
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 37–51
May 2-4, 2023 ©2023 Association for Computational Linguistics

GAP-Gen: Guided Automatic Python Code Generation

Junchen Zhao ∗ Yurun Song ∗ Junlin Wang Ian G. Harris
junchez3@uci.edu yuruns@uci.edu junliw1@uci.edu harris@ics.uci.edu

University of California, Irvine

Abstract
Automatic code generation from natural lan-
guage descriptions can be highly beneficial dur-
ing the process of software development. In
this work, we propose GAP-Gen, a Guided
Automatic Python Code Generation method
based on Python syntactic constraints and se-
mantic constraints. We first introduce Python
syntactic constraints in the form of Syntax-
Flow, which is a simplified version of Ab-
stract Syntax Tree (AST) reducing the size
and high complexity of real python AST but
maintaining crucial syntactic information of
Python code. In addition to Syntax-Flow, we
introduce Variable-Flow which abstracts vari-
able and function names consistently through-
out the code. In our work, rather than pre-
training, we focus on modifying the fine-
tuning process which reduces computational
requirements but retains high generation per-
formance on automatic Python code genera-
tion task. GAP-Gen fine-tunes the transformer-
based language models T5 and CodeT5 using
the Code-to-Docstring datasets CodeSearchNet,
CodeSearchNet AdvTest and Code-Docstring-
Corpus from EdinburghNLP. Our experiments
show that GAP-Gen achieves better results on
automatic Python code generation task than pre-
vious works. Our implementation is available
on the github1.

1 Introduction

With billions of people relying on software for their
everyday work and life, developers face an ongo-
ing challenge to create programs efficiently. One
potential solution to this challenge is to use human
descriptions to generate the corresponding source
code. By using this approach, developers can write
software specifications in natural language, which
are then translated into code through code gener-
ation mechanism. Early attempts to tackle this

* Equally contributed
1https://github.com/Rain9876/

Auto-Code-Generator

problem were rule-based, identifying syntactic pat-
terns in text and using handcrafted rules to map the
patterns to code. Methods used to recognize syntac-
tic structure include regular patterns (Gulwani and
Marron, 2014; Kate et al., 2005; Le et al., 2013)
and parse trees produced using context-free gram-
mars (Kate et al., 2005; Le et al., 2013; Ballard
and Biermann, 1979; Price et al., 2000). Several
previous approaches convert a sentence into a for-
mal statement by mapping verbs to functions in
the formal language, and mapping the objects of
the verb in the sentence to function arguments in
the formal language (Ballard and Biermann, 1979;
Price et al., 2000; Little and Miller, 2006). For
example, the sentence, “Add r1 to r2” might be
mapped to add(r1, r2) in a procedural language.
The problem of finding the objects of the verb to
use as function arguments is simple if the sentence
structure is strictly limited. Several approaches use
regular expressions (Le et al., 2013) or context-free
grammars (Kate et al., 2005) to identify the objects
in the sentence.

More recent approaches are data-driven and
leverage machine learning methods, e.g., (Desai
et al., 2016) uses a Naive Bayesian Classifier to
map English words to a domain-specific language,
and (Quirk et al., 2015) learns production rules
for a semantic parser. (Rahit et al., 2019) uses a
Long-Short Term Memory (LSTM) Recurrent Neu-
ral Network (RNN) architecture to implement their
neural machine translation approach . Work pre-
sented in (Ling et al., 2016) introduces the Latent
Predictor Network (LPN) architecture which treats
code generation as a sequence-to-sequence model-
ing problem. (Yin and Neubig, 2017) builds upon
this approach by leveraging the grammar model of
the target language as prior knowledge.

Research presented in (Clement et al., 2020;
Feng et al., 2020; Lu et al., 2021) introduced
transformer-based language model pre-training
methods to map the natural language semantic with

37

https://github.com/Rain9876/Auto-Code-Generator
https://github.com/Rain9876/Auto-Code-Generator

PHASE I PHASE II

Syntax-Flow
Language Model

Code Generation
Language Model

Variable-Flow
Language Model

Docstring

Syntax-Flow

Variable-Flow

Code

Figure 1: An overview of the proposed approach Phase I has two language models generating Syntax-Flow and
Variable-Flow. In Phase II, another language model encodes these two types of information as well as the docstring
to generate code.

the code. Although these works have relatively
good performance on source code generation task,
they require high computational resources, which
are difficult to acquire. They also usually consider
the code as a sequence of tokens (Feng et al., 2020;
Kanade et al., 2020; Lu et al., 2021) and ignore
either the source code’s syntactic-level or semantic-
level information, which could improve the lan-
guage models’ code understanding capability, dur-
ing their pre-training process.

In this work, we present GAP-Gen, a method
to improve automatic Python source code genera-
tion from natural language description. Our GAP-
Gen is fine-tuning of the pre-trained T5-English
(Raffel et al., 2020a) and CodeT5 (Wang et al.,
2021) language models that employ Syntax-Flow
and Variable-Flow as guidance and has shown on
being able to understand the relationship between
natural language description and Python code from
syntactic and semantic level of the Python code.

Our GAP-Gen training pipeline is composed of
two phases. As shown in Figure 1, Phase I, fine-
tunes our pre-trained language model for the pur-
pose of generating Python code’s syntactic con-
straints and semantic-level structure, the Syntax-
Flow and the Variable-Flow. Phase II, fine-tunes a
separate language model by encoding natural lan-
guage description of the code, the generated code
syntactic constrains (Syntax-Flow) and abstracted
variable names (Variable-Flow) from Phase I to
generate Python code. By doing so, language
models fine-tuned with GAP-Gen training pipeline
are able to surpass many previous works’ perfor-
mances, which rely on the pre-training process of
language models without considering code’s syn-

tactic and semantic information.
Our main contributions are:

• We introduce Syntax-Flow and demonstrate
the importance of the source code’s syntac-
tic information in the automatic Python code
generation task.

