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Abstract

Previous work has established that RNNs with
an unbounded activation function have the ca-
pacity to count exactly. However, it has also
been shown that RNNs are challenging to train
effectively and generally do not learn exact
counting behaviour. In this paper, we focus on
this problem by studying the simplest possible
RNN, a linear single-cell network. We conduct
a theoretical analysis of linear RNNs and iden-
tify conditions for the models to exhibit exact
counting behaviour. We provide a formal proof
that these conditions are necessary and suffi-
cient. We also conduct an empirical analysis
using tasks involving a Dyck-1-like Balanced
Bracket language under two different settings.
We observe that linear RNNs generally do not
meet the necessary and sufficient conditions for
counting behaviour when trained with the stan-
dard approach. We investigate how varying the
length of training sequences and utilising dif-
ferent target classes impacts model behaviour
during training and the ability of linear RNN
models to effectively approximate the indicator
conditions.

1 Introduction

Recurrent Neural Networks (RNNs) have a long
history of being used to solve a wide range of tasks
involving sequential data. They were the most
common choice for natural language processing,
but have since been largely replaced by transform-
ers in recent years. However, there has been a
recent resurgence of interest in the theoretical as-
pects of RNNs, as seen in studies such as Merrill
et al. (2020). Another study found that RNNs with
squashing and non-squashing (i.e. unbounded) ac-
tivation functions exhibit qualitative differences in
their counting abilities (Weiss et al., 2018). This,
along with the findings of El-Naggar et al. (2022),
suggests that even RNNs with unbounded activa-
tion functions struggle to learn accurate counting
on very long sequences. It is therefore crucial to

understand why RNNs, despite having the capacity,
often fail to accurately count in practice.

In this study, we examine the behaviour of the
simplest form of RNNs: a linear single-cell RNN.
Our goals are to: a) theoretically identify the neces-
sary conditions for a linear RNN to have the ability
to count, and b) explore how these conditions re-
late to the empirical behaviour of trained linear
RNN models. The primary contributions of this
paper are: a) we identify two conditions that in-
dicate counting behaviour in linear RNNs; b) we
prove that these indicator conditions are necessary
and sufficient for exact counting behaviour to be
achieved in linear RNNs; c) we then show empiri-
cally that linear RNNs generally do not learn exact
counting and do not meet the indicator conditions;
and finally, d) we show empirical relationships be-
tween the length of the training sequences and the
indicator value distributions.

2 Related Work

The success of deep learning sparked a renewed in-
terest in research into the understanding of the the-
oretical properties of neural networks. It has been
known for long that RNNs are Turing-complete
(Siegelmann and Sontag, 1992). However, Weiss
et al. (2018) showed that there are different classes
of RNN architectures with respect to counting ca-
pacity when using finite precision states. The rela-
tionship between RNNs and automata and formal
languages has been investigated by Merrill (2019)
and a formal hierarchy of counter machines has
been developed by Merrill et al. (2020). This anal-
ysis is often based on “saturating” the network, i.e.
replacing sigmoids with step functions, so that neu-
ral activations become binary, allowing for simpler
analysis.

In practice however, activations in neural net-
works use a wide variety of values and system-
atic behaviour like counting or even parsing is of-
ten not observed, which has been discussed for
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over 30 years since Fodor and Pylyshyn (1988).
More recently, Lake and Baroni (2017) identified a
specific lack of systematic behaviour and devised
SCAN, a synthetic language processing task that
standard RNNs fail on. A traditional approach for
processing the hierarchical structure of language
is to use a stack and a number of neural stack ver-
sions have been introduced, such as those by Joulin
and Mikolov (2015), Grefenstette et al. (2015) and
Chen et al. (2020), which performed well on SCAN.
Suzgun et al. (2019b) use stack-augmented RNNs
to learn Dyck-2 languages. Mali et al. (2021) de-
veloped methods to achieve more stable behaviour
of neural stacks, achieving good, but not perfect,
performance on longer sequences up to 160 tokens.

