
State Spaces Aren’t Enough: Machine Translation Needs Attention

Ali Vardasbi†∗
University of Amsterdam
a.vardasbi@uva.nl

Telmo Pessoa Pires† Robin M. Schmidt Stephan Peitz
Apple

{telmo, robin_schmidt, speitz}@apple.com

Abstract

Structured State Spaces for Sequences (S4)
is a recently proposed sequence model with
successful applications in various tasks,
e.g. vision, language modeling, and au-
dio. Thanks to its mathematical formula-
tion, it compresses its input to a single hid-
den state, and is able to capture long range
dependencies while avoiding the need for
an attention mechanism. In this work, we
apply S4 to Machine Translation (MT), and
evaluate several encoder-decoder variants
on WMT’14 and WMT’16. In contrast
with the success in language modeling, we
find that S4 lags behind the Transformer by
approximately 4 BLEU points, and that it
counter-intuitively struggles with long sen-
tences. Finally, we show that this gap is
caused by S4’s inability to summarize the
full source sentence in a single hidden state,
and show that we can close the gap by in-
troducing an attention mechanism.

1 Introduction

The Transformer (Vaswani et al., 2017) is the most
popular architecture for state-of-the-art Natural
Language Processing (NLP) (Devlin et al., 2019;
Brown et al., 2020; NLLB Team et al., 2022). How-
ever, the attention mechanism on which it is built
is not well suited for capturing long-range depen-
dencies due to its quadratic complexity (Ma et al.,
2023). Recently, Structured State Spaces for Se-
quences (S4) was shown to be on par with the

© 2023 The authors. This article is licensed under a Creative
Commons 4.0 licence, no derivative works, attribution, CC-
BY-ND.
†Equal contribution.
∗Work done during an internship at Apple.

Transformer on various sequence modelling tasks,
including time series forecasting, language model-
ing (Gu et al., 2022), and audio generation (Goel et
al., 2022); and to surpass the Transformer on tasks
requiring reasoning over long range dependencies,
like the Long Range Arena (Tay et al., 2021).

Internally, S4 keeps a state-space based represen-
tation. Due to the way its weights are initialized,
it is able to approximately “memorize” the input
sequence, removing the need for an attention mech-
anism. Indeed, the results from Gu et al. (2022)
show that the self-attention layers can be replaced
by S4 layers without losing accuracy, and that it is
able to effectively model long-range dependencies
in data. Moreover, one of the key advantages of the
S4 kernel is that its forward step can be formulated
both as a convolution and as a recurrence formula,
allowing fast implementation during training, when
the convolution method is used, while the recur-
rence formula is used to generate the output step by
step during inference.

S4’s competitive performance in Language Mod-
eling (LM) promises an alternative to the Trans-
former for other sequence modeling tasks, such as
Machine Translation (MT). In this work, we ex-
plore S4-based architectures for MT. Our goal is
to find the best performing S4 architecture, and we
study the impact of several architectural choices
on translation accuracy, namely the effect of model
depth, the number of S4 blocks, and the importance
of the encoder. Despite our best efforts, our top per-
forming attention-free S4 model lags significantly
(∼ 4 BLEU points) behind the Transformer, with
the gap increasing with input length. We hypothe-
size this is due to the fact that S4 compresses the
source sentence to a fixed-size representation, and
thus lacks a way to access the token-level states

of the source, which is important for MT. As the
input length increases, it becomes increasingly hard
for the model to accurately store the full source
sentence in a single hidden state. In contrast, the
decoder cross-attention in the Transformer acts as a
retrieval mechanism, allowing to accurate retrieval
of the source sentence during decoding. Armed
with this observation, we enhance S4 with cross-
attention, and show this is enough to close the gap
to the Transformer. Finally, we combine the Trans-
former and S4 into an hybrid architecture that out-
performs both of them.

To summarize, the main contributions of the present
work are:

1. We present an in-depth study of S4 for MT.

2. We provide evidence that S4 learns self-
dependencies, i.e. dependencies between the
tokens of a single sequence, but struggles to
capture cross-dependencies, i.e. dependencies
between the tokens of two sequences, as it
lacks a way to retrieve prior states.

3. We show that extending S4 with an attention
mechanism allows it to more accurately cap-
ture cross-dependencies and to close the gap
to the Transformer on MT.

2 Background

In this section, we provide a brief overview of S4
and Machine Translation.

2.1 Structured State Space Models

The continuous state space model (SSM) is defined
by:

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

where u(t) is a 1D input signal that is mapped to
the latent state x(t) and finally to the output y(t).
A, B, C, and D are learned parameters. Similar
to Gu et al. (2022), we assume D = 0 since it is
equivalent to a residual connection.