• We show that abstracting variable and function
names through Variable-Flow is effective in
maintaining the naming semantics of the code.

• We achieve high performance on automatic
Python source code generation task without
language model pre-training.

2 Related Works

Language Models for Programming Languages.
Transformer-based language models that utilize at-
tention mechanisms have been dominating NLP
benchmarks (Vaswani et al., 2017; Wang et al.,
2018). The novel attention-based message pass-
ing techniques plus multi-task pre-training (Devlin
et al., 2019) have been through extensive studies.
This leads to a deeper understanding of the rep-
resentational power of transformer-based models
(Ethayarajh, 2019; Kovaleva et al., 2019; Jain and
Wallace, 2019).

At the same time, transformer-based auto-
regressive language models consisting of en-
coder/decoder demonstrate stellar performances on
many NLP generative tasks (Radford et al., 2019;
Lewis et al., 2020; Raffel et al., 2020b). These tasks
include but not limited to story generation (See
et al., 2019), dialogue (Budzianowski and Vulic,
2019), summarization (Lewis et al., 2020), Entity

38

Retrieval (Cao et al., 2021), Question Answering
(Guu et al., 2020), and so on. Similar advances
have also been made in Programming Language
relevant tasks.

Programming language generation tasks, al-
though not considered as natural language gener-
ation tasks, have been demonstrated to have great
results when they are modeled similarly as natu-
ral language generation tasks. (Feng et al., 2020)
pre-trains on Mask Language Modeling (MLM)
and replaced-token detection for code understand-
ing tas. In (Liu et al., 2020), the authors develop
a code completion transformer-based model by
jointly predicting the probability and type of the
next token. For the task of code summarization,
transformer-based models outperform the other
neural approaches (Yu et al., 2020; Ahmad et al.,
2020); Svyatkovskiy et al., 2020; Liu et al., 2020)
use GPT and UniLM respectively for code com-
pletion. More related to our work, (Husain et al.,
2019; Clement et al., 2020) explore pre-training
methodologies for learning better structural and
syntactical information for automatic code gener-
ation. Moreover, (Wang et al., 2021; Guo et al.,
2021) incorporates Variable-Flows and identifier
information into their pre-training process for bet-
ter code generation performance.

Guided Text Generative Models. Generative
modeling is powerful but often falls short in many
conditions. The behavior of auto-regressive lan-
guage models cannot be explicitly controlled, and
was shown to be very easy to degenerate (Holtz-
man et al., 2020; Welleck et al., 2020; Meister et al.,
2020). This is also the case for code generation.
This prompts researchers to combat this issue by
looking at either the training time or the decoding
time. Work in (Fan et al., 2018) constrains the
sample space to top-k tokens in the softmax logis-
tics to avoid introducing highly unlikely tokens.
(Holtzman et al., 2020) instead restricts the sam-
pling space to the smallest set of space above some
probability mass. Using simple decoding variants
is lightweight to implement, but does not change
the predicted likelihood of each token. (Welleck
et al., 2020) argues that the likelihood objectives is
at fault, and proposes unlikelihood training objec-
tive, which forces lower probabilities on unlikely
generations.

Furthermore, practitioners have also injected
priors or structural information into the language
model for better generation. (Zhang et al., 2020;

Lagutin et al., 2021) utilizes policy learning to con-
trol model behaviors. However, this approach suf-
fers from high variance (Choshen et al., 2020). Re-
cently work in story generation (Yao et al., 2019;
Rashkin et al., 2020; Goldfarb-Tarrant et al., 2020)
uses a plotline/storyline as an intermediate state
for generation. This alleviates the language mod-
eling tasks and sets up the model to better learn
the structure of the stories. Being motivated by
story generation, our work injects syntactic and
semantic structural information in a setup that is
similar to this line of works. For the code gener-
ation task, we utilize our proposed Syntax-Flow
and Variable-Flow as the intermediate state to help
language model better understand code’s syntactic
and semantic structure information and improve its
performance.

3 Method

In this section, we describe our method by intro-
ducing Syntax-Flow and Variable-Flow. Then we
present the generation process of Syntax-Flow and
Variable-Flow. Finally, we present the Python code
generation process guided by Syntax-Flow and
Variable-Flow.

3.1 Syntax-Flow

Unlike other methods that generate code directly
from source input with pre-training, our approach
works in a pipeline by generating the structure of
the code as an intermediate state first and then gen-
erating the detailed code using the code structure.

Procedural structure can be expressed formally
as an Abstract Syntax Tree (AST). An AST con-
tains two major components: STMT (Statement)
and Expr (Expression). STMT describes the
general structure of code including the high-level
Python code syntactic constraints. Expr is the de-
tailed content of the code, mainly including the
function variables and operations. Additionally,
there are some special components in an AST such
as the exceptional handler, import alias, arguments,
etc.

Due to the AST’s formality and rich expressive-
ness regarding the syntactic information of code,
there are works that generate an AST first and then
use it to aid code generation, such as (Yin and Neu-
big, 2017; Ling et al., 2016), but these works usu-
ally require composite model architecture changes.
Also, the AST is too complex for models to directly
generate information. The length of ASTs typically

39

Figure 2: An overview of the Syntax-Flow and Variable-Flow Generation . The numbers refer to the number
of indentations (4 spaces) required at the beginning of the command line. For Syntax-Flow, statements (STMTs)
immediately follow the required indentation and are then followed by several built-in expressions (Exprs). In
contrast, Variable Flow follows the function and variable names.

makes it impractical to directly input them into
transformer-based language models due to their
input sequence length limitation. As a result, we
propose a simplified version of an AST, namely
Syntax-Flow.