The generalisation of formal language tasks to
very long sequences is not often addressed, as it
requires an exact or near exact behaviour of the
neural network in order avoid accumulation of er-
rors, e.g. when counting. Suzgun et al. (2019a)
claims that LSTMs can learn to count, but did not
test for sequences of length greater than 100. Weiss
et al. (2018) reported that ReLU RNNs, which were
generally hard to train, and even LSTMs which
are easier to train on counting tasks, did fail for
sequences of several hundred tokens. Similarly,
in our previous work (El-Naggar et al., 2022) we
show that almost all ReLU RNNs and LSTMs fail
on sequences of length 1000.

These studies generally indicate that RNNs do
not reach a configuration that enables exact count-
ing. It is not clear what the general conditions are
for an RNN to perform exact counting, which is
necessary for developing a deeper understanding
of the behaviour of RNNs. We start to address
this question here by studying the case of a linear
single-cell RNN.

3 Counting Behaviour in Linear RNNs

In this section we formally define the Balanced
Bracket Language, Balanced Bracket Counter and
Linear Recurrent Network and we identify condi-
tions for the network weights that indicate that the
Linear Recurrent Network will behave as a Bal-
anced Bracket Counter. We base our counter defi-
nitions on the General Counter Machine (GCM) as
defined by Merrill (2020), which we also listed for
convenience in Appendix A.

The GCM is defined by a vocabulary Σ, finite set
of states Q, initial state q0, counter update function
u, state update function δ, and acceptance mask F .

Some components, such as states, can be empty.
The counter computation also uses a zero check
function. An input string x is processed by the
counter one token xt at a time. The counter update
function u is used to update the counter value c with
integer increments (+m). The counter updates are
dependent on the current input token, the current
state, and a finite mask of the current state. In
our setting, a counter machine is said to accept a
sequence if c = 0 after the whole sequence is has
been processed. A counter machine M is said to
accept a language L if Maccepts s ⇐⇒ s ∈ L.

We focus on sequences consisting of one type of
bracket: Σ ={‘(’, ‘)’}.

Definition 1. (Balanced Bracket Language BB)
The Balanced Bracket Language BB is defined as

BB = {s ∈ Σ∗| count( ‘(’, s) = count( ‘)’, s)}.

The order of the opening and closing brackets
does not matter for the BB language, only that
the number of opening and closing brackets in a
sequence is equal overall. Dyck-1 sequences are a
special case of BB sequences where the number of
closing brackets is never greater than the number
of opening brackets at any point in the sequence,
i.e. for all prefixes.

Our focus is on the counting abilities of single-
cell linear RNNs. These networks do not have the
capacity to accept Dyck-1 sequences from the uni-
verse of all possible sequences, because they would
need to treat negative counts differently from pos-
itive activations to distinguish correctly ordered
from incorrectly ordered bracket sequences. How-
ever, that is not possible with a single linear neu-
ron, and additional mechanisms would be needed
to fully accept a Dyck-1 language from the entire
universe of possible sequences.

Previous work, such as Suzgun et al. (2019a),
who train their single-cell RNN models to learn
Dyck-1 languages only use valid Dyck-1 sequences
in their datasets, where there are never any excess
closing brackets at any point in the sequences. This
seems unnecessarily limiting, however. Therefore,
we use the BB language which can be fully ac-
cepted using a single-cell linear RNN.

Definition 2. (Balanced Bracket Counter)
A General Counter Machine is a Balanced Bracket
Counter iff it accepts BB.

Definition 3. (Linear Recurrent Network)
A Linear Recurrent Network (LRN) is a network
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which receives an input xt at every timestep t,
which is used along with the activation from the
previous timestep ht−1 and weights W , U , and Wb

to produce activation ht, which is then passed on
to the next timestep with the update function:

ht = Wxt + Uht−1 +Wb.

