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Abstract

This paper aims to investigate the effec-
tiveness of the k-Nearest Neighbor Ma-
chine Translation model (kNN-MT) in
real-world scenarios. kNN-MT is a
retrieval-augmented framework that com-
bines the advantages of parametric mod-
els with non-parametric datastores built us-
ing a set of parallel sentences. Previous
studies have primarily focused on evaluat-
ing the model using only the BLEU met-
ric and have not tested kNN-MT in real-
world scenarios. Our study aims to fill this
gap by conducting a comprehensive analy-
sis on various datasets comprising different
language pairs and different domains, us-
ing multiple automatic metrics and expert-
evaluated Multidimensional Quality Met-
rics (MQM). We compare kNN-MT with
two alternate strategies: fine-tuning all the
model parameters and adapter-based fine-
tuning. Finally, we analyze the effect of the
datastore size on translation quality, and
we examine the number of entries neces-
sary to bootstrap and configure the index.

1 Introduction

The remarkable advances in neural models have
brought significant progress in the field of machine
translation (Sutskever et al., 2014; Bahdanau et al.,
2015; Vaswani et al., 2017). However, current sys-
tems rely heavily on a fully-parametric approach,
where the entire training data is compressed into
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the model parameters. This can lead to inade-
quate translations when encountering rare words
or sentences outside of the initial training do-
main (Koehn and Knowles, 2017), requiring sev-
eral stages of fine-tuning to adapt to data drift or to
new domains.

By combining the advantages of parametric
models with non-parametric databases built from
parallel sentences, retrieval-augmented models
showed to be a promising solution, particularly
in domain adaptation scenarios (Gu et al., 2018;
Zhang et al., 2018; Bapna and Firat, 2019; Meng
et al., 2021; Zheng et al., 2021; Jiang et al., 2021;
Martins et al., 2022a; Martins et al., 2022b).

One notable example is the k-Nearest Neighbor
Machine Translation model (kNN-MT) (Khandel-
wal et al., 2021), known for its simplicity and very
promising results. The model first creates a token-
level datastore using parallel sentences, and then it
retrieves similar examples from the database dur-
ing inference, enhancing the generation process
via interpolation of probability distributions.

However, despite its potential, the kNN-MT
model has yet to be tested in real-world scenar-
ios. Previous studies have primarily focused on
evaluating it using only the BLEU metric, which
correlates poorly with human judgments. In or-
der to gain a deeper understanding of when and
how kNN-MT can be effective, we conduct a
thorough analysis on various datasets which com-
prise 4 different language pairs and 3 different do-
mains, using BLEU (Papineni et al., 2002; Post,
2018), COMET (Rei et al., 2020), and Multidi-
mensional Quality Metrics (MQM) – quality as-
sessments obtained from the identification of error
spans in translation outputs by experts (Lommel et
al., 2014; Freitag et al., 2021).

To sum up, our main contributions are:
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Figure 1: Diagram of the kNN-MT model.

• We compare using kNN-MT with directly us-
ing a pre-trained multilingual model, fine-
tuning all the model parameters, and with
adapter-based fine-tuning, reporting results in
several automatic metrics.

• We analyze the effect of the datastore size
on the quality of kNN-MT’s translations and
examine the number of entries necessary to
bootstrap and configure the datastore’s index.

• We perform MQM evaluation of the transla-
tions generated by a pre-trained model with
and without retrieval, and by a fully fine-
tuned model with and without retrieval.

2 k-Nearest Neighbor Machine
Translation

In machine translation, the goal is to take a sen-
tence or document in a source language, repre-
sented as x = [x1, . . . , xL], and generate a cor-
responding translation in a target language, rep-
resented as y = [y1, . . . , yN ]. This is typi-
cally achieved using a fully-parametric sequence-
to-sequence model (Sutskever et al., 2014; Bah-
danau et al., 2015; Vaswani et al., 2017). In these
models, the encoder takes in the source sentence
and outputs a set of hidden states. The decoder
then generates the target translation one token at a
time by attending to these hidden states and out-
putting a probability distribution over the vocab-
ulary for each step, pNMT(yt|y<t,x). Finally, a
search procedure, such as beam search (Reddy,
1977), is applied using these probability distribu-
tions to generate the final translation.

