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Abstract

With the rise in larger language models, re-
searchers started exploiting them by pivoting
the downstream tasks as language modeling
tasks using prompts. In this work, we con-
vert the Named Entity Recognition task into a
seq2seq task by generating the synthetic sen-
tences using templates. Our main contribu-
tion is the conversion framework which pro-
vides faster inference. In addition, we test our
method’s performance in resource-rich, low re-
source and domain transfer settings. Results
show that our method achieves comparable re-
sults in the resource-rich setting and outper-
forms the current seq2seq paradigm state-of-
the-art approach in few-shot settings. Through
the experiments, we observed that the negative
examples play an important role in model’s per-
formance. We applied our approach over BART
and T5-base models, and we notice that the T5
architecture aligns better with our task. The
work is performed on the datasets in English
language.

1 Introduction

Named Entity Recognition (NER) is traditionally
approached as a sequence labeling task where a tag
is predicted for each token. For a sentence with
l tokens, the output would be l tags, usually, in
the Inside–outside–beginning (IOB) tagging format
(Ramshaw and Marcus, 1995).

Traditionally in probabilistic classification, Lan-
guage Models (LMs) "compute the probability of a
label, conditioned on the text" (Eisenstein, 2018),
that is, they quantify the likelihood of a sentence
to pertain to a language. Contextualized word rep-
resentations are used nowadays as pre-trained lan-
guage models that have shown to be effective in
natural language processing tasks as co-reference
resolution, gender resolution, etc.

Current language modeling approaches can be
broadly divided into two types:

1. Auto-Regressive: Models that generate predic-
tions, in our case pieces of text, using previous
predictions. Architectures like Generative Pre-
trained Transformers (i.e GPT3) (Brown et al.,
2020) follow this approach predicting the next
word given a sequence of prior words.

2. Sentence-Reconstruction: In this approach,
the input sentence is corrupted by either ran-
domly dropping words (Devlin et al., 2018),
spans (Joshi et al., 2019) or permutating the
word order (Lewis et al., 2019) and the model
is trained to reconstruct the original sentence.
Architectures like Bidirectional Encoder Rep-
resentations from Transformers or BERT mod-
els (Devlin et al., 2018) and T5 (Raffel et al.,
2020) follow this approach.

Mou et al. (2016) and Dai and Le (2015) sug-
gested transferring the knowledge learned during
pre-training to downstream tasks but with limited
success. However, with the advances in neural net-
works, (Howard and Ruder, 2018) proved that it
is possible by successfully fine-tuning a pretrained
LSTM (Hochreiter and Schmidhuber, 1997) lan-
guage model on a downstream task. After pre-
training, the model’s last layer, which is used to
predict the next word, is replaced with a new layer
for a downstream task. This way, information from
the remaining layers can help the model learn new
tasks better.

Instead of introducing a new layer at the end
of pre-trained models, Schick and Schütze (2020)
converted the downstream task examples into a
cloze-question format to leverage the knowledge
acquired during the pre-training. Later, the pre-
trained model is further fine-tuned in a method
called Pattern Exploitative Training (PET). Down-
stream tasks like sentiment analysis would be much
simpler to adapt since one can just append a tem-
plate at the end of the review and expect the model
to predict words related to the corresponding label.
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For instance, if we are predicting the polarity of a
movie review, we append a template to the review
as follows Overall, the movie is < mask > and
fine-tune the language model to predict < mask >
with the words corresponding to the sentiment.
However, PET cannot be directly applied to Named
Entity Recognition (NER) since the outputs must
be constrained to phrases within the sentence. It
is difficult (if not impossible) to provide a single
task description which allows the language model
to assign a label to each token in the input text
(Gatta et al., 2021). Gatta et al. (2021) handled this
issue by appending a template, filled by each word
and entity type, to the sentence where the model
must predict if the word in the template is either
beginning, inside or outside an entity type. The
template is generated for all combinations of words
in the sentence and entity types.

Cui et al. (2021) approached the problem by con-
verting the NER identification task into a seq2seq
task by generating synthetic target sentences. Fig-
ure 1 illustrates their data creation process. N-
grams generated from the sentence are substituted
in the template to generate positive and negative
examples. The authors fine-tune BART language
model (Lewis et al., 2019) to train a seq2seq model,
which inputs the natural source sentence (sentence
before the "→" symbol in Figure 1) and outputs
the synthetic target sentence (sentence after the
"→" symbol). At inference, the fine-tuned model
is used to score the synthetic sentences generated
from all the N-grams. A major limitation of this
approach is the N-grams part because, during infer-
ence, for a given sentence, all the synthetic target
sentences generated from all the N-grams ranging
from n = 1 to 8 must be checked against all the en-
tity types. This situation exacerbates with a larger
sentence and more number of entity types in a task.
Avoiding the problem of generating all possible N-
grams, (Yan et al., 2021) proposed a pointer-based
seq2seq (BARTNER) framework, which converts
NER sub-tasks to a unified sequence generation
task and predicts entities from the input sentences
and the corresponding type indexes. LightNER
(Chen et al., 2021) introduced prompt-tuning to the
attention mechanism of BARTNER and achieved
promising improvement in low-resource scenarios.

