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Abstract

Local models have recently attained astound-
ing performances in Entity Disambiguation
(ED), with generative and extractive formu-
lations being the most promising research di-
rections. However, previous works have so
far limited their studies to using, as the tex-
tual representation of each candidate, only its
Wikipedia title. Although certainly effective,
this strategy presents a few critical issues, es-
pecially when titles are not sufficiently infor-
mative or distinguishable from one another. In
this paper, we address this limitation and in-
vestigate the extent to which more expressive
textual representations can mitigate it. We eval-
uate our approach thoroughly against standard
benchmarks in ED and find extractive formu-
lations to be particularly well-suited to such
representations. We report a new state of the
art on 2 out of the 6 benchmarks we consider
and strongly improve the generalization capa-
bility over unseen patterns. We release our
code, data and model checkpoints at https:
//github.com/SapienzaNLP/extend.

1 Introduction

Being able to pair a mention in a given text with its
correct entity out of a set of candidates is a crucial
problem in Natural Language Processing (NLP),
referred to as Entity Disambiguation (Bunescu and
Paşca, 2006, ED). Indeed, since ED enables the
identification of the actors involved in human lan-
guage, it is often considered a necessary building
block for a wide range of downstream applications,
including Information Extraction (Ji and Grishman,
2011; Guo et al., 2013; Fatahi Bayat et al., 2022),
Question Answering (Yin et al., 2016) and Seman-
tic Parsing (Bevilacqua et al., 2021; Procopio et al.,
2021). ED generally occurs as the last step in
an Entity Linking pipeline (Broscheit, 2019), pre-
ceded by Mention Detection and Candidate Gen-
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eration, and its approaches have traditionally been
divided into two groups, depending on whether
co-occurring mentions are disambiguated indepen-
dently (local methods; Shahbazi et al. (2019); Wu
et al. (2020); Tedeschi et al. (2021)), or not (global
methods; Hoffart et al. (2011); Moro et al. (2014);
Yamada et al. (2016); Yang et al. (2018)).

Despite the limiting operational hypothesis of in-
dependence between co-occurring mentions, local
methods have nowadays achieved performances
that are either on par or above those attained by
their global counterparts, mainly thanks to the ad-
vent of large pre-trained language models. In par-
ticular, among these methods, generative (De Cao
et al., 2021) and extractive (Barba et al., 2022)
formulations are arguably the most promising di-
rections, having resulted in large performance im-
provements across multiple benchmarks. Regard-
less of their modeling differences, the key idea
behind these methods is to part away from the pre-
vious classification-based approaches and, instead,
adopt formulations that better leverage the origi-
nal pre-training of the underlying language models.
On the one hand, generative formulations tackle
ED as a text generation problem and train neural
architectures to generate auto-regressively, given
a mention and its context, a textual representation
of the correct entity. On the other hand, extrac-
tive approaches frame ED as extractive question
answering: they first concatenate a textual repre-
sentation of each entity candidate to the original
input and then train a model to extract the span
corresponding to the correct entity.

Although they have admittedly attained great im-
provements, both in- and out-of-domain, to the best
of our knowledge, previous works on both these
formulations have limited their studies to a sin-
gle type of textual representation for entities, that
is, their title in Wikipedia. This strategy, however,
presents a number of issues (Barba et al., 2022) and,
in particular, often results in representations that
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are either insufficiently informative, or are even
virtually indistinguishable from one another. In
contrast to this trend, we address this limitation
and explore the effect of more expressive textual
representations on state-of-the-art local methods.
To this end, we propose complementing Wikipedia
titles with their description in Wikidata, such that,
for instance, the candidates for Ronaldo in Ronaldo
scored two goals for Portugal would be Cristiano
Ronaldo: Portuguese association football player
and Ronaldo: Brazilian association football player,
rather than the less informative Cristiano Ronaldo
and Ronaldo, respectively. We test our novel rep-
resentations on generative and extractive formula-
tions, and evaluate against standard benchmarks in
ED, both in and out of domain, reporting statisti-
cally significant improvements for the latter group.

2 Method

We now formally introduce ED and the textual
representation strategy we put forward. Then, we
describe the two formulations with which we im-
plement and test our proposal.