Here, xt is a one-hot-encoded input token, an
LRN is similar to a stateless counter machine if we
apply a zero check z function to ht after processing
the last input. A counter based on the LRN deviates
from the definition by Merrill (2020) in that:

• The counter value c corresponds to ht (it is the
only value that propagates from one time step
to the next), which is real instead of integer,

• The results of the update function (+m in the
Counter Machine) are real numbers, specifi-
cally:

a = Wxt +Wb if xt = ‘(’ , and
b = Wxt +Wb if xt = ‘)’ .

We use a single-cell LRN for bracket counting.
As a result, W is a vector of the same dimensional-
ity as xt and U and Wb are scalars, as well as m, c,
and ht.

In Theorem 1, we relate Balanced Bracket
Counter behaviour of a LRN to specific conditions
on its weights. We define two indicator conditions
and show that they are necessary and sufficient for
exact counting behaviour to be achieved in a LRN.

Theorem 1. (Linear RNN Counting Indicators)
The following two indicator conditions are neces-
sary and sufficient for a Linear Recurrent Network
to accept the Balanced Bracket Language BB.

1. a
b = −1 (AB ratio)

2. U = 1 (recurrent weight).

Proof 1. We prove that the counting indicator con-
ditions in Theorem 1 are necessary and sufficient
to accept the Balanced Bracket Language with a
Linear Recurrent Network. We first prove that the
conditions are necessary (Part 1) and then that they
are sufficient (Part 2).

Part 1: We prove that the counting indicator
conditions in Theorem 1 are satisfied if a Linear
Recurrent Network accepts the Balanced Bracket
Language by using different input sequences (Table
1), from which we derive the indicator conditions.
If a Linear Recurrent Network accepts the Balanced

Case Input Output (h) Findings

1 ‘(’ h1 ̸= 0 a ̸= 0
2 ‘)’ h1 ̸= 0 b ̸= 0
3 ‘()’ h2 = 0 b = −Ua and U ̸= 0
4 ‘((’ h2 ̸= 0 U ̸= −1
5 ‘(())’ h4 = 0 b+ Ub+ U2a+ U3a = 0
6 ‘()()’ h4 = 0 b+ Ua+ U2b+ U3a = 0

Table 1: Input sequences used to derive the indicator
conditions from Theorem 1.

Bracket Language, then equal numbers of opening
and closing brackets result in an output activation
ht = 0, otherwise, ht ̸= 0. This is equivalent to
zero check function z(ht) yielding 0 or 1. There-
fore, we will not include the zero-check function
in the following derivation.

Case 1: seq =‘(’, h0 = 0, h1 ̸= 0
h1 = a+ Uh0 = a
∴ a ̸= 0

Case 2: seq =‘)’, h0 = 0, h1 ̸= 0
h1 = b+ Uh0 = b
∴ b ̸= 0

Case 3: seq = ‘()’, h2 = 0
h2 = b+ Ua
b+ Ua = 0
From cases 1,2: a ̸= 0 and b ̸= 0
∴ b = −Ua, and U ̸= 0

Case 4: seq =‘((’, h2 ̸= 0
h2 = a+ Ua
a+ Ua ̸= 0
∴ U ̸= −1

Case 5: seq =‘(())’, h4 = 0
h3 = b+ Uh2 = b+ U(a+ Ua)
h4 = b+ Uh3 = b+ U(b+ U(a+ Ua))
∴ h4 = b+ Ub+ U2a+ U3a = 0

Case 6: seq =‘()()’, h4 = 0
h3 = a+ Uh2 = a+ U(b+ Ua)
h4 = b+ Uh3 = b+ U(a+ U(b+ Ua))
∴ h4 = b+ Ua+ U2b+ U3a = 0

Combine the findings from cases 5 and 6.
b+Ub+U2a+U3a = b+Ua+U2b+U3a

Subtract b + U3a from both sides and
divide both sides by U
b+ Ua = a+ Ub

Rearrange and factorise
b− a = U(b− a)

As a result, we get 2 possible situations:
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(a) U = 1, which implies a = −b by case 3
(b) a = b, where by cases 1 and 2 we know

a ̸= 0 and b ̸= 0, and U = −1 follows
from case 3, which contradicts case 4

∴ U = 1 and a = −b, i.e., the counter
indicator conditions listed in Theorem 1 hold,
if a Linear Recurrent Network accepts the
Balanced Bracket Language.

