1.11%) 81.09 (↓ 0.41%)

w/o Both 81.63 (↓ 1.80%) 79.95 (↓ 1.55%)

Table 3: Summary of ablation experiments aggregated across
multiple datasets. See Appendix D for results in each dataset.

Ablation Study. Table 3 summarizes the impact
of different components of our method. In gen-
eral, our student model performs slightly better
than the teacher. This is as expected because a) the
teacher’s goal is to guide the student to generalize
better, the training loss does not explicitly encour-
age the teacher to improve its accuracy, and b) the
confidence filtering helps the student avoid fitting
some wrong pseudo-labels from the teacher. This
is also confirmed by the decreased performance
when the filter is removed. In addition, applying a
learning rate scheduler is better than using a fixed
learning rate throughout training.

7 Conclusion

We present MSR, a meta-learning based self-
refinement framework that enables robust learning
with weak labels. Unlike conventional self-training
which relies on a fixed teacher, MSR dynamically
refines the teacher based on the student’s perfor-
mance on the validation set. To further suppress er-
ror propagation, we introduce a learning rate sched-
uler to the teacher and add confidence filtering to
the student. We demonstrate that our framework
performs on par with or better than current SOTAs
on both sequence classification and labeling tasks.

Limitations

In this work, Our primary focus is to propose a
strong weak supervision method that works reliably
under various weak supervision settings. We em-
ploy meta-learning techniques to address the issue
of unreliable confidence scores under challenging
settings (Figure 4). Despite the effectiveness, the

main limitation of our method, just like other meta-
learning based frameworks, is the computational
overhead. The teacher update step (Algorithm 1,
Line 4-6) requires computing both the first and
second-order derivatives, which incurs additional
computation time and higher memory consump-
tion. Consequently, our method requires longer
training.6 Implementation-wise and computation-
wise, MSR is as complex as other existing meta-
learning based methods, like L2R (Ren et al., 2018)
and MW-Net (Shu et al., 2019), but performs sub-
stantially better than them in all weak supervision
scenarios we evaluated. It is worth noting that MSR
has no overhead at inference time. In weak super-
vision, the data annotation cost is considered the
most significant bottleneck. A stronger model is
often obtained by trading some more computation
with the cost and effort of obtaining more human-
generated, manual annotations. Hence, the one-off
investment of training MSR can be worthwhile for
real-world weak supervision applications.
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A Dataset Details

We experiment with eight NLP datasets, includ-
ing six English datasets and two datasets in low-
resource languages. All datasets come with their
ground truth annotations and as well as the weak
labels.

A.1 Datasets Selection Criteria
The WRENCH (Zhang et al., 2021) benchmark
contains 23 NLP datasets. We choose represen-
tative datasets (like previous research in weak su-
pervision) that a) overlap with previous works to
enable direct comparisons. b) are diverse in terms
of weak label quality, languages and tasks to ap-
prove the applicability of different baselines.

A.2 English Datasets
We experiment with four popular sequence classifi-
cation datasets: AGNews, IMDB, Yelp and TREC.

1. AGNews (Zhang et al., 2015): originates
from AG, which is a large collection of news
articles. The news are categorized in four
classes: “World”, “Sports”, “Business” and
“Sci/Tech”.

2. IMDB (Maas et al., 2011): consists of movie
reviews with binary labels. It is a commonly
used benchmark dataset for sentiment analy-
sis.

3. Yelp (Zhang et al., 2015): obtained from the
Yelp Dataset Challenge in 2015. Similar to
IMDB, it is a sentiment analysis dataset.

4. TREC (Li and Roth, 2002): categorizes
the questions in TREC-6 datasets into 6
categories: “Abbreviation”, “Entity”, “De-
scription”, “Human”, “Location”, “Numeric-
value”.

and with the two sequence labeling datasets:
CoNLL-03 and OntoNotes 5.0.

1. CoNLL-03 (Sang and De Meulder, 2003)
NER dataset with four named-entity cate-
gories.

2. OntoNotes 5.0 (Pradhan et al., 2013): NER
dataset with 18 named-entity categories.

All weak labels are obtained from the WRENCH
benchmark7 (Zhang et al., 2021).