ED with Entity Definitions. Given a mention m
occurring in a context cm, Entity Disambiguation
is formally defined as the task of identifying, out
of a set of candidates e1, . . . , en, the correct entity
e∗ that m refers to. Each candidate e typically cor-
responds to a page in Wikipedia, and, in generative
and extractive formulations, is additionally associ-
ated with a textual representation ê describing its
meaning. Whereas previous works have considered
the title that e has in Wikipedia as ê (e.g. Cristiano
Ronaldo), here we focus on more expressive al-
ternatives and leverage Wikidata to achieve this
objective. Specifically, we first retrieve the Wiki-
data description of e (e.g. Portuguese association
football player). Then, we define as the new rep-
resentation of e the colon-separated concatenation
of its Wikipedia title and its Wikidata description
(e.g., Cristiano Ronaldo: Portuguese association
football player).

Generative Modeling. In our first formulation,
we follow De Cao et al. (2021) and frame ED as a
text generation problem. Starting from a mention
m and its context cm, we first wrap the span corre-
sponding to m in cm between two special symbols,
namely <s> and </s>; we denote this modified
sequence by c̃m. Then, we train a sequence-to-
sequence model to generate the textual represen-

tation ê∗ of the correct entity e∗ by learning the
following probability:

p(ê∗|c̃m) =

|ê∗|∏

j=1

p(ê∗(j)|ê∗(0:j−1), c̃m)

where ê∗(j) denotes the j-th token of ê∗ and ê∗(0) is
a special start symbol. The purpose of <s> and
</s> is to signal to the model that m is the men-
tion we are interested in disambiguating. As in
the reference work, we use BART (Lewis et al.,
2020) as our sequence-to-sequence architecture for
our experiments and, most importantly, adopt con-
strained decoding on the candidate set at inference
time. Indeed, applying standard decoding methods
such as beam search might result in outputs that
do not match any of the original candidates; thus,
to obtain only valid sequences, at each generation
step we constrain the set of tokens that can be gen-
erated according to a prefix tree (Cormen et al.,
2009) built over the candidate set.

Extractive Modeling. Additionally, we also con-
sider the formulation recently presented by Barba
et al. (2022) that frames ED as extractive question
answering. Here, c̃m, defined in the same way as
it was for Generative Modeling, above, represents
the query, whereas the context is built by concate-
nating the textual representations ê1, . . . , ên of the
candidates e1, . . . , en. A model is then trained to
extract the text span that corresponds to e∗. Follow-
ing the same efficiency reasoning of the authors,
we use as our underlying model the Longformer
(Beltagy et al., 2020), whose linear attention bet-
ter scales to this type of long-input formulations.
Compared to the above generative method, the ben-
efits of this approach lie in i) dropping the need
for a potentially slow auto-regressive decoding pro-
cess, and ii) enabling full joint contextualization
both between context and candidates, and across
candidates themselves.

3 Experiments and Results

In order to assess the impact of our proposal in ED,
we evaluate how the performances of generative
and extractive formulations change when moving
from Wikipedia titles to our alternative. To this
end, in this Section, we first describe our experi-
mental setting, discussing the datasets, evaluation
strategy and comparison systems we adopt. Then,
we describe the architecture we use for the two
formulations. Finally, we present our findings.
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Dataset Instances Candidates Failures
A

ID
A Train 18,448 905,916 / 79,561 5038 / 682

Validation 4791 236,193 / 43,339 1360 / 296

Test 4485 231,595 / 46,660 1395 / 323

O
O

D

MSNBC 656 17,895 / 8336 149 / 72

AQUAINT 727 23,917 / 16,948 142 / 121

ACE2004 257 12,292 / 8045 66 / 50

CWEB 11,154 462,423 / 119,781 3642 / 1265

WIKI 6821 222,870 / 105,440 1216 / 719

Table 1: Number of instances, candidates and failures
to map a Wikipedia title to its Wikidata definition in the
AIDA-CoNLL (top) and out-of-domain (OOD, bottom)
datasets. For candidates and failures, we report both
their total (base) and unique (exponent) number.

