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Abstract

The demand for multimodal dialogue systems
has been rising in various domains, empha-
sizing the importance of interpreting multi-
modal inputs from conversational and situa-
tional contexts. One main challenge in mul-
timodal dialogue understanding is multimodal
object identification, which constitutes the
ability to identify objects relevant to a mul-
timodal user-system conversation. We ex-
plore three methods to tackle this problem
and evaluate them on the largest situated di-
alogue dataset, SIMMC 2.1. Our best method,
scene-dialogue alignment, improves the per-
formance by ∼20% F1-score compared to
the SIMMC 2.1 baselines. We provide anal-
ysis and discussion regarding the limitation
of our methods and the potential directions
for future works. Our code is publicly avail-
able at https://github.com/holylovenia/
multimodal-object-identification.

1 Introduction

Recent advancements in multimodal dialogue sys-
tems have gained more traction in various domains
such as retail, travel, fashion, interior design, and
many others. A real-world application of multi-
modal dialogue systems is situated dialogue, where
a dialogue agent shares a co-observed vision or
physical space with the user, and is responsible
for handling user requests based on the situational
context, which are often about the objects in their
surroundings. This makes multimodal object iden-
tification from a dialogue (i.e., identifying objects
that fit a dialogue context) an indispensable skill in
multimodal dialogue understanding, built on cross-
modal understanding to comprehend the relations
between linguistic expressions and visual cues.

Various methods have been proposed to perform
multimodal object identification through different
paradigms (Yu et al., 2016; Hu et al., 2016; Ilinykh

∗Equal contribution.

Figure 1: Multimodal object identification is the fun-
damental step required to enable multimodal dialogue
systems to understand the object referred to by the user.
Image is adapted from (Kottur et al., 2021).

et al., 2019; Kamath et al., 2021; Kuo and Kira,
2022). These efforts have established remarkable
progress in solving this problem. However, aside
from an observed gap between the performance of
the existing works and human-level performance in
multimodal object identification, prior works also
rely on a presumption that the information given by
the textual context will only lead to specific (i.e.,
unambiguous) objects, which does not conform to
real-world multimodal conversations where ambi-
guity exists.

Therefore, in this work, we explore three differ-
ent solutions to enable multimodal object identifica-
tion in the situated dialogue system, i.e., dialogue-
contextualized object detection, object-dialogue
alignment, and scene-dialogue alignment, without
adopting the unambiguity assumption. Dialogue-
contextualized object detection utilizes the spatial
and object understanding capability of a pre-trained
object detection model, to generate semantic repre-
sentation containing both visual cues and the spa-
tial understanding of the object. Object-dialogue
alignment incorporates the image-text alignment
capability of CLIP (Radford et al., 2021), which
has been pre-trained on large image-text corpora
to perform multimodal object identification from
the given dialogue context. Scene-object alignment
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combines the spatial and object understanding capa-
bility of a pre-trained object detection model and a
pre-trained textual understanding model to produce
better semantic vision-language alignment.

Our contributions are three-fold:

• We introduce three different methods for han-
dling multimodal object identification in sit-
uated dialogue, i.e., dialogue-contextualized
object detection, object-dialogue alignment,
and scene-dialogue alignment;

• We show the dialogue-contextualized object
detection method fails to outperform even the
heuristic baselines despite having an accept-
able performance on the object detection task;

• We show the effectiveness of the other two
methods which significantly outperform the
SIMMC 2.1 baselines by ∼5% F1-score for
object-dialogue alignment and ∼20% F1-
score for scene-dialogue alignment;

2 Related Work

Multimodal Dialogue System Multiple studies
have attempted to enable the skills required for
multimodal dialogue system, e.g., understanding
visual (Antol et al., 2015; Das et al., 2017; Kot-
tur et al., 2019) or visual-temporal (Alamri et al.,
2019) content to answer user’s questions, ground-
ing conversations to images (Mostafazadeh et al.,
2017; Shuster et al., 2020), interpreting multimodal
inputs and responding with multimodal output to
assist users with their goal (Saha et al., 2018) or
as a means to converse (Sun et al., 2022), and per-
ceiving the shared environment to grasp situational
context to enable proper navigation, adaptation,
and communication (Lukin et al., 2018; Brawer
et al., 2018; Kottur et al., 2021).