Discretization Following Gu et al. (2022), we
discretize Equation (1) to apply it to discrete se-
quences:

xk = Axk−1 +Buk

yk = Cxk,
(2)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N are
computed using a bilinear approximation with step

size ∆1:

A = (I −∆/2 ·A)−1(I +∆/2 ·A)

B = (I −∆/2 ·A)−1∆B

C = C,

(3)

and u(t) is sampled at uk = u(k∆).

Equation (2) is designed to handle 1D input signals.
In practice, inputs are rarely 1D, but rather high-
dimensional feature vectors, such as embeddings.
To handle multiple features, Gu et al. (2022) use
one independent SSM per dimension. These inde-
pendent SSMs are then concatenated and mixed
using a linear layer. For example, if a model has a
state size of 64 and a hidden size of 512, it will con-
tain 512 independent SSMs (Equation (1)). Each of
these SSMs has a size of 64 and processes a single
feature. The 1D outputs of these 512 models are
concatenated, and a linear transformation is applied.
This process is referred to as an S4 block, which
involves concatenating all the independent SSMs
(one Equation (2) for each feature), followed by
a mixing layer, a residual connection, and Layer
Normalization (Ba et al., 2016).

HiPPO Matrix A careful initialization of the A
matrix is necessary to reduce exploding/vanishing
gradient (Gu et al., 2022). Gu et al. (2020) proposed
HiPPO-LegS matrices, which allow the state x(t)
to memorize the history of the input u(t):

Ank = −

(2n+ 1)1/2(2k + 1)1/2 if n > k

n+ 1 if n = k

0 if n < k

where Ank is the entry on row n and column k.
Following Gu et al. (2022), we initalize A with the
above equation but train it freely afterwards.

Structured State Spaces (S4) Finally, Gu et al.
(2022) introduced a set of techniques to make the
training of the above architecture more efficient.
These include directly computing the output se-
quence at training time using a single convolution
(denoted with ∗):

y = K ∗ uk. (4)

where K is a kernel given by:

K :=
(
CA

i
B
)
i∈[L]

=
(
CB,CAB, . . . ,CA

L−1
B
)
,

(5)

1Since for Machine Translation the step size does not change,
we use ∆ = 1.

Emb Emb Emb

Multi-Head Self-Attention

Add & Norm

Add & Norm

Softmax

Emb Emb Emb

Encoder
Stack

MLP

Output Projection

Masked Multi-Head Self-Attention

Add & Norm

Add & Norm

MLP

Multi-Head Cross-Attention

Add & Norm
Decoder

Stack

(a) Transformer (TR-TR)

Emb Emb Emb

Add & Norm

Softmax

Emb Emb Emb

Encoder
Stack

MLP

Output Projection

Add & Norm

MLP

Decoder
Stack

HiPPO Kernel

MLP

Add & Norm

S4 Blocks

HiPPO Kernel

MLP

Add & Norm

Concat

Add & Norm

Multi-Head Cross-Attention

Attention only
enabled for
S4A variant

S4 Blocks

(b) State Spaces (S4-S4 and ∅-S4)

Figure 1: Overview of the architectures used. The Transformer architecture (a) is compared to a
S4 architecture with an optional encoder (b). “Add & Norm” represents the residual connection and
normalization blocks used. The attention module is used only for the S4A variant (see Section 4.4).

and L is the sequence length. At inference time,
Equation (2) is applied step-by-step. For more de-
tails, see Gu et al. (2022).

2.2 Machine Translation (MT)
Let (x1:n, y1:m) be a source and target sentence
pair. The negative log-likelihood of y given x can
be written as:

− log p(y1:m | x1:n) = −
m∑
i=1

log p(yi | x1:n, y<i), (6)

where p(yi | x1:n, y<i) is modeled using a neural
network. In encoder-decoder models, such as the
Transformer (Vaswani et al., 2017), the model has
two main components: an encoder, responsible for
capturing source-side dependencies, and a decoder,
which captures both target-side and source-target
dependencies.

Alternatively, MT can be treated as a Language
Modeling task, where the (decoder-only) model
is trained on the concatenated source and target
sentences, separated with a special [SEP] token in
between (Wang et al., 2021; Gao et al., 2022). Fol-
lowing this approach, the negative log-likelihood is
written as:

− log p(y1:m, x1:n) =

LAE︷ ︸︸ ︷
−

n∑
j=1

log p(xj | x<j) +

−
m∑
i=1

log p(yi | x1:n, y<i)︸ ︷︷ ︸
LMT

. (7)

The LAE term corresponds to the source reconstruc-
tion loss, while LMT is identical to Equation (6).