Instead of using the entire tree structure of the
AST, we only extract crucial information includ-
ing Indentation, STMT, and some parts of Expr.
By doing so, we reduce the complexity of AST
but retain its crucial syntactic structure of Python
code, and is small enough to be compatible with
transformer-based language models.

In our proposed Syntax-Flow, there are three crit-
ical components: Indentation, STMT and Default
Functions. These three components are viewed
as invariants which means that these components
are kept unchanged for maintaining code’s correct
functionality.

3.2 Variable-Flow

Variable-Flow is another indispensable component
in automatic code generation task. It can be effec-
tively applied to maintain the naming semantics of
the code during the code generation process. (Wang
et al., 2021; Guo et al., 2021) use Variable-Flow
during their pre-training process and achieve good
performances on programming language-relevant
tasks. In their works, they extract function variables
names as Variable-Flow which is integrated into

their pre-training process for improving language
models’ capability on understanding the code se-
mantic structure.

In our work, rather than extract variable names
only as Variable-Flow, our Variable-Flow con-
tains Indentation, variable names, and function
names. Variable names and function names are
uniformly free to change. In other words, Python
code’s functionality remains correct regardless of
the changes in these two Variable-Flow compo-
nents. Therefore, compared with Syntax-Flow, our
Variable-Flow contains variant components and is
more dynamic.

3.3 Phase I - Generation of Syntax-Flow and
Variable-Flow

3.3.1 Generation of Syntax-Flow
Figure 2 shows the Syntax-Flow and Variable-Flow
generation pipeline. With regard to Syntax-Flow,
the numbers represent the number of indentations
(4 spaces) required at the beginning of the com-
mand line. Then, a statement is immediately next
to the Indentation, followed by several built-in ex-
pressions. This feature is extracted from Python
code through AST syntax visitor method, a method
to go through every detail of the AST nodes re-
cursively and extracts all necessary nodes for use,
such as FunctionDef, STMT, exception handler etc,
with the count of indentation at the same time.

40

The simplified generation process of Syntax-
Flow is shown in Algorithm 1 Appendix B.4.
For each line of source code, we generate one
line of Syntax-Flow as you can see in Figure 2.
Formally we denote the source code to be y =
(y1, y2, ..., yn), and let E = [e1, e2, ..., eL] be the
list of indexes of the newline character. Hence, ye1
is the first line break, and Y1 = (y1, ..., ye1) is the
first line of the source code, Y2 = (ye1+1, ..., ye2)
the second and so on. Then for each such line of
the code, we generate a pair a = (t, c). t is the
indentation of the current line of code or number of
tabs, and c is the code logic which includes control
flow or function definitions. In other words, we are
looking for,

p(ti, ci|Yi) = p(ai|Yi) (1)

where i denotes the ith line. Both properties
are derived from an AST, which is generated by a
standard toolkit. For more detailed steps, refer to
Algorithm 1 in Appendix B.4.

3.3.2 Syntax-Flow Language Model

To better learn and utilize the syntactical informa-
tion of the source code, we use the Syntax-Flow
language model to first encode docstrings and then
generate Syntax-Flow. Here we use a pre-trained
auto-regressive language model. We do not do
any additional pre-training, so computing resource
is restricted to a manageable amount. As shown
in Algorithm 2 in Appendix B.4, to fine-tune the
language model, we first generate AST from the
ground golden source code |y = (y1,y2, . . . ,yn).
Then we transform the AST of the source code to
Syntax-Flow in a deterministic process,

a = SYNPARSE(AST-PARSE(y)) (2)

where SYNPARSE stands for Syntax-Flow Parse.
Both SYNPARSE and ASTPARSE are deterministic
functions that generate the Syntax-Flow a. We take
this as our true reference and model the process as
a standard generative task PLMS

(âi|x, â1...âi−1),
namely,

â = LMS(x) (3)

where x is the input (docstring for code gener-
ation). During inference, given a docstring, this
language model is able to generate Syntax-Flow
directly for the latter use.

3.3.3 Generation of Variable-Flow
We define the format of Variable-Flow in our work
similar to that of Syntax-Flow as shown in Fig-
ure 2. For each line of code, it has an indentation
t followed by V = [v1, ..., vj]. V is the list of
Variable-Flow which can be either variable names
or function names. Multiple variable names can
exist in the same line. Its sequential nature allevi-
ates language models like T5 during the generation
process. Similar to the setup of Syntax-Flow, we
are looking for

p(ti, Vi|Yi) = p(bi|Yi) (4)

where Yi is the ith line of source code and bi =
(ti, Vi).

3.3.4 Variable-Flow Language Model
We generate Variable-Flow from source code y =
(y1,y2, . . . ,yn). Then we can safely extract
Variable-Flow determinedly from AST:

b = VARPARSE(ASTPARSE(y)) (5)

where VARPARSE stands for Variable-Flow Parse.
We take this as our true reference and fine-tune
the Variable-Flow Language Model on the source
code and Variable-Flow pairs. Specifically, we are
modeling PLMV

(b̂i|x, b̂1...b̂i−1). Hence,

b̂ = LMV (x) (6)

for the ith line. At inference time, the model is
expected to generate Variable-Flow for the latter
models to encode.