At the core of these efforts, the ability to under-
stand language and vision, as well as integrate both
representations to align the linguistic expressions
in the dialogue with the relevant visual concepts
or perceived objects, is the key to multimodal di-
alogue understanding (Landragin, 2006; Loáiciga
et al., 2021b,a; Kottur et al., 2018; Utescher and
Zarrieß, 2021; Sundar and Heck, 2022; Dai et al.,
2021).

Multimodal Object Identification Identifying
objects or visual concepts related to a linguistic
expression is an incremental exploration in vision-
language research. It starts with identifying sim-

ple objects in a sanitized environment (Mitchell
et al., 2010) based on image descriptions or cap-
tions. Then, multimodal object identification has
been gradually increasing in complexity and real-
ism by involving visual contexts with cluttered and
diverse scenes (Kazemzadeh et al., 2014; Gkatzia
et al., 2015; Yu et al., 2016; Mao et al., 2016; Hu
et al., 2016; Ilinykh et al., 2019; Kamath et al.,
2021; Kuo and Kira, 2022).

While these works base their multimodal ob-
ject identification on single-turn text contexts, an-
other line of works explores the usage of multi-turn
sequences as a textual context to enable identify-
ing objects based on implicit constraints deduced
through multi-round reasoning (Seo et al., 2017;
Johnson et al., 2017; Liu et al., 2019; Moon et al.,
2020). However, they focus on identifying only the
specific (i.e., unambiguous) objects, in which only
a certain object in the scene fits the corresponding
linguistic context. This is quite dissimilar from
real-world multimodal object identification, where
multiple objects could fit a given textual context
and induce ambiguity into the conversation (Kot-
tur et al., 2021). For this reason, existing works
are not equipped with the ability to identify all ob-
jects that plausibly fit those constraints although
this skill is required to perform multimodal object
identification in situated dialogue.

Multimodal and Cross-Modal Learning Past
works have studied multimodal and cross-modal
alignment, grounding, and generation to solve var-
ious vision-language tasks, e.g., image caption-
ing (Hossain et al., 2019; Sharma et al., 2018), gen-
erating stories from image (Min et al., 2021; Love-
nia et al., 2022), as well as multimodal object iden-
tification (Li et al., 2019; Wang et al., 2022). These
attempts become more substantial and extensive
after the rise of pre-trained vision-language models
such as CLIP (Radford et al., 2021), ALIGN (Jia
et al., 2021), and FLAVA (Singh et al., 2022),
which allows transfer knowledge obtained from
the large-scale pre-training to downstream tasks.

3 Methodology

In this section, we describe the preliminaries of our
work (§3.1) and extensively elaborate on each of
our approaches, i.e., dialogue-contextualized object
detection (§3.2), object-dialogue alignment (§3.3),
and scene-dialogue alignment (§3.4).
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Figure 2: The architecture of SitCoM-DETR. SitCoM-DETR consists of a scene encoder and a dialogue encoder to
extract multimodal content, respectively. The dialogue representation is used to guide the object detector module to
judiciously filter out unrelated scene objects.

3.1 Preliminaries

The goal of multimodal object identification in sit-
uated dialogue is to identify objects from a given
scene image that fulfill the user’s request gathered
from the user-system interactions. To identify the
object(s) that could satisfy a user’s request in a di-
alogue, it is crucial to match the objects and the
implicit constraints interwoven in the dialogue, e.g.,
S: “I do! Take a look at these. I have a brown coat
towards the far end on the left wall, another brown
coat on the left side of the front floor rack, and
a black coat on the front of the same rack.”, U:
“Awesome! Tell me the cost and label on that one.”.
Thus, it is essential for the system to understand
the relation between the visual perception of the
objects in the scenes and the natural language used
to verbalize these constraints, which describe the
target object(s) by visual attributes (e.g., color, ob-
ject category or type, etc.), location (i.e., absolute
or relative position), or the combination of both.