Since our focus is on MT, we only need to optimize
the second term, i.e., LMT . In our experiments, in-
cluding both loss terms degraded translation quality
(see Appendix A). Therefore, for our decoder-only
models using only the second term, LMT .

2.3 Transformer

Transformers (Vaswani et al., 2017) are the state-of-
the-art architecture for MT. We show a typical ar-
chitecture in Figure 1a. In particular, both encoder
and decoder layers have self-attention and multi-
layer perceptron (MLP) modules, and the decoder
layer has an extra cross-attention module.

To simplify the text, we will refer to the architec-
tures we discuss as [ENC]-[DEC], where [ENC]
and [DEC] refer to the architecture used. For ex-
ample, the Transformer model in Figure 1a will be
referred to as TR-TR, since both the encoder and
decoder are from the Transformer.

3 S4 for Machine Translation

3.1 Base Architecture

Following Gu et al. (2022), our architectures are
based on the Transformer, but with the S4 block
(Section 2) replacing self-attention. In our initial ex-
periments, we intentionally omitted the use of cross-
attention in our models to determine whether S4’s
internal states alone suffice in capturing long-range
dependencies for MT. We call the B consecutive
S4 blocks together with the MLP layer, followed
by a residual connection and normalization, one S4
layer. Gu et al. (2022) use B = 2.

We consider two approaches (Figure 1b): a decoder-
only model (∅−S4), and an encoder-decoder archi-
tecture (S4-S4). Our decoder-only model is based
on Gu et al. (2022), which was shown to perform
well in language modeling. This model is designed
to predict the next target token by taking as input the
concatenated source and the previously predicted
target tokens. Our S4-S4 encoder-decoder architec-
ture consists of LE S4 encoder layers and LD S4
decoder layers, without cross-attention. Instead, we
use a simple method to propagate information be-
tween the encoder and the decoder: concatenating
the encoder outputs with the shifted target sequence.
This way, the decoder processes both the encoder
outputs and the target tokens.2

Finally, for some of the latter experiments, we con-
sider the case where encoder is bidirectional, which
we will refer to as S4BI. In this configuration, the
S4 blocks have two sets of parameters (A, B and
C), one per direction.

3.2 S4 with Cross-Attention
In our later experiments, we employ a modified
S4 decoder architecture, S4A (S4 with Attention).
S4A can be used with either a Transformer or S4
encoder. It incorporates a multihead cross-attention
module on top of the HiPPO kernel, as shown in
Figure 1b. Specifically, cross-attention is inserted
above the “Add & Norm” layer in the S4 block,
followed by another “Add & Norm” layer, similar to
the Transformer architecture. When cross-attention
is employed, we no longer concatenate the encoder
outputs to the shifted target sequence.

4 Results

In this section, we describe the experimental setup,
and discuss our results.

4.1 Experimental Setup
Data We run experiments on WMT’14
English↔German (EN↔DE, 4.5M sentence pairs),
and WMT’16 English↔Romanian (EN↔RO,
610K sentence pairs), allowing us to measure
performance on four translation directions. For
our analysis, we focus on EN→DE. We tokenize
all data using the Moses tokenizer and apply the
Moses scripts (Koehn et al., 2007) for punctuation
2Ideally, we would initialize the S4 decoder state spaces with
the last state of the encoder. However, this is non-trivial to
implement, since the forward step is executed as a single convo-
lution during training. We leave the exploration of this method
to future work.

normalization. We use Byte-pair encoding
(BPE, Sennrich et al. (2016)) with 40, 000 merge
operations, and the WMT’16 provided scripts
to normalize EN↔RO for the RO side, and to
remove diacritics when translating RO→EN.
Translations into Romanian keep diacritics to
generate accurate translations. We evaluate using
sacreBLEU3 version 2.1.0 (Post, 2018), with
signature nrefs:1 | case:mixed | eff:no |
tok:13a | smooth:exp. We run all experiments
using FAIRSEQ (Ott et al., 2019), onto which we
ported the code from Gu et al. (2022)4.

Unless stated otherwise, we report BLEU scores on
the WMT’14 EN→DE validation set.