The k-nearest neighbor machine translation
model (kNN-MT) (Khandelwal et al., 2021), il-
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Figure 2: Diagram of the kNN-MT datastore.

lustrated in Figure 1, is a retrieval-augmented
model. It combines a standard sequence-to-
sequence model as the one described above, with
an approximate nearest neighbor retrieval mecha-
nism, that allows the model to access a datastore
of examples at inference time.

2.1 Building the Datastore

Building kNN-MT’s datastore, D, requires a par-
allel corpus, S , with the desired source and tar-
get languages, process illustrated in Figure 2. The
datastore is a key-value memory, where each key is
the decoder’s output representation of the context
(source and ground-truth translation until current
step), f(x,y<t) ∈ Rd. The value is the corre-
sponding target token yt ∈ V:

D = {(f(x,y<t) , yt) ∀ t | (x,y) ∈ S} . (1)

Therefore, to construct the datastore, we simply
need to perform force-decoding on the parallel cor-
pus S and store the context vector representations
and their corresponding ground-truth target tokens.



Source Reference

En-Tr The Company has a 65+ year track record in sup-
plying high quality pharmaceutical products across
oral solid and liquid forms.

Şirket, oral katı ve sıvı formlarda yüksek kaliteli
ilaç ürünleri tedarikinde 65 yılı aşkın geçmişe
sahiptir.

En-Ko A South Korean detective looks into the reason for
his counterparts visit.

남한의형사는그가남한에파견된이유를알아
내고자한다.

En-De (1) When I track your order it seems like it is lost in
transit, I am so sorry about this.

Wenn ich Ihre Bestellung schicke, scheint es, als ob
sie beim Versandverfahren verloren gegangen ist.
Es tut mir sehr leid.

En-De (2) I have put the request in to cancel the order. Ich habe um eine Stornierung der Bestellung
gebeten.

En-Fr Sorry to hear about your domains, you can move
them, so we can look at that together.

Désolé d’apprendre ce qui s’est passé pour vos do-
maines, vous pouvez les déplacer, afin que nous
puissions examiner cela ensemble.

Table 1: Datasets translation examples.

2.2 Searching for k-NN

To find the closest examples in the datastore, the
standard approach is to use a library for efficient
similarity search such as FAISS (Johnson et al.,
2019) to perform k-nearest neighbor search. To do
this, a searchable index that encapsulates the datas-
tore vectors must first be created. Since exact kNN
search is computationally expensive, an approxi-
mate kNN search is performed by segmenting the
datastore. This can be done by defining Voronoi
cells in the d-dimensional space, which are defined
by a centroid, and assigning each datastore key to
one of these cells using k-means clustering (Mac-
Queen, 1967). Then, during inference, the model
searches the index hierarchically to approximately
retrieve the set of k nearest neighbors N .

2.3 Combining kNN with the NMT model

After retrieving the k nearest neighbors, we need
a way to leverage this information. In kNN-MT
this is done by computing a probability distribu-
tion based on the neighbors’ values, which is then
combined with the parametric component’s distri-
bution, at each step of the generation.

The retrieval distribution, pkNN(yt|y< t,x),
is calculated using the neighbors’ distance
to the current decoder’s output representation,
d(f(x,y< t), ·):

pkNN(yt|y<t,x) = (2)∑
(kj ,vj)∈N 1yt=vj exp (−d (kj ,f(x,y<t)) /T )∑

(kj ,vj)∈N exp (−d (kj ,f(x,y<t)) /T )
,

where T is the softmax temperature, kj denotes the
key of the jth neighbor and vj its value.

Finally, the retrieval distribution,
pNMT(yt|y<t,x) and the parametric compo-
nent distribution, pkNN(yt|y<t,x), are combined,
by performing interpolation, to obtain the final dis-
tribution, which is used to generate the translation
through beam search:

p(yt|y<t,x) = (1− λ) pNMT(yt|y<t,x) (3)

+ λ pkNN(yt|y<t,x),

where λ ∈ [0, 1] is a hyperparameter that controls
the weight given to the two distributions. This in-
terpolation allows the model to benefit from the
strengths of both the parametric component and
the retrieval component.

3 Experimental Settings

In order to analyze how kNN-MT performs in real-
world scenarios, we performed experiments using
datasets from several domains and different lan-
guage pairs (as described in §3.1). We compared
the results with that of a pre-trained multilingual
model (referred to as the base model; see §3.2),
fine-tuning all the parameters of the base model (as
discussed in §3.3), and using adapter-based fine-
tuning (as described in §3.4). The specific settings
of kNN-MT are detailed in §3.5 and the automatic
metrics employed are described in §3.6.