We define a dialogue between a user and
a system as D = {u1, s1, u2, s2, . . . , un, sn},
a scene consisting of images correspond-
ing to multiple viewpoints of the scene
as {Iscene1 , Iscene2 , . . . , Iscenen }, and a set
of objects in the scene as Oscene =
{(b1, c1), (b2, c2), . . . , (bn, cn)}, where ui
and si respectively denote the user utterance
and the system utterance, and ci and bi de-
note the bounding box and the class category
of an object. Given a user dialogue turn
Duser

i = {u1, s1, u2, s2, . . . , ui}, i ≤ n, and a
scene image Iscenei , the goal of the task is to select
a subset of scene objects Omatch ⊆ Oscene that
could satisfy the referred criteria in Duser

i .

3.2 Approach 1: Dialogue-Contextualized
Object Detection

For dialogue-contextualized object detection, we
frame the task of multimodal object identification
as the contextualized object detection task. In ob-
ject detection, given a scene image Iscene, we aim
to detect all objects Oscene in the scene by predict-
ing their bounding box and class category. While in
contextualized object detection, the aim is instead
to select only a set of scene objects Omatch that
satisfy a given context.

Our approach for dialogue-contextualized object
detection extends a state-of-the-art object detection
model, namely DETR (Carion et al., 2020), by in-
jecting dialogue information as the context to guide
the detection model to filter out unidentified objects.
A similar solution has been proposed by Modu-
lated DETR (MDETR) (Kamath et al., 2021). De-
spite its strong performance on text-contextualized
object detection, MDETR requires an aligned an-
notation between the text phrase and the visual
object for training. Such annotation is not avail-
able on SIMMC 2.1, hence we develop a new text-
contextualized object detection model namely Sit-
uational Context for Multimodal DETR (SitCoM-
DETR). Unlike MDETR which concatenates the
textual representation along with the visual repre-
sentation before feeding them into the transformer
encoder of DETR (shown in Appendix A), SitCoM-
DETR injects a dialogue-level semantic represen-
tation vector into the input query of the transformer
decoder of DETR in order to guide the model to
select objects that match the dialogue context. We
incorporate the same loss functions as the origi-
nal DETR model. The depiction of our SitCoM-
DETR model is shown in Figure 2.
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Figure 3: Learning objectives of the original CLIP (Radford et al., 2021), CLIPPER (v1), and CLIPPER (v2) for the
object-dialogue alignment approach. The similarities of the positive pairs (blue) are maximized while the similarities
of the negative pairs (white) are minimized.

3.3 Approach 2: Object-Dialogue Alignment

For object-dialogue alignment, we frame the task of
multimodal object identification as the alignment
between a target object Omatch

i and a user dialogue
turn Duser

i pair. Given a user dialogue turn Duser
i

and its corresponding scene image Iscenei , we first
preprocess Iscenei to extract the object images of
Omatch. Each of the object images is paired with
Duser

i as the positive pairs. We obtain the visual
embeddings from the image by feeding it to an
image encoder, and the textual embeddings from
the dialogue turn by feeding it to a text encoder.
After these embeddings pass through a linear pro-
jection, we calculate the similarity using the dot
product between the two resulting vectors. Utiliz-
ing the contrastive learning objective, on a batch of
object-dialogue pairs, this cross-modal alignment
architecture learns by maximizing the similarity of
the positive pairs and minimizing the similarity of
the negative pairs (Figure 3).

Object-Dialogue Similarity Learning Strategy
The original contrastive learning approaches the
object-dialogue alignment task as a one-to-one
function, where the positive sample of Di is only
Oi in Figure 3. This is different from the actual
nature of multimodal object identification, where
more than one object could be relevant to a di-
alogue turn. For this reason, in addition to the
original contrastive learning, we explore two mod-
ifications of the learning objective, where: 1) the
positive samples of Di include Oi (image pair) and
similar objects1 to Oi; and 2) the positive samples
of Di include Oi and other supposedly identified

1We define similar objects to Oi as any other objects in the
corresponding scene that use the same prefabricated design as
Oi in the SIMMC 2.1 dataset.

objects in Di. For simplicity, we refer to these
methods as CLIPPER (v1) and CLIPPER (v2).