Our contribution is to avoid the usage of N-
grams by pivoting our task from a sequence label-
ing task into a seq2seq task that aligns with the
pre-training objective of certain generative models

like T5, BART, etc. Specifically, we leverage tem-
plates to convert the target entities into sentences.
Figure 2 illustrates the conversion process. Our
approach performs better in low-resource settings
and is comparable to existing works in resource-
rich setting. In comparison to the recent works,
our approach is faster than TemplateBART (Cui
et al., 2021) in terms of real-time inference. Al-
though BARTNER does inference in a single step,
we observed that our approach yields better results
at the cost of linear inference speed, proportional
to the number of entity types. At the same time,
our approach is simpler than LightNER.

We test our method’s performance in resource-
rich, low resource and domain transfer settings to
prove its robustness. We approximate low resource
setting by considering few-shot scenarios of the
datasets. Results show that our method achieves
comparable results in the resource-rich setting and
outperforms the current seq2seq paradigm state-of-
the-art approach in few-shot settings.

2 Related Work

To adapt the fine-tuning approach to the NER task,
the standard norm has been to use architectures
like LSTMs (Hochreiter and Schmidhuber, 1997),
CNNs (LeCun et al., 1989), and Transformers
(Vaswani et al., 2017) to extract token-level fea-
tures which are later passed on for classification
into the corresponding entity classes. In the final
layer, the softmax function (Strubell et al., 2017;
Chiu and Nichols, 2015; Cui and Zhang, 2019) or
the Conditional Random Fields algorithm (CRF)
(Lample et al., 2016; Ma and Hovy, 2016; Luo
et al., 2019) are used for classification.

With the rise of powerful LMs, there has been a
lot of interest in exploiting them for downstream
tasks. ULMFit (Howard and Ruder, 2018) was
the first approach to successfully fine-tune a pre-
trained LSTM language model to a downstream
task. However, this approach does not completely
exploit the information LMs have learned during
pre-training. Schick and Schütze (2020) converted
the downstream tasks into cloze questions to probe
LMs and leverage the knowledge learned during
pre-training. Simultaneously, Brown et al. (2020)
showed that, with large LMs (170 Billion parame-
ters large), it is possible to probe information in a
few-shot approach without having to train the full
model. These methods gave rise to a new research
field called Pattern Engineering (Liu et al., 2021).
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Figure 1: Template based NER approach by Cui et al. (2021)
.

Figure 2: Our approach.

However, until recently, most prompt-based ap-
proaches were not designed for Named Entity
Recognition. Cui et al. (2021) were the first to
adopt the template-based approach for Sequence
Labeling. They convert the task into a seq2seq task
and use language models as a scoring function for
each span. As mentioned before, Sainz et al. (2022)
filter the n-grams by labels provided by a linguistic
analyzer in a textual entailment task.

3 Methodology

We consider NER as a language model generation
task where the input is a text written in natural lan-
guage, appended by synthetic sentence generated
by a template and the output is also a synthetic
sentence but mentioning the corresponding entities.
(see Section 3.1). We start this section by introduc-
ing the template creation process in Section 3.1,
and then explain the training and inference pro-
cesses in Sections 3.3 and 3.2, respectively. In later
sections, we speak about the different assumptions
made for different resource settings.

3.1 Template creation

Let us consider a dataset with n entity types. For
each training instance, n synthetic sentences (cor-
responding to each entity type) are appended to
the source sequence i.e. input text and the corre-
sponding entities are provided as target sequences.
In case of multiple entities for an entity type, they
are separated by a delimiter in the output. Figure
2 explains our approach. The input template is as
follows,

In the sentence, < sentence >, the < entity −

type > entities are
In this template < sentence > is substi-

tuted by a sentence from the training set and
< entitytype > by an entity type. The training
instance shown in the figure has three entity types,
namely, ORG (organization), PER (person), and
LOC (location). So, we will have 3 positive exam-
ples, one for each entity type. One such positive
example is shown as T+. Since MISC (miscella-
neous) type entities are not present, we consider it
as a negative example (T−) and the output is made
as "None" denoting that there are no entities for the
entity type mentioned in the input.

3.2 Inference

During inference, for a given sentence, templates
generated for each entity type are passed through
the model for extracting entities. This approach
invokes the model only n times whereas Cui et al.
(2021)’s approach invokes the model n× k times,
where k is the number of N-grams.