3.1 Datasets

In our experiments, we use 5 proprietary datasets
across 4 different language pairs: English-
Turkish (En-Tr), English-Korean (En-Ko),
English-German (En-De (1) and En-De (2)), and
English-French (En-Fr). The En-Tr and En-Ko
datasets are composed of sentences related to press



En-Tr En-ko En-De (1) En-De (2) En-Fr
k λ T k λ T k λ T k λ T k λ T

kNN-MT 16 0.4 10 16 0.5 10 4 0.5 100 4 0.5 10 4 0.6 10
Fine-tuned (Adapters) + kNN-MT 16 0.3 10 16 0.3 10 4 0.3 100 8 0.3 10 8 0.4 10
Fine-tuned (Full) + kNN-MT 8 0.5 100 4 0.3 10 4 0.3 10 16 0.2 100 16 0.3 1

Table 2: Hyperparameters values: number of neighbors k, interpolation coefficient λ, and retrieval softmax temperature T .

releases and media descriptions, respectively. The
En-De (1), En-De (2) and En-Fr datasets belong
to the customer service domain. We provide some
translation examples in Table 1 as well as the data
splits for each dataset in Table 3.

Train set Validation Set Test set

En-Tr 10,281 944 492
En-Ko 197,945 973 496
En-De (1) 10,599 1000 2000
En-De (2) 556,972 1000 2000
En-Fr 1,353,257 1000 2000

Table 3: Number of sentences in each dataset split.

3.2 Base Model

The mBART50 model (Tang et al., 2020) serves as
the base model for our study. Its “one-to-many”
variation is pre-trained to translate English into 49
other languages, including the languages used in
our study. The model architecture is a transformer-
based encoder-decoder, with 12 layers in the en-
coder, 12 layers in the decoder, a hidden layer di-
mension of 1024 and 16 heads, encompassing a
total of approximately 610 million parameters. It
was first trained on a denoising task using mono-
lingual data from 25 languages (mBART; (Liu et
al., 2020)), and then further pre-trained on a larger
set of monolingual data from 50 languages. It was
then fine-tuned on parallel data for all 50 languages
to adapt the model to the machine translation task.

3.3 Fine-tuning

We compare applying kNN-MT with fine-tuning
all the base model parameters. To do so, we fine-
tune the base model for each dataset, using its
training set, the Adam optimizer with a learning
rate of 3×10−5, a batch size of 16, and gradient ac-
cumulation of 8 steps. We perform early stopping
on the validation set, with a patience of 5 check-
points, being the validation step computed every
100 steps for the En-Tr and En-De (1) datasets,
every 500 steps for the En-Ko dataset, and every
1000 steps for the En-De (2) and En-Fr datasets.

3.4 Adapter-based Fine-tuning

We also explore the use of adapter-based fine-
tuning as a method of light-weight adaptation.
Adapters (Houlsby et al., 2019) are small resid-
ual layers inserted into the middle of a pre-trained
model and are used to adapt the model to a
new task, in this case, adapting the model to the
dataset’s domain. As it is possible to incorporate
adapters corresponding to different datasets to the
same model, this method is an efficient solution in
terms of model parameters, since we only need to
save one set of parameters for multiple datasets.
For each domain we add adapters with 12.5M pa-
rameters, approximately 2% of the total number of
parameters of the pretrained model (610M). To im-
plement it, we employ the same hyper-parameters
and training settings as previously described in
the methodology section for fine-tuning the entire
model. This allows a fair comparison of the effec-
tiveness of adapter-based fine-tuning versus tradi-
tional fine-tuning methods.

3.5 kNN-MT

For the kNN-MT we build the token-based
datastores using the training sets’ parallel sen-
tences. To set the parameters for kNN-MT,
we conduct a grid search on the validation set
for the interpolation coefficient λ, the temper-
ature T , and the number of retrieved neigh-
bors k. The grid search is performed on
λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, T ∈
{1, 10, 100}, and k ∈ {4, 8, 16}. The chosen val-
ues for each dataset are listed in Table 2. To per-
form the kNN search, we use the FAISS library
(Johnson et al., 2019) with the IVFPQ index and
set the number of centroids to 2000, the code size
to 64, and perform the search over 32 partitions.

3.6 Automatic Metrics

To evaluate the model we use two automatic met-
rics: BLEU (Papineni et al., 2002; Post, 2018) – n-
gram matching based metric – and COMET (Rei et
al., 2020) – metric based on fine-tuned pre-trained
language models.