7https://github.com/JieyuZ2/wrench

A.3 Datasets in Low-Resource Languages

Most datasets in the current WRENCH benchmarks
are in English. Although weak supervision is de-
sired in low-resource languages, it is understudied
as finding annotators for them is more difficult.
Hence, we include two low-resource languages,
Yorùbá and Hausa, to cover this scenario. Of-
ten, learning with weak labels in low-resource lan-
guages is more challenging. First, the training set
is often much smaller than English datasets. For
example, Hausa has only about 2k training samples
while AGNews have 96k. Second, the weak labels
in low-resource languages can have lower quality
as experts for weak source development are harder
to find. A set of simple rules is often used for label-
ing (which is the case in Yorùbá and Hausa). Hence,
weak supervision with low-resource languages is a
combination of two challenges: training with small
datasets which have low-quality labels.

Yorùbá and Hausa are text classification datasets
obtained from (Hedderich et al., 2020).8

1. Yorùbá: consists of news headlines from
BBC Yoruba which are categorized in seven
classes: “Nigeria”, “Africa”, “World”, “Enter-
tainment”, “Health”, “Sport”, “Politics”.

2. Hausa: consists of news headlines from VOA
Hausa which have the same seven classes as
Yorùbá. However, only five classes are consid-
ered in the text classification task. “Entertain-
ment” and “Sport” have been removed due to
the lack of samples of these classes.

Hedderich et al. (2020) provided both the clean
labels and weak labels on the two datasets. A
gazetteer is created for each class for weak supervi-
sion. For example, a gazetteer containing names of
agencies, organizations, states and cities in Nigeria
is used to label the class “Nigeria”.

A.4 More Dataset Statistics

We provide more details on the datasets we used in
our experiments in Table 4. In general, not all data
can be covered by weak sources. No weak source
is triggered for some training samples and they
remain unlabeled. The coverage of the datasets
ranges from 69.08% to 100%. Note that for NER
tasks, the coverage is always 100% since if no
weak source is triggered for a token, we assign

8https://github.com/uds-lsv/
transfer-distant-transformer-african
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Dataset Task # Class |Dw| |Da| Coverage Conflict |Dv| |Dt|
AGNews Topic 4 66,314 96,000 69.08% 14.17% 12,000 12,000

IMDB Sentiment 2 17,515 20,000 87.58% 11.96% 2,500 2,500
Yelp Sentiment 2 25,165 30,400 82.78% 18.29% 3,800 3,800

TREC Question 6 4,723 4,965 95.13% 22.76% 500 500
Yorùbá Topic 7 1,340 1,340 100.00% 1.87% 189 379
Hausa Topic 5 2,045 2,045 100.00% 1.90% 290 582

CoNLL03 NER 4 14,041 14,041 100.00% 4.05% 3,250 3,453
OntoNotes5.0 NER 18 115,812 115,812 100.00% 1.86% 5,000 22,897

Table 4: Dataset statistics. |Dw|: number of training samples with weak labels. |Da|: total number of training samples (weakly
labeled + unlabeled). Coverage: fraction of samples that are weakly labeled, i.e., |Dw|

|Da| . Conflict: samples that are labeled by at
least two weak sources with contradicted weak labels. |Dv|: number of validation samples. |Dt|: number of test samples.

Hyperparameter Search Range

Teacher Learning Rate 3e-6, 5e-6, 2e-5, 3e-5
Teacher Warm-Up Steps 500, 100, 2000, 3000
Confidence Filter Threshold 0.4, 0.5, 0.6, 0.7, 0.8, 0.95

Table 5: Hyperparameter search.

label “O” (i.e., non-entity) to it. On the other hand,
some samples can be covered by two or more weak
sources with contradicted weak labels. In this case,
we have a conflict. The conflict ratio ranges from
1.86% to 22.76% in the datasets we tested.

B Implementation Details

Models. All baselines in our paper, except the
majority vote and the Snokerl model (Ratner et al.,
2017) which work with label space only, use the
official RoBERTa model9 (Liu et al., 2019) from
Huggingface as the classification backbone for all
English datasets, and the multilingual BERT10 for
datasets in African languages. We use the base
version of the two models which contain roughly
120M and 110M parameters, respectively.