3.4 Phase II – Generation of Code
Code generation is built on the same language
model as Syntax-Flow and Variable-Flow language
model. However, unlike the generation of Syntax-
Flow or Variable-Flow, an issue in the code gener-
ation task is that the length of code description is
usually much shorter than the length of generated
code. For example, in the CodeSearchNet dataset,
many function code data length is over 128 tokens
while the description only has an average length
is about 50 tokens per sequence. This means that
the input information is limited and not enough to
generate plausible code unless the language model
is available to have more prepared features during
the code generation process. For this reason, we
use the information generated from Phase I as in-
termediate features to guide the language model
generating Python code in Phase II.

41

3.4.1 Guided Code Generation Language
Model

Our Code Generation Language Model depends
on the docstring and the corresponding Syntax-
Flow and the Variable-Flow. The language model
is obtained from a pre-trained auto-regressive lan-
guage model T5. In our work, we use the T5-based
language model as our guided Code Generation
Language Model LMG.

ŷ = LMG(x, LMS(x), LMV (x)) (7)

The Guided Code Generation Language Model
takes in the input docstrings x as well as the outputs
of the Syntax-Flow Language Model and Variable-
Flow Language Model.

4 Experiment

In this section, we present our experiment in detail.
First, we introduce the datasets we use and our data
processing approach in our experiment. Then, we
present our experimental setup. Finally, we intro-
duce our evaluation metrics in the last subsections.

4.1 Datasets
Code Search Net (CSN)2 (Husain et al., 2019)
is collected from publicly available open-source
non-forked GitHub repositories. Only projects that
are referenced by at least one other project are
included. The original paper filters around 500k
code-documentation pairs for Python. They re-
moved pairs where either the documents are less
than 3 words or methods less than 3 lines. They
also removed duplicate code, constructor and ex-
tension methods. After processing, there are 412k
training data, 22k validation data and 22k test data.

Edinburgh Code-to-Docstring dataset
(CDC)3 (Barone and Sennrich, 2017) is a parallel
Python function-to-docstring corpus collected
and processed from Github. The Edinburgh
Code-to-Docstring dataset contains 150,370 triples
of function declarations, docstrings and bodies in
the main parallel corpus. This parallel corpus is
partitioned into training/ validation/ testing data, in
which the training data contains 109,108 training
data, 2,000 validation data and 2000 testing data.

CodeSearchNet AdvTest (Adv)4 (Lu et al.,
2021) is a Python dataset derived from the Code-
SearchNet (CSN) corpus. The individual example

2https://github.com/github/CodeSearchNet
3https://github.com/EdinburghNLP/code-docstring-

corpus
4https://github.com/microsoft/CodeXGLUE

in CodeSearchNet AdvTest is designed for the code
search task. (Lu et al., 2021) took the first para-
graph of the docstring as the query for the corre-
sponding Python function. The function names and
variables are replaced by special tokens, which we
recover back with the original variables name. The
CodeSearchNet Advtest dataset contains 251,820
training data, 9,640 validation data, and 19,210
testing data.

4.2 Data Processing
In our experiment, we process our data in 3 steps.
(1) Clean up Raw Code: All Python 2 code is con-
verted to Python 3 using package 2to35, and all
Python code styles remain consistent with package
pep86. Similar with the step of (Clement et al.,
2020). We also remove all invalid code samples
that cannot be parsed to AST. After cleaning up
the raw code, 99.92% code data is remaining. (2)
Remove comments and docstrings: Comments and
docstrings are removed from the code, since these
will not be predicted. (3) Replace indentation and
newline: Indentation and newline is critical for gen-
eration a structured Python code. In our work, we
replace them with special symbol § for Indentation
and δ for newline.

4.3 Experimental Set Up
In both Phases, we use T5-based models. For Phase
I and II, the code description is the main source
inputs for the encoder.

Encoding Setup. We use the AdamW optimizer
for all the T5 models and assign learning rate 1e-
4 for Phase I and Phase II. The training step for
Phase I is kept at 75K and batch size at 32. The
training step for Phase II is kept at 100K and batch
size at 32.The learning scheduler is inverse root
square and has warm-up step of 5000 for phase I
and 10000 for Phase II.

Decoding Setup. Both Phase I and Phase II take
length 512 as input and have output length of 128
for phase I and 256 for Phase II. The beam size
is 5 for all Phases fine-tuning. We add repetition
penalty of 2 for Syntax-Flow and Variable-Flow
generation considering the case that repeated state-
ments occur frequently. All the tasks are run on
the two Nvidia GeForce A6000 with 48GB GPU
memory each.

Evaluation. For our experimental evaluation,
we use the metrics BLEU (Papineni et al., 2002),

5https://pypi.org/project/2to3/
6https://pypi.org/project/autopep8/

42

Rouge1-F1 Rouge2-F1 RougeL-F1 BLEU
CSN Syntax-Flow 49.1 35.8 47.7 12.7
CSN Variable-Flow 36.7 15.7 33.7 11.4
CDC Syntax-Flow 51.8 41.4 50.4 15.2
CDC Variable-Flow 37.4 18.9 34.8 11.9
Adv Syntax-Flow 50.4 36.9 48.9 13.6
Adv Variable-Flow 37.3 15.6 34.0 11.1

Table 1: The results of Syntax-Flow and Variable-Flow generation for all three datasets in Phase I with T5. The
performance is evaluated through Rouge and BLUE.

Rouge1-F1 Rouge2-F1 RougeL-F1 BLEU CodeBLEU
CSN 31.1 12.1 27.9 21.2 22.1
CDC 32.3 15.7 29.3 22.6 22.4
Adv 29.8 11.0 26.7 20.7 20.9

Table 2: The results of Python code generation for CSN, CDC and Adv in Phase II using GAP-Gen pipeline with
T5. The performance is evaluated through Rouge, BLUE and CodeBLEU.