En-De (1) En-De (2) En-Fr Average
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Base Model 42.6 0.534 38.0 0.492 49.1 0.716 43.2 0.581
kNN-MT 48.0 0.668 49.2 0.673 71.2 0.945 56.1 0.762
Fine-tuned (Adapters) 53.2 0.737 53.9 0.720 78.9 1.009 62.0 0.822
Fine-tuned (Full) 53.5 0.742 52.4 0.720 76.8 1.004 61.5 0.822
Fine-tuned (Adapters) + kNN-MT 53.2 0.748 54.7 0.724 78.5 1.014 62.1 0.829
Fine-tuned (Full) + kNN-MT 54.1 0.751 53.2 0.724 77.5 1.011 61.6 0.829

Table 4: BLEU and COMET scores on the English-German and English-French customer-service test sets.

En-Tr En-Ko Average
BLEU COMET BLEU COMET BLEU COMET

Base Model 24.5 0.672 7.9 0.273 16.2 0.473
kNN-MT 31.1 0.857 19.2 0.545 25.2 0.701
Fine-tuned (Adapters) 33.8 0.912 20.9 0.574 27.4 0.743
Fine-tuned (Full) 35.7 0.931 23.0 0.612 29.4 0.772
Fine-tuned (Adapters) + kNN-MT 35.1 0.927 22.6 0.597 28.9 0.762
Fine-tuned (Full) + kNN-MT 36.2 0.956 24.0 0.626 30.1 0.791

Table 5: BLEU and COMET scores on the English-Turkish and English-Korean test sets.

4 Results with Automatic Metrics

We report the results of our experiments using au-
tomatic metrics in Tables 4 and 5, which we dis-
cuss in the following sections.

4.1 Does kNN-MT improve the base model’s
performance?

When comparing the performance of kNN-MT to
the base model (mBART50) using automatic met-
rics, we see that kNN-MT leads to significant im-
provements in all datasets. Specifically, by retriev-
ing examples from a datastore, kNN-MT results in
an average increase of 12.9 BLEU points and 0.181
COMET points for the customer service datasets,
and 9 BLEU points and 0.228 COMET points for
the En-Tr and En-Ko datasets.

4.2 Is kNN-MT better than fine-tuning?

When comparing with fine-tuning all the model
parameters or performing adapter-based fine-
tuning (using each dataset’s training data), kNN-
MT falls short, according to the automatic metrics.
However, MQM evaluation leads to different con-
clusions, as we will see in §5.

On average, for the customer-service datasets,
kNN-MT results in a decrease of 5.9 BLEU points
and 0.060 COMET points compared to adapter-
based fine-tuning and of 5.4 BLEU points and
0.060 COMET points compared to fine-tuning the
entire model. For the remaining datasets, kNN-
MT shows an average decrease of 2.2 BLEU points
and 0.042 COMET points compared to adapter-

based fine-tuning and of 4.2 BLEU points and
0.071 COMET points compared to full fine-tuning.
Despite these findings, applying kNN-MT can be
computationally cheaper, since it reduces the need
to fine-tune the model, and avoids having different
models (or adapters) for each dataset.

4.3 Does kNN-MT improve fine-tuned model
performance?

Applying kNN-MT to fine-tuned models results
in small improvements. On customer-service
datasets, it increases BLEU by 0.1 points and
COMET by 0.007 points compared to adapter-
based fine-tuning and fine-tuning the entire model.
On other datasets, kNN-MT shows an average
increase of 1.5 BLEU points and 0.019 COMET

points compared to adapter-based fine-tuning, and
0.7 BLEU points and 0.019 COMET points com-
pared to fine-tuning the entire model.

4.4 How does the datastore size influences the
translation quality?

We analyzed the effect of the number of entries
in the datastore on the translation quality of the
model by using the base model (mBART50) ex-
tended with kNN-MT on the En-De (2) and En-Fr
test sets. We calculated the COMET score for dif-
ferent datastore sizes and plotted the results in Fig-
ure 3. The results show that, for both datasets, as
the number of entries in the datastore increases, the
COMET score also improves. The rate of improve-
ment is steepest for small datastore sizes but still
present as the size increases. Additionally, we ob-
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Figure 3: COMET scores when varying the number of entries on the datastore for the En-De (2) and En-Fr datasets, respectively.
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Figure 4: COMET scores when varying the number of entries used to train the FAISS index for the En-De (1) and En-De (2)
datasets, respectively.

served that even using small datastores (250,000
and 1,000,000 entries for the En-De (2) and En-
Fr datasets) already leads to a substantial improve-
ment when compared to the base model.