3.3 Training

As we are leveraging pre-trained language mod-
els as the base models, we fine-tune them on the
downstream seq2seq task. During fine-tuning, the
model is trained to predict the correct named en-
tities word-by-word. In case of negative samples,
the model must only output the word None. In
the example in Figure 2, the system has generated
the named entity "Baghdad" for the location (LOC)
entity type and the label "None" for the "miscella-
neous" type, or negative example. It is possible that
the generative models may output partial entities
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or arbitrary text. In such cases, we consider the
output as no match at all.

Considering the success of contrastive learning
(Chen et al., 2020), we believe that the negative ex-
amples help the models in understanding the task
better, especially when the training instances are
less. Therefore, we consider all the n sequences
(including positives and negatives) generated per
each training instance for training. In later sec-
tions (Section 4.1), we evaluate our hypothesis by
comparing the impact of negative examples against
model performance. Experiments have been per-
formed on different datasets with different entity
classes (see Section 4).

3.4 Experimental settings

As mentioned earlier, we test our approach in three
different scenarios. The following sub-sections
explain the experimental settings of each scenario.

3.4.1 Resource-Rich setting
In this setting, we evaluate if it is worth adopting
this approach when there is access to abundance of
data.

3.4.2 Low Resource setting
In this setting, we measure the impact of the
amount of examples against model’s performance.
We follow Cui et al. (2021)’s evaluation settings
for better comparison. Specifically, we check the
model’s performance on different input data sizes
m = {10, 20, 50, 100, 200, 500}, where m stands
for number of instances per each entity type.

3.4.3 Domain Transfer
Since the input template and target sequences look
like natural sentences, the model trained on one
dataset should be able to adapt to another dataset
with different entity types. The above hypothesis
is made under the hypothesis that, with the first
dataset, model understands the task format better.

We evaluate this hypothesis by training a model
on a resource-rich dataset and later fune-tuning it
on a low-resource dataset. In our case, it would
mean, fine-tuning a pretrained model on a resource-
rich dataset and further fine-tuning it on a low-
resource dataset.

3.5 Adding special tokens

One-way of pre-training is to reconstruct the cor-
rupted sentence by predicting the dropped spans
(Joshi et al., 2019; Raffel et al., 2020). For instance,

given a sentence, I’m looking <X> to the party this
<Y>, the model is trained to predict the following
text, <X> forward <Y> weekend.

In order to make our downstream task closer
to the pre-training task of de-noising corrupted
sentences, we append a special token to the source
sentence and prepend the same token on the
target side to mimic the pre-training style. In
the results, we call this method as "Ours+ (T5
pretraining-style)".

Ours: In the sentence, < sentence >, the
< entity − type > entities are

Ours + (T5 pretraining-style): In the sentence,
< sentence >, the < entity−type > entities are
< X >

4 Results

For benchmarking, we use CoNLL03 dataset for
resource-rich setting and MIT restaurant (Liu et al.,
2013), MIT movie (Liu et al., 2013) and ATIS
(Hakkani-Tur et al., 2016) datasets are used for
low-resource and domain transfer settings. See
Table 4 in Appendix for more details. ATIS dataset
contains highly imbalanced entity types with one
entity type containing around 3705 instances while
another type occurring only once. All the scores
reported in this section are an average of 5 runs.

We conjecture that our hypothesis aligns better
with T5 considering the closeness to its pre-training
task. In order to evaluate this, we train T5-base
and BART-large (Lewis et al., 2019) on CoNLL03
(Tjong Kim Sang and De Meulder, 2003) and check
the performance. Table 2 shows that T5-base per-
forms better than BART-large. It is interesting to
note that T5-base, with 3x fewer parameters, per-
forms better.

From here on, we will be using T5-base model
for the experiments. The improvements reported
can be attributed to T5 but the inference speed is
due to our approach. For instance, when tested on
Titan XP GPU with the same pre-trained model,
T5, our approach takes 2 minutes to complete the
inference whereas TemplateBART (Cui et al.,
2021) approach takes 68 minutes.1.

Resource-rich setting: Table 2 shows that,
when tested in a resource-rich setting, (CoNLL03),

1We use a batch size of 32 and TemplateBART use a dy-
namic batch size varying between 5 to 40 with an average
batch size of 31
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Source Method MIT Movies MIT Restaurant ATIS
10 20 50 100 200 500 10 20 50 100 200 500 10 20 50

TemplateBART 37.3 48.5 52.2 56.3 62.0 74.9 46 57.1 58.7 60.1 62.8 65 71.7 79.4 92.6
LightNER 41.7 57.8 73.1 78.0 80.6 84.8 48.5 58.0 62.0 70.8 75.5 80.2 76.3 85.3 92.8

BARTNER* 41.1 54.0 67.7 NA NA NA 44.0 56.0 64.0 NA NA NA 77.7 86.1 93.4
None Ours 53.29 61.89 75.75 79.99 81.61 83.08 47.09 60.25 67.02 72.7 74.15 75.69 91.9 93.8 94.58