ROUGE (Lin, 2004) and CodeBLUE (Ren et al.,
2020). BLUE and Rouge are the most common
metrics to evaluate generated text. CodeBLUE is a
metric specifically designed for the evaluation of
generated programming languages. Apart from the
similarity of the tokens, it also considers the syntax
of commands and logic.

5 Results and Analysis

In this section, we first present our Phase I ex-
perimental results, which contain the performance
of Syntax-Flow and Variable-Flow generation on
the CSN, CDC, and Adv Test datasets. Then, we
present our Phase II experimental results on CSN,
CDC, and Adv Test datasets. We train our mod-
els on each dataset’s training data, and run evalua-
tions on the corresponding testing data. Finally, we
compare our approach’s performance on automatic
Python code generation task with previous works.

5.1 Results of Phase I
Syntax-Flow Results. We first show our results on
generating Syntax-Flow using T5 language model.
We evaluate the generated Syntax-Flow with Rouge
and BLEU metrics, as shown in Table 1. The
Syntax-Flow performance of CSN, CDC, and Adv
is around 50% in Rouge-F1 and Rouge-F2, and
over 35% in Rouge-F2. These results are good con-
sidering the real vocabulary size used in Syntax-
Flow is relatively smaller and syntax tokens are
generally similar. When we make a comparison
among the three corpora, results from CDC are
slightly better than that of Adv and CSN for all

the metrics consistently. CDC is a well-organized
dataset that’s specifically designed for Python au-
tomatic code generation task. Considering Adv is
derived from CSN and thus more organized, there
is only 1.3% in Rouge score and 1% in BLEU im-
provement.

Variable-Flow Results. We evaluate our gen-
erated Variable-Flow results from code docstrings
using the Rouge and BLEU metrics. Our evaluation
results regarding the generated Variable-Flow are
shown in Table 1. Similar to the results in Syntax-
Flow, the performance of Variable-Flow in CDC is
slightly better than the other two datasets for all the
metrics scores. The average results of the Variable-
Flow are not as good as those of Syntax-Flow be-
cause the generation of Variable-Flow variant com-
ponents is much more difficult than the Syntax-
Flow invariant components. Moreover, over 95%
of Syntax-Flow samples’ lengths are shorter than
125 tokens. The Rouge F1 is over 35% and Rouge
F2 is over 15% on average.

5.2 Results of Phase II

From Table 2, we observe the performance of final
Python code generation with Rouge, BLEU and
CodeBLEU. The result of CDC is the best among
the three corpora because of its cleaner data as
well as the effect of better Phase I performance
(Syntax-Flow and Variable-Flow). CSN’s results
were slightly better than Adv’s since CSN had
about twice as much training data as Adv. As we
can see from Table 3, the performance of GAP-Gen
slightly outperforms the T5 model that’s directly

43

Rouge1-F1 Rouge2-F1 RougeL-F1 BLEU CodeBLEU
GPT2 (Clement et al., 2020) 20.9 7.6 21.9 2.8 –
PyMT5 (Clement et al., 2020) 28.4 13.5 24.8 8.6 –
T5 30.4 11.7 27.4 20.7 21.7
GAP-Gen T5 31.1 12.1 27.9 21.2 22.1
CodeT5 (Wang et al., 2021) 34.6 14.6 30.2 21.6 23.4
GAP-Gen CodeT5 35.1 14.9 30.6 22.3 24.1

Table 3: The results of GAP-Gen with other models fine-tuning on CSN datasets for Python code generation task.
We report the Rouge, BLUE and CodeBLEU score for all different models, where GAP-Gen T5 and GAP-Gen
CodeT5 are the models built on the T5 and CodeT5 model separately using GAP-Gen pipeline.

trained to generate Python code for both Rouge
and BLEU metrics. It indicates that our pipeline
approach is effective in improving Python code
generation. Similar conclusion can be proved by
fine-tuning the CodeT5 language model with our
GAP-Gen training pipeline. We apply our train-
ing pipeline with CodeT5 in Phase II and show
that GAP-Gen CodeT5 achieves the best Rouge,
BLEU and CodeBLEU scores compared with other
models on the same fine-tuning task.

There is a large gap between GAP-Gen and
PyMT5 on BLEU and CodeBLEU, which is be-
cause PyMT5 generates sequence with max tokens
1024. We limit the maximum target length to 256,
which covers about 75% of code lengths. Based
on our comparison between T5 and GAP-Gen, the
results of GAP-Gen have improved due to the pre-
requisite of Syntax-Flow and Variable-Flow gener-
ation.

5.3 Discussion

Unlike other works focused on pre-training, we
design a pipeline approach to achieve a better fine-
tuning result. Given the same training configura-
tion, our results prove that there is an improvement
derived from using docstring, Syntax-Flow and
Variable-Flow together, as compared to using the
docstring only. Code generation is a translation
task but has its own difficulties. First, our docstring
inputs are usually very short, while code outputs
are long. For example, there is about 85% of the
input sequences in CSN, CDC, and Adv are less
than 128 tokens while over half of codes that are
longer than 128 tokens. Moreover, code has stricter
syntax and less ambivalent semantics. Our pipeline,
by dividing the load of generating syntax and se-
mantic information to multiple language models,
bypasses the above difficulties and achieves better
generation results.