Fine-Tuning on Classification Task. We fine-
tune all layers using AdamW (Loshchilov and Hut-
ter, 2019) as the optimizer. For sequence classifica-
tion tasks, we pass the final layer of the [CLS] token
representation (R768) to a feed-forward layer for
prediction. For sequence labeling tasks, the final
layers of all tokens (R768×L, where L is the sen-
tence length) are passed to a shared feed-forward
layer to predict the class of each token in the sen-
tence. We report the score where the model per-

9https://huggingface.co/roberta-base
10https://huggingface.co/

bert-base-multilingual-cased

forms the best on the validation set during training.

Hyper-Parameters of MSR. We apply grid
search on the warm-up steps for the teacher and
the confidence threshold for the student network.
Table 5 shows our hyperparameter search config-
uration. We choose the final configurations of the
hyperparameters according to the model’s perfor-
mance on the validation set. Table 6 shows the best
configurations of parameters we used to produce
the results in Table 2.

Evaluation Metrics. For model evaluation,
we report accuracy for sequence classification
tasks and F1 Score for sequence labeling tasks.
In our implementation, we call the function
classification_report() from the scikit-learn
library11 to compute the accuracy, and use the
Seqeval class from Huggingface12 to compute the
F1 Score.

C Validation Performance

The average test performance of MSR is reported
in Table 2. We further report the corresponding
validation performance in Table 7.

11https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.classification_report.
html

12https://github.com/huggingface/datasets/blob/
master/metrics/seqeval/seqeval.py
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AGNews IMDB Yelp TREC Yorùbá Hausa CoNLL-03 OntoNotes 5.0

BERT Backbone RoBERTa RoBERTa RoBERTa RoBERTa mBERT mBERT RoBERTa RoBERTa
Batch Size 32 16 16 32 32 32 32 32
Maximum Sequence Length 128 256 256 64 64 128 64 64
Student Learning Rate 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5 2e-5
Teacher Learning Rate 2e-5 2e-5 2e-5 2e-5 5e-6 2e-5 2e-5 2e-5
Teacher Warm-Up Steps 500 500 3000 500 1000 3000 2000 2000
Confidence Filter Threshold 0.7 0.7 0.5 0.5 0.7 0.4 0.8 0.5

Table 6: Selected hyperparameters. mBERT: multilingual BERT.

Dataset Test Validation

AGNews 89.92 89.90
IMDB 89.16 89.21
Yelp 95.00 94.79

TREC 94.80 94.42
Yorùbá 72.56 75.13
Hausa 59.11 62.34

CoNLL-03 88.41 87.86
OntoNotes 74.59 75.20

Table 7: The average test and validation accuracy/F1 score (in
%) of MSR over five trials.

D Ablation Studies

We report the detailed ablation results for each
dataset in Table 8.

E Hardware and Average Runtime.

We use Nvidia Tesla V100 to accelerate training.
The average runtime for each method and dataset
is summarized in Table 9.
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MSR Configuration AGNews
(Acc)

IMDB
(Acc)

Yelp
(Acc)

TREC
(Acc)

Yorùbá
(Acc)

Hausa
(Acc)

CoNLL-03
(F1)

OntoNotes
(F1)

Student 89.92 89.16 95.00 94.80 72.56 59.11 88.41 74.59
Teacher 89.02 88.08 94.37 93.80 68.87 60.14 87.30 73.22
w/o Teacher Scheduler 89.68 87.68 93.78 93.60 70.71 55.32 87.82 72.48
w/o Confidence Filtering 89.87 89.04 94.76 93.60 71.50 55.15 88.07 74.11
w/o Both 89.55 87.68 93.33 93.40 70.50 55.32 87.82 72.08

Table 8: Ablation studies. The numbers represent the test accuracy and F1 Score.

AGNews IMDB Yelp TREC Yorùbá Hausa CoNLL-03 OntoNotes 5.0

Running time (hours) 2.5 1.6 0.5 1.2 0.5 0.7 1.1 3.0

Table 9: Average runtime (in hours) for training a MSR model. One single Nvidia Tesla V100 GPU is used in each experiment to
accelerate the computation.
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