Part 2: We prove by induction that if the counting
indicator conditions listed in Theorem 1 hold, a
Linear Recurrent Network accepts the Balanced
Bracket Language.

Each sequence consists of n opening brackets
and m closing brackets, and the input token xk is
either ‘(’ or ‘)’.
Base Case: k = 1

• x1 =‘(’, n = 1 and m = 0:
h1 = a+ Uh0
h1 = a

• x1 =‘)’, n = 0 and m = 1:
h1 = −a+ Uh0
h1 = −a

For n opening and m closing brackets, the
following equation satisfies the base case, and is
therefore our induction hypothesis:

hk = (n−m)× a

We assume that this is true for sequences of length
k consisting of n opening brackets and m closing
brackets. We prove by induction that if this holds
for sequences of length k tokens, it holds for se-
quences of length k + 1 tokens. In our induction
step, we use once xk+1 =‘(’ and once xk+1 =‘)’.
Induction Step:

• If xk+1 =‘(’:
hk+1 = ((n+ 1)−m)× a

• If xk+1 =‘)’:
hk+1 = (n− (m+ 1))× a

From the premise, we can derive that:
hk = a+Uhk−1 if xk =‘(’, and hk = −a+Uhk−1

if xk =‘)’

• If xk+1 =‘(’:
hk+1 = a+ hk
Substitute hk = (n−m)× a
hk+1 = a+ ((n−m)× a)
∴ hk+1 = ((n+ 1)−m)× a

• If xk+1 =‘)’:
hk+1 = −a+ hk
Substitute hk = (n−m)× a
hk+1 = −a+ ((n−m)× a)
∴ hk+1 = (n− (m+ 1))× a

Therefore, we prove that if the counting indicator
conditions listed in Theorem 1 are satisfied in a
Linear Recurrent Network, it accepts the Balanced
Bracket Language.

4 Counting in Linear RNNs in Practice

We conduct experiments to analyse the models and
whether or not they satisfy the conditions defined
in the previous section in training. We use 2 classi-
fication tasks to evaluate our models.

4.1 Task 1: Binary Classification
We use the same task and model as in our previous
work (El-Naggar et al., 2022), i.e., a linear RNN
without biases with a single output neuron with sig-
moid activation to classify the bracket difference of
the sequence as > 0 or ≤ 0 (binary). The absence
of a trainable bias reduces the degrees of freedom
in the model, and is equivalent to having a bias
(Wb) value that is fixed to 0, hence simplifying the
learning task. We also use the same models with
trainable biases. The models are trained with se-
quences of lengths 2, 4 and 8 tokens for 100 epochs
in 10 runs. The initial count value (h0) has a value
of 0 for every sequence. We inspect the weights of
our models and plot the distribution of the indica-
tor values (a/b,U ) of the trained models for each
training set size in Figure 1. We observe that the
models do not fulfill the indicator conditions, but
they do approach the conditions as the length of the
training sequences increases. We observe that the
distributions of the a/b indicator have mean values
above −1 but less so for longer training sequences.

4.2 Task 2: Ternary Classification
We also apply a ternary classification: > 0, = 0
or < 0. We use the same model as in Task 1,
except that instead of a single output neuron with a
sigmoid output activation, we use 3 output neurons
and a softmax output layer with bias, which is the
minimal configuration that can achieve this task.
We also use the same models with trainable biases.