The data leaking issue exists in many previous
works using the pre-training technique on the auto-
matic code generation task. For example, in previ-
ous work (Clement et al., 2020), the dataset Code-
SearchNet used for fine-tuning overlaps with their
data used for pre-training. Both of them are col-
lected from the public github repositories. Data
leaking will tend to result in high performance on
the fine-tuning task but usually is dubious in prac-
tice because model should generalize on the unseen
data. In our work, we fine-tune our model using
T5 which is not pre-trained on existing Code-to-
Docstring datasets. Hence, T5 does not have the
data leaking problem. However, CodeT5 is pre-
trained on the CSN dataset, which may lead to the
data leaking problem in code generation task. This
can be the reason that CodeT5 alone without us-
ing our training pipeline can achieve very good
results. However, after we fine-tune CodeT5 using
our training pipeline, CodeT5 shows better perfor-
mance on the Python code generation task, as you
can see in Table 2.

At the same time, due to the computational re-
sources limitation, the maximum batch size we can
use is 32. Although we are limited by computa-
tional resources, we still achieve result improve-
ments in the code generation task. In the future,
better computational resources would probably in-
crease the performance further.

6 Conclusions

In this work, we demonstrate the effectiveness of
injecting Python syntactic and semantic informa-
tion into the code generation tasks. We design
and implement two different types of information
components: Syntax-Flow and Variable-Flow. To
incorporate this information, we encode them us-
ing separate language models and then feed them
along with the docstring input into the final lan-

44

guage model. Pre-trained language models fine-
tuned with our proposed pipeline show better per-
formances over state-of-the-art code generation
models. For future directions, new strategies for
incorporating that information can be explored.

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray,

and Kai-Wei Chang. 2020. A transformer-based
approach for source code summarization. ArXiv,
abs/2005.00653.

Bruce W. Ballard and Alan W. Biermann. 1979. Pro-
gramming in natural language: “nlc” as a prototype.
In ACM ’79.

Antonio Valerio Miceli Barone and Rico Sennrich. 2017.
A parallel corpus of python functions and documen-
tation strings for automated code documentation and
code generation. In IJCNLP.

Paweł Budzianowski and Ivan Vulic. 2019. Hello, it’s
gpt-2 - how can i help you? towards the use of pre-
trained language models for task-oriented dialogue
systems. In EMNLP.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2021. Autoregressive entity retrieval.
ArXiv, abs/2010.00904.

Leshem Choshen, Lior Fox, Zohar Aizenbud, and Omri
Abend. 2020. On the weaknesses of reinforce-
ment learning for neural machine translation. ArXiv,
abs/1907.01752.

Colin B. Clement, Dawn Drain, Jonathan Timcheck,
Alexey Svyatkovskiy, and Neel Sundaresan. 2020.
Pymt5: Multi-mode translation of natural lan-
guage and python code with transformers. ArXiv,
abs/2010.03150.

Aditya Desai, Sumit Gulwani, Vineeta Lokhande Hin-
gorani, Nidhi Jain, Amey Karkare, Mark Marron,
R Sailesh, and Subhajit Roy. 2016. Program synthe-
sis using natural language. 2016 IEEE/ACM 38th
International Conference on Software Engineering
(ICSE), pages 345–356.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? comparing the geome-
try of bert, elmo, and gpt-2 embeddings. In EMNLP.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In ACL.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. ArXiv, abs/2002.08155.

Seraphina Goldfarb-Tarrant, Tuhin Chakrabarty,
Ralph M. Weischedel, and Nanyun Peng. 2020.
Content planning for neural story generation with
aristotelian rescoring. In EMNLP.

45

Sumit Gulwani and Mark Marron. 2014. Nlyze: inter-
active programming by natural language for spread-
sheet data analysis and manipulation. In SIGMOD
Conference, pages 803–814. ACM.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu
Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svy-
atkovskiy, Shengyu Fu, Michele Tufano, Shao Kun
Deng, Colin Clement, Dawn Drain, Neel Sundaresan,
Jian Yin, Daxin Jiang, and Ming Zhou. 2021. Graph-
codebert: Pre-training code representations with data
flow.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu-
pat, and Ming-Wei Chang. 2020. Realm: Retrieval-
augmented language model pre-training. ArXiv,
abs/2002.08909.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Hamel Husain, Hongqi Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of semantic
code search. ArXiv, abs/1909.09436.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not explanation. In NAACL.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and evaluating con-
textual embedding of source code.

Rohit J. Kate, Yuk Wah Wong, and Raymond J. Mooney.
2005. Learning to transform natural to formal lan-
guages. In AAAI, pages 1062–1068. AAAI Press /
The MIT Press.

Olga Kovaleva, Alexey Romanov, Anna Rogers, and
Anna Rumshisky. 2019. Revealing the dark secrets
of bert. ArXiv, abs/1908.08593.

Evgeny Lagutin, Daniil Gavrilov, and Pavel Kalaidin.
2021. Implicit unlikelihood training: Improving
neural text generation with reinforcement learning.
ArXiv, abs/2101.04229.

Vu Le, Sumit Gulwani, and Zhendong Su. 2013. Smart-
synth: synthesizing smartphone automation scripts
from natural language. In MobiSys ’13.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart:
Denoising sequence-to-sequence pre-training for nat-
ural language generation, translation, and compre-
hension. ArXiv, abs/1910.13461.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In ACL 2004.

Wang Ling, Phil Blunsom, Edward Grefenstette,
Karl Moritz Hermann, Tomás Kociský, Fumin Wang,
and Andrew W. Senior. 2016. Latent predictor net-
works for code generation. ArXiv, abs/1603.06744.

Greg Little and Rob Miller. 2006. Translating keyword
commands into executable code. In UIST.

F. Liu, Ge Li, Yunfei Zhao, and Zhi Jin. 2020. Multi-
task learning based pre-trained language model for
code completion. 2020 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing (ASE), pages 473–485.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Clara Meister, Tim Vieira, and Ryan Cotterell. 2020. If
beam search is the answer, what was the question?
ArXiv, abs/2010.02650.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

David Price, Ellen Riloff, Joseph L. Zachary, and Bran-
don Harvey. 2000. Naturaljava: a natural language
interface for programming in java. In IUI ’00.