3.1 Experimental Setup
Data. We follow the same experimental setting
described by De Cao et al. (2021) and use the stan-
dard AIDA-CoNLL splits (Hoffart et al., 2011) for
training, model selection and in-domain evaluation
(AIDA); similarly, we leverage their cleaned ver-
sion of MSNBC, AQUAINT, ACE2004, WNED-
CWEB (CWEB) and WNED-WIKI (WIKI) (Guo
and Barbosa, 2018; Evgeniy et al., 2013) for out-
of-domain evaluation and use their same candidate
sets, which were originally presented by Le and
Titov (2018).1 We match each entity candidate
with its item in Wikidata2 to retrieve the corre-
sponding description. Due to inconsistencies in the
datasets and different dump versions, this mapping
is not always possible, and, in these cases, we fall
back to employing their Wikipedia title alone. We
report in Table 1 the number of instances, candi-
dates and mapping failures in each dataset under
consideration.

Evaluation. Following previous literature in ED,
we compute scores over the test sets in terms of
inKB Micro F1. Furthermore, for each system we
consider, we calculate the macro average of its per-
formances both over all the test sets (Avg) and over
the five out-of-domain datasets only (AvgOOD).

Comparison Systems. We consider the original
models presented by De Cao et al. (2021, GENRE)
and Barba et al. (2022, ExtEnD), trained on AIDA-
CoNLL with Wikipedia titles, as our main nat-
ural comparison systems; in particular, for Ex-

1These candidate sets were generated through count statis-
tics from Wikipedia, YAGO and a large Web corpus.

2We took the latest dump (June 13th, 2022) at the
moment of writing from the official Wikidata website:
https://dumps.wikimedia.org/wikidatawiki/entities/

tEnD, we evaluate against both its Longformer
base (ExtEnDbase) and large (ExtEnDlarge) alterna-
tives. Furthermore, to better contextualize the per-
formances we attain within the current landscape of
ED, we also include three state-of-the-art systems,
namely, the global model of Yang et al. (2018),
and the variants of De Cao et al. (2021) and Barba
et al. (2022), both pre-trained on BLINK (Wu et al.,
2020) before fine-tuning on AIDA-CoNLL. How-
ever, we note that, differently from our work, these
three systems use additional training data (9M sam-
ples) from Wikipedia, whereas, due to computa-
tional constraints, we limit our experiments to the
sole usage of AIDA-CoNLL (< 20K samples).

3.2 Architectures

For both our formulations, we closely follow the
corresponding reference architectures. For the gen-
erative method, we use BART (406M parameters)
as our underlying sequence-to-sequence model and
fine-tune it on AIDA-CoNLL using a 10,000 to-
ken batch size, Adam (Kingma and Ba, 2015) as
our optimizer and 10−5 learning rate, with 500
warm-up steps and linear decay. For the extractive
method, we test and evaluate our approach on both
the base (139M parameters) and large (435M pa-
rameters) versions of ExtEnD presented in the refer-
ence work, using Rectified Adam as our optimizer,
with 10−5 learning rate, and training with a batch
size of 8000 tokens. All the trainings are done for
a single run on GeForce RTX 3090 graphic card
with 24 gigabytes of VRAM. Henceforth, we refer
to these systems as GENREdef , ExtEnDdef

base and
ExtEnDdef

large, respectively.

3.3 Results

In Table 2 we show the inKB Micro F1 score that
our models and their comparison systems achieve
on the datasets under consideration. As a first
note, we point out that, for easier comparability
between our experiments, we reproduce the orig-
inal AIDA-CoNLL models of both De Cao et al.
(2021) and Barba et al. (2022). While we attain
comparable performances for the latter, and hence
omit it, we find that our own implementation of
GENRE, which we denote in Table 2 by GENRE†,
obtains better results than its reference, especially
out of domain, with an average improvement of
more than 2 points.

Moving to GENREdef , its behavior is definitely
below its counterpart with Wikipedia titles (i.e.,
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In-domain Out-of-domain Avgs

Model AIDAdev AIDAtest MSNBC AQUAINT ACE2004 CWEB WIKI Avg AvgOOD

A
ID

A
+ Yang et al. (2018) - 95.9 92.6 89.9 88.5 81.8 79.2 88.0 86.4

GENRE - 93.3 94.3 89.9 90.1 77.3 87.4 88.8 87.8
ExtEnDlarge - 92.6 94.7 91.6 91.8 77.7 88.8 89.5 88.9

A
ID

A

GENRE - 88.6 88.1 77.1 82.3 71.9 71.7 79.5 78.2
ExtEnDbase - 87.9 92.6 84.5 89.8 74.8 74.9 84.1 83.3
ExtEnDlarge - 90.0 94.5 87.9 88.9 76.6 76.7 85.8 84.9