Ours2 52.1 60.43 75.23 78.3 81.07 82.47 51.34 61.97 65.86 73.64 76.31 77.24 92.75 93.57 94.66
TemplateBART 42.4 54.2 59.6 65.3 69.6 80.3 53.1 60.3 64.1 67.3 72.2 75.7 77.3 88.9 93.5

LightNER 62.9 75.6 78.8 82.2 84.5 85.7 58.1 67.4 69.5 73.7 78.4 81.1 86.9 89.4 93.9
CoNLL03 Ours 62.27 72.24 76.67 78.98 81.72 82.89 56.55 64.73 69.84 73.39 75.46 74.41 93.34 94.25 95

Ours2 62.07 70.52 75.64 78.84 81.09 82.56 59.03 64.06 67.72 74.21 75.47 75.94 92.9 93.83 94.68

Table 1: Few-shot results (including domain-transfer settings) on various input sizes. The first column "Source" refers to the
domain-transfer setting where we first train on CoNLL03 dataset or from scratch (None) and later fine-tune on the current dataset.
The scores reported are an average of 5 runs with a standard deviation around 2-3. "Ours" and "Ours2" refer to the two training
styles followed in section 3.5. BARTNER* scores are taken from the publication. Hence, couldn’t get its scores on size=100,
200 and 500.

Models P R F
LightNER 92.39 93.48 92.93

TemplateBART 90.51 93.34 91.90
Ours (T5-base) 91 89 90

Ours (BART-large) 90 80 85

Table 2: CoNLL03 results: Comparing our approach with
TemplateBART and LightNER

TemplateBART and LightNER perform better
than our approach. We conclude that our approach
is not a value addition when there is access to
enough labeled data.

Low Resource setting: In the few shot setting,
we check the model’s performance on different
input data sizes m = {10, 20, 50, 100, 200, 500},
where m stands for number of instances per each
entity type. Table 1 shows that our approaches
perform comparatively better.

Domain Transfer: Initially, we fine-tune the
T5 model on the full CoNLL03 dataset and later
fine-tune it on the few-shot scenarios of MIT restau-
rant, MIT movie and ATIS datasets. Table 1 shows
that our approaches indeed leverage the knowledge
gained from one task to learn another. However, it
only performs comparably to LightNER.

4.1 Ratio of negative samples

In case of resource-rich setting (Table 2), we can
observe that the precision of the system is compa-
rable to other baselines. We believe that this is due
to the large number of negative examples we are
considering while training. As a result, model is
producing less false positives.

In order to check the hypothesis that more neg-
ative examples can be helpful, we experimented
with different negative-positive ratio sentences per
each training instance. Table 3 shows that the neg-
ative samples are extremely important in few-shot
scenarios, especially when m (number of instances
per entity type) is small. We can also observe that
learning is saturated quickly when m is bigger. For

instance, for m=200 & 500, there is no consider-
able improvement despite the increase in negative
samples.

-ve to +ve ratio 10 20 50 100 200 500
1:1 18.32 42.97 57.58 67.06 71.83 75.43
2:1 26.25 53.95 62.88 70.55 75.13 77.24
3:1 34.32 55.91 64.68 71.1 75.37 77.2

Table 3: Effect of negative samples on model’s performance.
Scores reported on MIT restaurant. 10 indicates 10 instances
for each entity types. The scores reported are an average of 5
runs with a standard deviation around 2-3.

5 Conclusions and Future Work

In this work, we project NER as a seq2seq task by
generating synthetic sentences from templates and
show that our approach is faster than the current
state-of-the-art. We also show that our approach
works better in few-shot and domain transfer sce-
narios especially when the input size is small, al-
though the approach can be used in other scenarios.
While performing the experiments, we found T5
to better align with our task and also observed the
importance of negative examples.

Our system has been compared against seq2seq
systems (TemplateNER, LightNER and BART-
NER). But Instruction-NER (Wang et al., 2022)
leverages auxiliary training and obtains better re-
sults than our system. For instance, in MIT movies
few shot scenario (n=10), our approach has 53 F1
score and instructionNER 65 F1 score. In future, it
would be interesting to explore automatic template
generation along with auxiliary training.
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7 Appendix

Dataset Number of
entity types # Training # Validation # Testing Max Min

CoNLL 4 14041 3250 3453 7141 3451
MIT Restaurant 8 6128 1225 1522 3031 581

MIT Movie 12 7821 1564 2444 3510 92
ATIS 79 4233 634 894 3705 1

Table 4: Datasets: Number of sentences in train, val-
idation and testing splits in each dataset. # refers to
number of sentences. The "Max" and "Min" columns
refer to the entity types with maximum and minimum
occurrences.
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