3.4 Approach 3: Scene-Dialogue Alignment

For scene-dialogue alignment, we aim to combine
the spatial understanding learned from object de-
tection training with the image-text matching for
multimodal similarity learning to solve multimodal
object identification. For this approach, we utilize
a pre-trained object detection model, i.e., DETR,
and two pre-trained language models, i.e., BERT
and GPT2. The resulting models are referred to as
DETR-BERT and DETR-GPT2, respectively. We
illustrate the overview of this approach in Figure 4.

In this approach, we first frame our dataset as
an object detection task, where a data instance con-
sists of a scene image Iscenei and its object anno-
tations Oscene = {(b1, c1), (b2, c2), ..., (bm, cm)},
and train an object detection model (DETR) on
it. The resulting model is then used to extract the
visual representations of all objects in the scene
image Iscene by matching the object queries with
Oscene using Hungarian matching (Stewart et al.,
2016).

For the next step, we frame our dataset as a bi-
nary classification task, where a data instance con-
sists of a user dialogue turn Duser

i , an object Oscene
j

in a corresponding scene Iscenei , and a binary label
(i.e., whether the object is identified by the user
dialogue turn or not). We utilize a dialogue en-
coder to extract textual representation from a user
dialogue turn Duser

i . The textual representation of
Duser

i and the visual representation of Oscene
j are

projected into a latent space. We compute the dot
product of the two and use the resulting vector as
the prediction logits for training and inference.
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Figure 4: Scene-dialogue alignment. We pre-extract the visual embeddings from an object detection model trained
on our dataset. The visual embeddings are used together with dialogue embeddings in the next training to perform
multimodal object detection as a binary classification task.

4 Experiment

4.1 Dataset

For all of our experiments, we utilize the ambigu-
ous candidate identification task from the SIMMC
2.1 dataset (Kottur et al., 2021). The dataset studies
conversational scenarios where the system shares
a co-observed vision (i.e., the same scene) with
the user. The dataset focuses on improving the
shopping experience in two domains: fashion and
furniture. In the setting of SIMMC 2.1, the system
is able to access the ground truth meta informa-
tion of all objects (e.g., object price, size, material,
brand, etc.) in the scene Oscene, while the user
observes objects only through the scene viewpoints
{Iscene1 , Iscene2 , . . . , Iscenen } to describe a request.

Each dialogue in the dataset can utilize differ-
ent scene viewpoints at different dialogue turns
throughout the session. This represents scenarios
where the user navigates the scene during the in-
teraction in a real physical store. Therefore, the
multimodal dialogue system needs to understand
user requests using both the dialogue history and
the scene image as a unified multimodal context.
The statistics of the ambiguous candidate identifica-
tion of SIMMC 2.1 dataset is presented in Table 1.2

4.2 Baselines

We incorporate various baselines including sim-
ple heuristics and deep learning based multimodal

2We use the devtest split of SIMMC 2.1 dataset as the
test set in our experiment.

Split # Sample # Dialogue Omatch

Oscene

Train 4239 3983 28.74%
Validation 414 371 24.72%

Test 940 905 30.78%

Table 1: Statistics of the ambiguous candidates identifi-
cation of the SIMMC 2.1 dataset.

matching methods from SIMMC 2.1.3 For the
heuristic methods, we incorporate uniform random
prediction (Random), empty prediction (No ob-
ject), and all objects prediction (All objects) as
our baselines. For the deep learning approaches
(ResNet50-BERT and ResNet50-GPT2), we ap-
ply cosine similarity between the feature extracted
from ResNet-50 (He et al., 2016)4 and two widely-
used pre-trained LMs, i.e., BERT (Devlin et al.,
2019)5 and GPT2 (Radford et al., 2019)6.

In addition to these baselines, we incorpo-
rate several additional baselines: 1) pre-trained
CLIP (Radford et al., 2021)7, which serves as
a baseline for the object-dialogue alignment ap-
proach and 2) pre-trained MDETR (Kamath et al.,
2021)8, which represents a text-conditioned object
detection baseline trained with an explicit align-

3SIMMC 2.1 repository: https://github.com/
facebookresearch/simmc2.