GENRE† 94.8 90.7 91.3 76.9 87.3 73.9 73.7 82.3 80.6
GENREdef 93.2 84.4 83.1 59.6 81.3 64.0 63.4 72.6 70.3
ExtEnDdef

base 93.9 89.1 93.5 84.9 87.7 74.9 74.5 84.1 83.1
ExtEnDdef

large 94.9 92.4 93.2 87.0 87.7 76.4 78.3 85.8 84.5

Table 2: inKB Micro F1 scores over the AIDA-CoNLL validation and test splits, and the out-of-domain datasets
when training on AIDA-CoNLL (bottom), or on additional resources as well (top). The best score in each section is
marked in bold and, in the bottom part, if its difference from its best alternative is statistically significant (p < 0.01
according to the McNemar’s test (Dietterich, 1998)), we also underline it.

Model MFC LFC UE UEM UM

A
ID

A ExtEnDlarge 98.3 81.6 80.9 80.9 89.0
ExtEnDdef

large 98.3 81.0 86.9 86.5 92.9

O
O

D ExtEnDlarge 97.2 82.2 73.8 74.4 77.2
ExtEnDdef

large 96.5 81.5 74.5 75.0 77.7

Table 3: Fine-grained results analysis over the AIDA-
CoNLL (top) and out-of-domain (bottom) datasets. Left
to right, columns are Most Frequent Class (MFC), Less
Frequent Class (LFC), Unseen Entity (UE), Unseen
Entity-Mention pair (UEM) and Unseen Mention (UM).
Bold and underline have the same meaning as in Ta-
ble 2.

GENRE and GENRE†), with a drop of roughly 10
points on average. To better understand this issue,
we analyzed its predictions over the validation set,
but did not identify any significant error pattern. In
particular, we investigated whether GENREdef pre-
sented length biases or was excessively skewed to-
wards the most frequent entities and, consequently,
less apt to scale over less frequent entities or un-
seen mentions. Interestingly, we did not find either
of these to be the case, with the two systems hav-
ing similar error distributions. We believe instead
that the drop might be happening as the formula-
tion behind GENREdef requires modeling a much
more complex output space and more data could
be needed to scale properly.

Considering, instead, extractive formulations,
we find the role of definitions to be definitely more
impactful. ExtEnDdef

base surpasses ExtEnDbase on
3 out of 5 out-of-domain benchmarks and on the

standard test set, here by more than 1 point. How-
ever, arguably our most interesting finding is the
behavior of ExtEnDdef

large. This system attains large
statistically significant improvements on AIDAtest

(+2.4) and WIKI (+1.5) and comparable perfor-
mances on CWEB.

Yet, when considering Avg and AvgOOD,
ExtEnDdef

large appears to behave worse than its title-
only alternative, with identical Avg and inferior
AvgOOD performances. We argue that this is an
unfortunate limitation of these two metrics, inher-
ent to their nature of macro averages, and that
statistical testing depicts a more complete land-
scape. On the one hand, MSNBC, AQUAINT
and ACE2004 are all very small datasets (Table 1)
where the apparently large performance drop be-
tween ExtEnDdef

large and ExtEnDlarge is not statisti-
cally significant but rather caused by a few different
classifications; to put things into perspective, on
ACE2004, despite the 1.2 difference in F1 score,
the predictions of the two systems differ for a total
of only 8 samples, with 5 and 2 being the number
of these that only ExtEnDlarge and ExtEnDdef

large

get right, respectively. On the other hand, on the
three remaining datasets – which are far larger –
ExtEnDdef

large either reports a statistically significant
improvement (AIDAtest and WIKI) or performs on
par (CWEB), highlighting the benefits of our more
expressive textual representations.

Finally, to further examine the impact of our
proposal, we investigate the effectiveness of
ExtEnDdef

large over different classes of mention and
label frequency, both in domain, i.e., over the test
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set in AIDA-CoNLL, and out of domain, i.e., over
the concatenation of the five datasets, and com-
pare it with ExtEnDlarge (Table 3). Specifically,
we consider instances:

• tagged with their most frequent entity in the
training set (MFC);

• tagged with a less frequent entity (LFC);

• tagged with an unseen entity (UE);

• whose (mention, entity) pair does not appear
in the training set (UEM);

• whose mention does not appear in the training
set (UM).