The initial count value (h0) has a value of 0
for every sequence and the models are trained in
the same manner as the models from Task 1. The
ternary classification accuracy is slightly lower as
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Classification Train Train 20 Tokens 50 Tokens
Experiment Length Avg(Min/Max) Avg(Min/Max) Avg(Min/Max)

Binary (without bias) 2 100 (100/100) 69.2 (6.04/77.3) 69.0 (66.7/72.7)
Binary (without bias) 4 100 (100/100) 94.8 (94.7/95.3) 89.3 (88.7/90.0)
Binary (without bias) 8 100 (100/100) 96.9 (94.0/100) 92.7 (78.7/98.0)

Ternary (without bias) 2 90 (33.3/100) 55.6 (33.3/64.4) 51.4 (33.3/60.0)
Ternary (without bias) 4 100 (100/100) 79.5 (65.8/94.7) 67.2 (66.7/68.0)
Ternary (without bias) 8 100 (100/100) 94.4 (67.1/100) 85.7 (66.7/100)

Binary (with bias) 2 100 (100/100) 73.4 (63.3/100) 72.4 (60.0/93.3)
Binary (with bias) 4 100 (100/100) 95.3 (92.7/98.0) 86.0 (77.3/90.7)
Binary (with bias) 8 100 (100/100) 95.2 (85.3/100) 87.9 (70.0/98.0)

Ternary (with bias) 2 88.3 (66.7/100) 58.0 (38.2/67.6) 54.4 (43.6/67.5)
Ternary (with bias) 4 97.9 (79.2/100) 81.5 (64.4/100) 68.0 (65.3/73.3)
Ternary (with bias) 8 100 (100/100) 95.9 (83.6/100) 76.5 (65.3/100)

Table 2: Accuracy metrics of our previous binary classification experiments without bias (El-Naggar et al., 2022),
ternary classification experiments without bias, and binary and ternary classification experiments with bias.

(a) AB ratio binary (no bias) (b) U value binary (no bias) (c) AB ratio ternary (no bias) (d) U value ternary (no bias)

(e) AB ratio binary (bias) (f) U value binary (bias) (g) AB ratio ternary (bias) (h) U value ternary (bias)

Figure 1: Indicators after training on binary and ternary classification without biases (top) and with biases (bottom)
with different Training Sequence Lengths (TSL).

can be expected with more classes. For shorter
training sequences, this may be related to the larger
number of model parameters relative to the data
points. The accuracy improves with longer training
sequences. Ternary classification does not show a
mean of a/b above −1 as can be seen in Figure 1.

5 Conclusions and Future Work

Although linear RNNs have the theoretical capac-
ity for counting behaviour, previous research has
shown that these models often struggle to effec-
tively generalise counting behaviour to long se-
quences. In this study, we present a set of neces-
sary and sufficient conditions that indicate counting
behaviour in linear RNNs and provide proof that

meeting these conditions is equivalent to counting
behaviour. To investigate the extent to which these
conditions are met, we examine the parameters of
models trained on sequences of varying lengths for
classification tasks. We use both binary and ternary
classification tasks and find that the models do not
fully meet these conditions, but do approach them
and get closer as the sequence length increases.

There are several potential areas for future work
based on these findings. One possible research di-
rection is to extend this approach to ReLU RNNs,
and LSTMs as far as possible. Another option is to
devise methods to ensure that the indicator condi-
tions we have identified are met during training in
order to improve the generalisation abilities of our
models.
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A General Counter Machine

This definition is from Merrill (2020).

Definition 4. (General Counter Machine) A k-
Counter is a tuple ⟨Σ, Q, q0, u, δ, F ⟩ with:

1. A finite alphabet Σ

2. A finite set of states Q

3. An initial state q0

4. A counter update function

u : Σ×Q× {0, 1}k → ({+m : m ∈ Z} ∪ {×0})k

5. A state transition function

δ : Σ×Q× {0, 1}k → Q

6. An acceptance mask

F ⊆ Q× {0, 1}

The counter machine computation is formalised
in Definition 5. The finite mask of the current state
is created using a zero-check function z(v) for a
vector v, where:

z(v)i =

{
0, if vi = 0

1, otherwise
(1)

Definition 5. (Counter Machine Computation) Let
⟨q, c⟩ ∈ Q × Zk be a configuration of machine
M . Upon reading input xt ∈ Σ, we define the
transition

⟨q, c⟩ →xt ⟨δ(xt, q, z(c)), u(xt, q, z(c))(c)⟩
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