4We use the pre-extracted visual feature provided in the
SIMMC 2.1 repository.

5 https://huggingface.co/bert-base-uncased.
6 https://huggingface.co/gpt2.
7We use the checkpoint from https://huggingface.co/

openai/clip-vit-base-patch32.
8We use the EfficientNet B5 (ENB5) backbone checkpoint

from https://github.com/ashkamath/mdetr.
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ment between phrases and objects. For CLIP, we
report both zero-shot (CLIP (zero-shot)) and di-
rect fine-tuning (CLIP) performances, while for
MDETR, we only use the zero-shot performance
(MDETR (zero-shot)) due to the unavailability
of the explicit alignment between objects and dia-
logues in the dataset.

4.3 Models
We propose three different approaches to solve the
multimodal object identification task §3. For the
dialogue-contextualized object detection approach,
we incorporate one model, namely SitCoM-DETR
which will be compared to the MDETR baseline.
For the object-dialogue alignment approach, we
incorporate two model variants, i.e., CLIPPER
(v1) and CLIPPER (v2). For the scene-object
alignment approach, we incorporate two model
variants, i.e., DETR-BERT and DETR-GPT2.

4.4 Evaluation
Given a label set L and a prediction set P , we de-
fine the number of true positive N correct as the ob-
jects that appear in both the prediction and the label
sets. Using this definition, we evaluate the models’
performance on the multimodal object identifica-
tion task using three evaluation metrics, i.e., recall,
precision, and F1-score. The definition of each
metric is defined as:

Recall =
N correct

∥L∥ (1)

Precision =
N correct

∥P∥ (2)

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(3)

4.5 Implementation Details
Dialogue Preprocessing In all of our experi-
ments, following prior works in end-to-end task-
oriented dialogue system, we encode the last
three utterances from the dialogue into a single
text. For example a user dialogue turn Duser

i =
{u1, s1, u2, s2, . . . , ui} is encoded into a text "U:
<ui−1> S: <si−1> U: <ui>" to be further processed
by the dialogue encoder.

Inference strategy for object-dialogue alignment
For the proposed CLIPPER model in the object-
dialogue alignment approach, we simply apply sig-
moid to the logits and use a threshold value of 0.5
(denoted as Sigmoid), since it has a built-in capa-
bility to perform multi-label classification. While

for the CLIP model, which serves as a baseline,
does not have the same capability, hence we use
the mean value of the logits as the threshold (de-
noted as Mean). Additionally, we also evaluate the
performance of the model if the top-k objects with
the highest logits are considered valid predictions,
where k denotes the correct amount of objects in
the ground-truth label (denoted as Oracle).

Inference strategy for dialogue-contextualized
object detection For the dialogue-contextualized
object detection, since the model is originally for
the object detection task, we develop our own in-
ference strategy to allow it to perform multi-label
classification for object identification. This is done
through several steps: 1) we perform Hungarian
matching using all objects, 2) we compute inter-
section over union (IoU) of all pairs of matched
prediction and ground-truth bounding boxes9, and
3) we take all objects having IoU score ≥10%10.

Hyperparameter Details For the dialogue-
contextualized object detection, we fine-tune the
SitCoM-DETR model for a maximum of 200
epochs with AdamW optimizer using a linear learn-
ing rate decay, a learning rate between [1e-4..1e-5],
and an early stopping of 10 epochs. For the object-
dialogue alignment, we fine-tune the CLIP and
CLIPPER models for a maximum of 200 epochs
with AdamW optimizer using a linear learning rate
decay, a learning rate between [1e-4..1e-5], and
an early stopping of 10 epochs. For the scene-
dialogue alignment, we fine-tune the DETR-BERT
and DETR-GPT2 models for a maximum of 200
epochs with AdamW optimizer using a linear learn-
ing rate decay, a learning rate between [1e-4..1e-5],
and an early stopping of 10 epochs.