4.5 How many entries are needed to train
datastore index?

We also investigated the optimal number of entries
to use for training the FAISS index for hierarchical
approximate k-nearest neighbor search. We evalu-
ated the performance of the kNN-MT model on the
En-De (1) and En-De (2) datasets by measuring the
COMET score using different numbers of entries
for training the index. The results, as shown in
Figure 4, indicate that a relatively small number of
entries is sufficient for achieving the best COMET

scores. For example, in the left plot, we can see
that using only 2,000 or 5,000 entries leads to a re-
duction in COMET score, but increasing the num-
ber of entries to 10,000 results in a similar score
as using the entire number of entries (261,669).
Similarly, in the right plot, we see that even when
using only 5,000 entries, the translation quality is

already comparable to using the entire number of
entries (1,000,000). This suggests that it is possi-
ble to create a datastore and train its index with a
limited amount of data, and then add more entries
as more data becomes available.

5 Results with MQM Assessments

To complement this analysis, we evaluated the per-
formance of the pre-trained model with and with-
out retrieval, as well as the fully fine-tuned model
with and without retrieval using Multidimensional
Quality Metrics (MQM) – quality assessments ob-
tained from the identification of error spans in
translation outputs (Lommel et al., 2014; Freitag
et al., 2021). To conduct this assessment, we had
professional linguists assessing the models’ trans-
lations for the En-Ko, En-De (2), and En-Fr test
sets. We asked the annotators to identify all er-
rors and independently label them with an error
category (accuracy, fluency, and style, each with
a specific set of subcategories) and a severity level
(neutral, minor, major, and critical).

Table 6 presents the MQM results while Fig-



En-De (2) En-Fr En-Ko
MINOR MAJOR CRITICAL MQM MINOR MAJOR CRITICAL MQM MINOR MAJOR CRITICAL MQM

Base Model 1301 896 439 61.24 499 237 266 88.42 713 185 28 75.23
kNN-MT 928 417 75 86.22 335 116 137 93.77 527 95 6 85.72
Fine-tuned 982 471 72 85.03 377 131 3 97.14 513 101 3 85.56
Fine-tuned + kNN-MT 800 391 62 88.03 363 118 5 96.87 466 99 5 85.97

Table 6: Error severity counts and MQM scores.

Figure 5: Error typology and severity level breakdown for the En-De (2) test set.

ures 5, 6, and 7 provide a breakdown of the er-
ror typology distribution. The MQM assessment
indicates that both fine-tuning and kNN-MT sig-
nificantly improve translation performance when
compared to the base model, resulting in a substan-
tial increase in MQM score and a notable reduction
in critical, major, and minor errors. Interestingly,
according to the MQM scores and in contrast to the
automatic metric scores, kNN-MT slightly outper-
forms fine-tuning in two out of the three datasets.
Moreover, in the customer service datasets (En-Fr
and En-De (2)), kNN-MT proved to be useful in
mitigating source sentence errors, which are preva-
lent in this domain and can adversely impact the
translation quality (Gonçalves et al., 2022). Addi-
tionally, combining kNN-MT with fine-tuning re-
sults in marginal improvements for two datasets.

6 Related Work

In recent years, retrieval-augmented models have
gained attention for their effectiveness in vari-
ous text generation tasks. One such model is
the k-nearest neighbor language model (kNN-
LM; (Khandelwal et al., 2019)), which combines
a parametric model with a retrieval component.
Other works have proposed methods to integrate
the retrieved tokens using gating mechanisms (Yo-
gatama et al., 2021) or cross-attention (Borgeaud
et al., 2021), and techniques to improve the ef-
ficiency of the kNN-LM by performing datastore
pruning, adaptive retrieval (He et al., 2021) and
adding pointers to the next token on the original
corpus to the datastore entries (Alon et al., 2022).
Retrieval-augmented models have also been ex-
plored in the field of machine translation. Ear-



Figure 6: Error typology and severity level breakdown for the En-Fr test set.