Overall, apart from the MFC and LFC classes,
where the difference is not statistically significant,
ExtEnDdef

large fares better in all other settings, which
all require scaling over unseen patterns. Most no-
tably, it yields +6.0 (AIDA) and +0.7 (OOD) im-
provements, both statistically significant, on un-
seen entities. This further underlines the better gen-
eralization capability granted by the use of more
expressive textual representations.

4 Qualitative Analysis

We report in Table 4 a selection of examples from
the WIKI dataset, showing candidates with both
their title-only textual representations and those
produced by our proposal. What we can see is that
using the sole titles can result in imposing strong as-
sumptions on what knowledge was captured by the
model under consideration during its pre-training
stage. For instance, in the first example in Table 4,
the model needs to know, beforehand, that Leed
Rhinos is an English rugby league football club.
Moreover, relying only on titles can also result in
underspecified queries. In the second example, if
we were to look only at the titles provided for the
two candidates, both alternatives would arguably
be equally correct. A similar issue holds for the
third example: although it may appear that the sys-
tem could guess that the most likely candidate is
the first one, as the second alternative is explicitly
stated to be in Massachusetts, this strategy does
not hold when considering the actual full list of
candidates, which is not reported in Table 4 due
to space constraints. While the model might be
able to correctly predict these instances thanks to
spurious correlations in the training set (e.g., the

Sentence: Hugh Waddell is a Scottish [...] professional
rugby league footballer [...] has played [...] at club
level for [...] Leeds [...]
Previous Candidates:

✘ Leeds
✓ Leeds Rhinos

New Candidates:
✘ Leeds: city in West Yorkshire, England
✓ Leeds Rhinos: English rugby league football club

Sentence: World Without Superman is a Superman
comic book story arc published by DC Comics.
Previous Candidates:

✓ Superman
✘ Superman (comic book)

New Candidates:
✓ Superman: superhero appearing in DC Comics
✘ Superman: comic book series featuring Superman

Sentence: Frank Mortimer born [...] in Wakefield was
an English professional rugby league footballer [...]
Previous Candidates:

✓ Wakefield
✘ Wakefield, Massachusetts

New Candidates:
✓ Wakefield: city in West Yorkshire, England
✘ Wakefield, Massachusetts: town in Massachusetts

Table 4: Extracts from the WIKI dataset, showing can-
didates with both the textual representations relying
only on Wikipedia titles (Previous candidates), and
our description-enhanced proposal (New Candidates).
Due to space limitations, out of the 100 candidates all
these three examples have, we only report the first two,
which always include the correct one (denoted by ✓, as
opposed to the incorrect alternative marked by ✘).

entity Superman being always linked to the super-
hero meaning, while Superman (comic book) to
the meaning of comic book series), Table 3 clearly
shows that this strategy does not scale.

5 Conclusion

In this work, we focus on a shortcoming of gener-
ative and extractive formulations in Entity Disam-
biguation, namely their usage of Wikipedia titles,
which are often insufficiently informative, and ex-
plore the effect of more expressive representations
on these formulations. While we do not witness
positive gains for generative formulations, at least
in the limited data and computational regime we
consider, we report strong improvements on ex-
tractive formulations. Specifically, our extractive
approach sets a new state of the art on 2 out of
the 6 benchmarks under consideration, and, more
interestingly, shows better scalability over unseen
patterns, especially unseen entities.
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Limitations

We believe that our work has four major limitations.
First, both the generative and extractive formula-
tions that we consider lack parallelism, as they
disambiguate each mention in the input text one at
a time. While batching can definitely help, it poses
additional computational requirements and, what
is more, the same (but for the position of the <s>
and </s> special symbols) input text would still
need to be encoded multiple times. Second, our
representation strategy requires the availability of
descriptions in the target language in Wikidata (or
some other knowledge base with a mapping from
Wikipedia titles). While this data is readily avail-
able for English, this might not be the case for sev-
eral other mid-to-low-resource languages. Third,
both our formulations are local and, granted that
pre-trained language models have certainly bridged
the gap with global alternatives, their underlying
independence assumption is still limiting. Finally,
our proposal does incur an increased computational
cost, with the textual representations getting con-
siderably longer: while using Wikipedia titles re-
sults in sequences with an average subword length
over AIDA-CoNLL of 7 and a 99th percentile of
14, adding descriptions nearly doubles the average,
reaching 12.5, and makes the 99th percentile hit
29.
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