5 Result and Analysis

5.1 Result Overview

The results of our experiments are shown in Ta-
ble 2. The best baseline performance is achieved
by CLIP (fine-tuned) with 45.09% F1-score out-
performing the baselines provided by the SIMMC
2.1 (i.e., ResNet50-GPT2 and ResNet50-BERT),
showing the superiority of image-text alignment
pre-training over separate unimodal pre-trainings
for multimodal object identification. For the

9We do not consider the class label in the scoring to have a
fairer comparison with the zero-shot MDETR approach.

10We align this with MDETR’s class probability setting
during inference.
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Method Type Approach Recall Precision F1-score
Baselines

Heuristic
No object 0.00% 0.00% 0.00%
Random 49.90% 22.43% 30.95%
All objects 100.00% 22.34% 36.52%

SIMMC 2.1
ResNet50-GPT2 36.40% 42.26% 39.11%
ResNet50-BERT 36.70% 43.39% 39.76%

Dialogue-Contextualized
Object Detection

MDETR (zero-shot) 16.33% 29.70% 21.07%

Object-Dialogue
Alignment

CLIP (zero-shot) 55.70% 26.39% 35.81%
CLIP (fine-tuned) 73.00% 32.62% 45.09%

Proposed Methods
Dialogue-Contextualized
Object Detection

SitCoM-DETR (aug) 47.82% 25.69% 33.42%
SitCoM-DETR (no aug) 49.51% 25.81% 33.93%

Object-Dialogue
Alignment

CLIPPER (v1) 73.41% 33.00% 45.53%
CLIPPER (v2) 59.95% 25.60% 35.88%

Scene-Dialogue
Alignment

DETR-BERT 65.47% 51.48% 57.64%
DETR-GPT2 63.81% 56.79% 60.10%

Table 2: Experimental results of multimodal object identification on the SIMMC 2.1 dataset (Kottur et al., 2021).
Bold denotes the best performances of baselines and proposed methods. Underline denotes the best performances
within a method type.

dialogue-contextualized object detection meth-
ods, the proposed SitCoM-DETR outperforms
MDETR (zero-shot). Nevertheless, its perfor-
mance for multimodal object identification is low
despite having an acceptable object detection qual-
ity. We conjecture that a better method for adapting
an object detection model for multimodal object
identification is required, which is also shown by
our scene-dialogue alignment approach in §3.4.

For the object-dialogue alignment, our CLIP-
PER (v1) marginally outperforms the CLIP (fine-
tuned) baseline. This shows the effectiveness of
modifying the CLIP objective which is explained
in more detail in §5.3. For the scene-dialogue
alignment (i.e., DETR-BERT and DETR-GPT2),
where we combine the object detection and the
image-text contrastive objective, we show a signifi-
cant improvement over CLIP (fine-tuned), which
is the highest-performing baseline, by ∼10-15%
F1-score. This suggests the importance of com-
bining object detection representation and image-
text contrastive learning to fulfill the need for both
visual and spatial matching to solve multimodal
object identification.

5.2 Pitfalls of the Best Performing Models

We manually analyze the incorrect predictions
made by our scene-dialogue alignment approaches,
i.e., DETR-BERT and DETR-GPT2. Based on
our analysis in Table 5, our models encounter two
main issues. First, our models have difficulties
in identifying objects when faced with a sudden
object shift in the dialogue, e.g., the sudden shift
from beds to a chair in this user dialogue turn U: “I
need a new bed too. Any suggestions?”, S: “Both
of these grey beds are in stock.”, U: “What’s the
rating on that chair?”.

The second issue is the ineffectiveness of han-
dling textual coreferences. For instance, in the user
dialogue turn U: “How about a hat, but cheap and
in a small?”, S: “I have the black hat third from the
front, the white hat at the front, and the black hat
between them.”, U: “What’s the brand and reviews
for the black hat?”, the models fail to recognize that
“the black hat” in the user utterance is anaphoric to
either “the black hat third from the front” or “the
black hat between them” in the system utterance,
which leads to the system’s failure to identify both
black hats as Omatch. This shortcoming also be-
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Figure 5: Frequency of error types of 100 misclassified
samples from DETR-BERT and DETR-GPT2.

comes more pronounced if the coreference chains
are longer.