Figure 7: Error typology and severity level breakdown for the En-Ko test set.



lier works have proposed using a search engine
to retrieve similar sentence pairs and incorporat-
ing them through shallow and deep fusion (Gu et
al., 2018) or attention mechanisms (Bapna and Fi-
rat, 2019), or retrieving n-grams to up-weight to-
ken probabilities (Zhang et al., 2018). More re-
cently, the kNN-MT model has been proposed as
an adaptation of the kNN-LM for machine trans-
lation (Khandelwal et al., 2021), and was then ex-
tended with a network that determines the num-
ber of retrieved tokens to consider (Zheng et al.,
2021). As kNN-MT can be up to two orders of
magnitude slower than a fully-parametric model,
(Meng et al., 2021) and (Wang et al., 2021) pro-
posed the Fast and Faster kNN-MT, in which the
model has a higher decoding speed by creating a
different datastore based on the source sentence
for each example. (Martins et al., 2022a) proposed
efficient kNN-MT by adapting the methods intro-
duced by (He et al., 2021) to machine translation
and introducing a retrieval distributions cache to
speed-up decoding. (Martins et al., 2022b) pro-
posed retrieving chunks of tokens instead of single
tokens. However, most of these methods have been
evaluated on a limited number of datasets and lan-
guage pairs, and using only the BLEU metric. Our
paper addresses this gap by evaluating kNN-MT
across five “real-world” datasets and four language
pairs using COMET and MQM evaluation.

7 Conclusions

In this paper, we conducted a study to assess the
performance k-Nearest Neighbor Machine Trans-
lation (kNN-MT) in real-world scenarios. To do
so, we augmented a pre-trained multilingual model
with kNN-MT’s retrieval component and com-
pared it against using the pre-trained model, per-
forming fine-tuning, and doing adapter-based fine-
tuning on five datasets comprising four language
pairs and three different domains. The results on
automatic metrics, COMET and BLEU, revealed
that while kNN-MT significantly improves the
translation quality over the pre-trained language
model, it falls short when compared to fine-tuning
and adapter-based fine-tuning. Furthermore, we
observed that incorporating kNN-MT’s retrieval
component into a fine-tuned model resulted in
small improvements. We also assessed the kNN-
MT model using Multidimensional Quality Met-
rics (MQM) by having professional linguists eval-
uate the translations for the En-Ko, En-De (2), and

En-Fr test sets. The MQM scores revealed a signif-
icant improvement in the kNN-MT model over the
base model, with kNN-MT slightly outperform-
ing fine-tuning in two out of three language pairs.
Combining kNN-MT with a fine-tuned model re-
sulted in minor improvements. Additionally, we
analyzed the effect of the number of entries in the
datastore on translation quality and the number of
entries required to train the FAISS index. Our
findings suggest that having larger datastores im-
proves translation quality, with the improvement
steepness being higher when increasing the size of
a small datastore. The number of entries used to
train the FAISS index has a small impact on the
final translation quality, which is relevant when
creating a dynamic datastore that can be updated
when more data becomes available.
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Hervé Jégou. 2019. Billion-scale similarity search
with gpus. IEEE Transactions on Big Data.

[Khandelwal et al.2019] Khandelwal, Urvashi, Omer
Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2019. Generalization through Memoriza-
tion: Nearest Neighbor Language Models. In Proc.
ICLR.

[Khandelwal et al.2021] Khandelwal, Urvashi, Angela
Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2021. Nearest neighbor machine translation.
In Proc. ICLR.

[Koehn and Knowles2017] Koehn, Philipp and Rebecca
Knowles. 2017. Six Challenges for Neural Machine
Translation. In Proceedings of the First Workshop
on Neural Machine Translation.

[Liu et al.2020] Liu, Yinhan, Jiatao Gu, Naman Goyal,
Xian Li, Sergey Edunov, Marjan Ghazvininejad,
Mike Lewis, and Luke Zettlemoyer. 2020. Multi-
lingual Denoising Pre-training for Neural Machine
Translation. Transactions of the Association for
Computational Linguistics.

[Lommel et al.2014] Lommel, Arle, Hans Uszkoreit,
and Aljoscha Burchardt. 2014. Multidimensional
quality metrics (MQM): A framework for declaring
and describing translation quality metrics. Revista
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Marinho, and André F. T. Martins. 2022a. Efficient
Machine Translation Domain Adaptation. In Proc.
ACL 2022 Workshop on Semiparametric Methods in
NLP: Decoupling Logic from Knowledge.

[Martins et al.2022b] Martins, Pedro Henrique, Zita
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