Chris Quirk, Raymond J. Mooney, and Michel Galley.
2015. Language to code: Learning semantic parsers
for if-this-then-that recipes. In ACL.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020a. Exploring the limits
of transfer learning with a unified text-to-text trans-
former.

Colin Raffel, Noam M. Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020b. Exploring the
limits of transfer learning with a unified text-to-text
transformer. ArXiv, abs/1910.10683.

K. M. Tahsin Hassan Rahit, Rashidul Hasan Nabil, and
Md Hasibul Huq. 2019. Machine translation from
natural language to code using long-short term mem-
ory. ArXiv, abs/1910.11471.

Hannah Rashkin, Asli Çelikyilmaz, Yejin Choi, and
Jianfeng Gao. 2020. Plotmachines: Outline-
conditioned generation with dynamic plot state track-
ing. In EMNLP.

46

http://dblp.uni-trier.de/db/conf/sigmod/sigmod2014.html#GulwaniM14
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2014.html#GulwaniM14
http://dblp.uni-trier.de/db/conf/sigmod/sigmod2014.html#GulwaniM14
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2009.08366
http://arxiv.org/abs/2001.00059
http://arxiv.org/abs/2001.00059
http://dblp.uni-trier.de/db/conf/aaai/aaai2005.html#KateWM05
http://dblp.uni-trier.de/db/conf/aaai/aaai2005.html#KateWM05
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1910.10683

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie
Liu, Duyu Tang, M. Zhou, Ambrosio Blanco, and
Shuai Ma. 2020. Codebleu: a method for automatic
evaluation of code synthesis. ArXiv, abs/2009.10297.

A. See, Aneesh S. Pappu, Rohun Saxena, Akhila
Yerukola, and Christopher D. Manning. 2019. Do
massively pretrained language models make better
storytellers? ArXiv, abs/1909.10705.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu,
and Neel Sundaresan. 2020. Intellicode compose:
Code generation using transformer. In Proceedings
of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foun-
dations of Software Engineering, ESEC/FSE 2020,
page 1433–1443, New York, NY, USA. Association
for Computing Machinery.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2018.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. ArXiv,
abs/1804.07461.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C. H.
Hoi. 2021. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understand-
ing and generation.

Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Di-
nan, Kyunghyun Cho, and Jason Weston. 2020. Neu-
ral text generation with unlikelihood training. ArXiv,
abs/1908.04319.

Lili Yao, Nanyun Peng, Ralph M. Weischedel, Kevin
Knight, Dongyan Zhao, and Rui Yan. 2019. Plan-and-
write: Towards better automatic storytelling. ArXiv,
abs/1811.05701.

Pengcheng Yin and Graham Neubig. 2017. A syntactic
neural model for general-purpose code generation.
In ACL.

Xiaohan Yu, Quzhe Huang, Zongge Wang, Yansong
Feng, and Dongyan Zhao. 2020. Towards context-
aware code comment generation. In FINDINGS.

Yuhao Zhang, Derek Merck, Emily B Tsai, Christo-
pher D. Manning, and C. Langlotz. 2020. Optimiz-
ing the factual correctness of a summary: A study of
summarizing radiology reports. In ACL.

A Appendix

B Ablation Study

B.1 Effectiveness of Syntax-Flow

In order to show the effectiveness of Syntax-Flow
on improving the language model’s capability for
the Python code generation task, we make com-
parisons between the results of T5 fine-tuned with
docstrings only and T5 fine-tuned with docstrings
and Syntax-Flow shown in Table 4. Based on
the comparisons of the results, we can observe
that T5_Syntax−Flow has outperformed the perfor-
mance of T5 on the majority of evaluation metric
scores. Since code has a tree structure and needs
to be compiled based on the corresponding AST,
it is particularly important to make sure that the
syntactic structure included in the generated code
is correct. In T5_Syntax−Flow, we inject the syn-
tactic structure of code, the Syntax-Flow, into the
fine-tuning process of the T5 model so that the
T5 can learn how the syntactic structure of code
should be incorporated to generate higher quality
code, a fact which we believe is the reason that
T5_Syntax−Flow has better code generation perfor-
mance.

B.2 Effectiveness of Variable-Flow

We also make experiments to show the effective-
ness of Variable-Flow for the Python code genera-
tion task. Similarly, we make comparisons between
the results of T5 fine-tuned with docstrings only
and T5 fine-tuned with docstrings and Variable-
Flow shown in Table 4. As we can observe from
the result comparison, T5_V ariable−Flow only does
not achieve significant improvements regarding the
evaluation metric scores and we believe that there
are two potential reasons causing this to happen.
First, comparing the evaluation score of the gener-
ated Syntax-Flow with that of Variable-Flow shown
in Table 1, we can see that the generated Variable-
Flow’s evaluation scores are worse than that of the
Syntax-Flow. It happens because the length of gen-
erated Variable-Flow is much longer than that of
Syntax-Flow due to the characteristics of Variable-
Flow that it supposes to contain general semantic
information of code. Second, due to the longer
length of the generated Variable-Flow, the inputs
to T5_V ariable−Flow are much longer than that of
T5_Syntax−Flow, and T5_V ariable−Flow does not
know which line of generated code the variable
should be assigned to because of the lack of syntac-

47

https://doi.org/10.1145/3368089.3417058
https://doi.org/10.1145/3368089.3417058
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/2109.00859

Rouge1-F1 Rouge2-F1 RougeL-F1 BLEU CodeBLEU
T5 30.4 11.7 27.4 20.7 21.7
T5-Syntax-Flow 30.9 12.1 27.7 20.7 21.9
T5-Variable-Flow 30.5 11.8 27.4 20.6 21.7
GAP-Gen-T5 31.1 12.1 27.9 21.2 22.1

Table 4: Results Comparisons of GAP-Gen-T5 components on CSN datasets for Python code generation task.