These issues show the limitation of pre-trained
LMs for discourse understanding and analysis, es-
pecially in terms of coreference and entity link-
ing (Jurafsky and Martin, 2019; Pandia et al., 2021;
Koto et al., 2021). Additionally, some other cases
require the model to process long-term dialogue
history dependency which existing LMs are not
able to handle because of the quadratic cost bottle-
neck of the attention mechanism of the transformer
architecture (Vaswani et al., 2017). Adapting an ef-
ficient attention mechanism with linear complexity
might be beneficial to mitigate this problem.

5.3 Impact of Changing CLIP Objective

As shown in Table 3, the CLIPPER models with
binary cross-entropy objective have a built-in ca-
pability for multi-label classification with Sigmoid
which consistently performs better compared to
the Mean thresholding. In addition, CLIPPER
(v1) outperforms the original CLIP model which
is trained with the cross-entropy loss. These facts
suggest that changing the CLIP objective is benefi-
cial for performing multi-label classification tasks
such as multimodal object identification.

When using Oracle, we can observe a signifi-
cant improvement in F1-score score, which mainly
comes from the improvement in the precision with
only a minor degradation on recall. This suggests
that there is a very sensitive range of logits which
consists of many negative samples with a few posi-
tive samples. To better segregate these few positive
samples from the negative ones, hard negative min-
ing techniques such as focal loss (Lin et al., 2020)
might be beneficial to alleviate this problem.

Approach Rec. Prec. F1
CLIP — Cross-Entropy

Mean 73.00% 32.62% 45.09%
Oracle 74.99% 74.96% 74.98%

CLIPPER (v1) — Binary Cross-Entropy
Sigmoid 73.41% 33.00% 45.53%
Mean 73.08% 31.97% 44.48%
Oracle 73.37% 73.34% 73.36%

CLIPPER (v2) — Binary Cross-Entropy
Sigmoid 59.95% 25.60% 35.88%
Mean 53.90% 23.42% 32.65%
Oracle 54.92% 54.89% 54.91%

Table 3: Results for object-dialogue alignment models
with different thresholding strategies.

6 Discussion

Based on the results and analysis, we show that the
scene-object alignment approach is the best per-
forming approach, achieving ∼55-60% F1-score
in the multimodal object identification task of
SIMMC 2.1. We analyze the behavior of the model
and conjecture that existing LMs have a limitation
on understanding discourse. Additionally, we show
the potential benefit of modeling the long-term de-
pendency of dialogue history to further improve
the quality of multimodal object identification task
(§5.2). Lastly, we analyze the limitation of the
existing image-text contrastive approaches for mul-
timodal object identification and propose an alter-
native objective to alleviate this limitation (§5.3).

For future work, we aim to focus on the scene-
dialogue alignment methods to further improve the
model performance on the multimodal object iden-
tification capability. We note five potential points
of improvement that can be further explored to im-
prove the model performance in multimodal object
identification: 1) the incorporation of cross-object
attention in the modality fusion phase to enable
a better relative position understanding between
objects, 2) the incorporation of linear attention
mechanism to handle the long-term dependency
of dialogue history, 3) the exploration on better
contrastive objectives for multimodal object identi-
fication, 4) the exploration on improving discourse
understanding for LMs to better handle coreference
and sudden object shift, and 5) the synthetic scene-
dialogue data augmentation through the utilization
of other publicly available object detection datasets
to handle the in-domain data scarcity problem.
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7 Conclusion

In this paper, we explore three methods to tackle
multimodal object identification and evaluate them
on SIMMC 2.1. Our best method, scene-dialogue
alignment, improves the performance by ∼20% F1-
score compared to the SIMMC 2.1 baselines. We
provide an analysis of incorrect predictions by our
best approach and the impact of changing the CLIP
learning objective. We further provide discussion
regarding the limitation of our methods and the
potential directions for future works.
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A MDETR Architecture

We provide Figure 6 for illustrative comparison
with our proposed SitCoM-DETR in §3.2.

Figure 6: MDETR architecture.
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