Figure 3: Sample code generated from the docstring in CSN datasets. The most left code is the golden standard
reference code. The middle code is generated directly from T5 fine-tuned with docstring. The most right code is
generated using our GAP-Gen fine-tuning pipeline.

Figure 4: Sample code generated from the docstring in CSN datasets.

tic structure information, then much longer code is
likely to be generated. However, the effectiveness
of Variable-Flow can also be reflected from the loss
of T5 with Variable-Flow only from Figure 6. A
lower perplexity can be obtained, and the generated
code is more fluent on average.

B.3 Samples Analysis

To illustrate the usefulness of our proposed Syntax-
Flow and Variable-Flow components, we have at-
tached the generated Python code samples using
Syntax-Flow and Variable-Flow with the corre-
sponding docstrings in the CSN dataset. We have
also provided sample analysis of them in the fol-
lowing paragraphs.

As we have demonstrated in our paper, in or-
der to generate well-working Python code, the lan-

guage model should not only understand the text
semantic information from a given docstring but
also should be capable of considering the code syn-
tactic information and the code variable semantic
information.

Based on the given sample codes shown in Fig-
ure 3, it is clear that the code, which is gener-
ated directly from T5 without having Syntax-Flow
and Variable-Flow injected, cannot properly handle
both the code syntactic information and the code
variable semantic information. For example, the
docstring specifies that the code should return a
list or None variable, suggesting that there are 2
different return values that should be generated un-
der different conditions. As a result, the fine-tuned
model should consider both the code syntax logic,
the boolean operation, and the variable semantic,

48

the generated variables, during the code generation
process. However, due to the lack of Syntax-Flow
and Variable-Flow components, the T5 model fine-
tuned with docstring only is unable to learn the
code syntactic information and the code variable
semantic information, resulting in the fine-tuned
model generates code that is not able to determine
where the boolean operation should be generated
to handle multiple return values. Similar trends
happen in the sample codes shown in Figure 4 as
well.

In contrast, in our work GAP-Gen, we consider
the Syntax-Flow and Variable-Flow during the code
generation process. Due to the support of these
two components, we can successfully generate a
higher-quality code with the boolean operation and
different return values.

B.4 Training Algorithms

In this subsection, we include the training algo-
rithms for 1. generating the Syntax-Flow and
Variable-Flow, and 2. fine-tuning the pre-trained
Language Model with Syntax-Flow and Variable-
Flow.

Algorithm 1 Generate Syntax-Flow & Variable-
Flow
Require:

x = (x1, x2, ..., xn) ∈ X: input docstring
LMS : Language Model being used for Syntax-
Flow
LMV : Language Model being used for
Variable-Flow

Ensure:
A = (a1, a2, ..., an): Syntax-Flow
B = (b1, b2, ..., bk): k Variable-Flow

1: Initialize A, B to be empty arrays
2: for each docstring:x ∈ X do
3: a← LMS(x)
4: b← LMV (x)
5: Append(A,a)
6: Append(A,a)
7: end for
8: return A,B

B.5 Code Generation Loss Analysis

We further analyze the loss trend for generating the
Python code using T5 and our GAP-Gen training
pipeline. In our analysis, we show three loss trend
comparisons:

Algorithm 2 Fine-tuning Language Model with
Syntax-Flow

Require:
x = (x1, x2, ..., xn) ∈ X: input docstring
LMS : Pre-trained Language Model being used
for Syntax-Flow

Ensure:
LMS : Language Model fine-tuned for gener-
ating Syntax-Flow

1: Initialize D to be empty array
2: for each docstring:x ∈ X do
3: p ← ASTPARSE(X) AST parsed by stan-

dard Python AST parser
4: d← SYNPARSE(p)
5: Append(D,d)
6: end for
7: for i = 1 to |X| do
8: a′ ← LMS(X[i])
9: l = loss(D[i], a′)

10: LMS .backwards(l)
11: end for
12: return LMS

• T5 vs GAP-Gen with Syntax-Flow only in
Figure 5,

• T5 vs GAP-Gen with Variable-Flow only in
Figure 6,

• T5 vs GAP-Gen with both Syntax-Flow and
Variable-Flow in Figure 8.

Based on our observations, we find the global
loss trends between T5 and GAP-Gen are similar.
However, when we zoom into the last 10k steps,
the training and validation loss of GAP-Gen are
consistently lower than those of T5 on the Python
code generation task from all three scenarios.

By comparing with the loss trend between T5
and GAP-Gen with Syntax-Flow only and GAP-
Gen with Variable-Flow only, we find both scenar-
ios have lower training and validation loss in the
last 10k steps than those of T5. This fact shows
that both of Syntax-Flow and Variable-Flow are
contributing to the Language Model fine-tuning
process. At the same time, we find GAP-Gen with
both the Variable-Flow and Syntax-Flow results in
the lowest training and validation loss compared
with those of the other two scenarios. This finding
further illustrates that our method GAP-Gen does
have improvement on the Python code generation
task.

49

Figure 5: Loss comparison visualization between T5 and GAP-Gen using Syntax-Flow only.

Figure 6: Loss comparison visualization between T5 and GAP-Gen using Variable-Flow only.

Figure 7: Loss comparison visualization between T5 and GAP-Gen.

50

Figure 8: Additional generated sample codes from our experiments.

51