Hyperparameters We optimize using ADAM

(Kingma and Ba, 2015). After careful tuning, we
found the best results with a learning rate of 0.005
for the S4 models, 0.001 for the Transformer mod-
els, and 0.002 for the hybrid models. We train for
100 epochs (28 000 steps), by which point our mod-
els had converged, and average the last 10 check-
points. We use 4 000 warm-up steps and an in-
verse square root learning rate scheduler (Vaswani
et al., 2017). We used a dropout rate of 0.1 for
EN↔DE, and 0.3 for EN↔RO. Unless stated oth-
erwise, all models have layer and embedding sizes
of 512, the hidden size of the feed-forward layers
is 2048, and we use 8 attention heads for the Trans-
former. For both the Transformer and S4, we use
post-normalization5. Following Gu et al. (2022)
we use GeLU activation (Hendrycks and Gimpel,
2016) after the S4 modules and GLU activation
(Dauphin et al., 2017) after the linear layer.

S4-specific Training Details During our explo-
ration, we experimented with several choices that
had a marginal effect on performance:

(i) Module-specific learning rates. Gu et al.
(2022) suggested different learning rates for
the matrices in eq. (2) and the neural layer, but
we did not observe any significant difference.

(ii) Trainable A and B. In line with Gu et al.
(2022), freezing A and B did not cause a no-
ticeable performance drop.

(iii) State dimension. We varied the size of the
state (xk in Equation (2)), but found that that

3https://github.com/mjpost/sacrebleu
4https://github.com/HazyResearch/state-spaces
5In our experiments, we didn’t observe any difference between
pre and post-normalization.

increasing it dimension beyond 64 did not no-
ticeably affect translation quality. Therefore,
similarly to Gu et al. (2022), we set the state
dimension to 64 in our experiments. Note that
this parameter should not be confused with
the model’s hidden size, which we examine in
Section 4.2. Increasing the state dimension in-
creases the modeling capacity of the S4 kernel
for each input dimension, but the output is
still collapsed to the hidden size, making the
latter the bottleneck.

(iv) Learning rate scheduler. We observed no sig-
nificant difference between using the inverse
square root scheduler and the cosine scheduler
suggested in (Gu et al., 2022).

4.2 Parameter Allocation and Scaling

Encoder Scaling To explore the effect of param-
eter allocation on performance, we compare the
translation quality of different encoder-decoder con-
figurations with the same total number of parame-
ters (roughly 65M). In Figure 2a, the x axis repre-
sents the ratio of encoder layers to the total num-
ber of layers (encoder + decoder). Starting with
a decoder-only model (ratio = 0), we gradually
increase the number of encoder layers, and end
with a model containing only a single decoder layer.
Two results stand out: first, there is a wide gap be-
tween the best S4 and Transformer models: 20.7
and 26.4 BLEU, respectively. Second, and consis-
tent with prior work, we find that an even split of
parameters between the encoder and decoder (6
encoder layers and 6 decoder layers, i.e., Trans-
former base) yields the best translation quality for
the Transformer (Vaswani et al., 2017), whereas
no encoder produces the best results for S4. Based
on this finding, we focus on the S4 decoder-only
variant for the next experiments.

Number of S4 Blocks per Layer Prior research
set the number of S4 blocks, B, to 2 (Gu et al.,
2022). We found that increasing B is beneficial
as S4 blocks are responsible for capturing depen-
dencies between tokens. In Table 1 we vary B
while keeping the parameter count roughly constant.
Increasing B leads to noticeable quality improve-
ments until B = 10. This architecture achieves a
score of 22.7 BLEU, but the gap to the Transformer
is still substantial: 3.7 BLEU points. From here on-
ward we use B = 10 and 6 layers for the decoder-
only model, unless stated otherwise.

B LD |θS4| |θ| BLEU

1 17 10M 66M 20.0
2 14 20M 66M 20.7
3 12 21M 66M 21.2
4 10 23M 64M 21.5
6 8 28M 64M 22.1
10 6 35M 67M 22.7
16 4 37M 65M 22.0
22 3 38M 64M 22.2
35 2 40M 64M 22.5

Table 1: Effect of number of S4 blocks per layer
on the decoder-only architecture. B is the number
of S4 blocks, LD the number of decoder layers,
|θS4| are the parameters allocated for S4 inside the
HiPPO kernels, and |θ| are the total parameters.

Short Medium Long Overall
[1, 17] [18, 29] [30, 117]

TR-TR 25.9 26.8 26.4 26.4

S4-Normal 24.0 24.3 21.4 22.7
S4-Reverse 23.2 24.2 22.5 23.1

Table 2: Translation quality of S4, trained on reg-
ular and reversed source sentences, compared to
Transformer on the WMT’14 EN-DE validation
set, for different reference sentence lengths. Each
bucket has approximately 1k sentences.

Depth Scaling In Figure 2b we show BLEU as
we increase the number of layers. The x axis shows
the total number of parameters of each architecture,
and the numbers next to each data point indicate the
architecture (e.g., 1-2 means a 1 layer encoder and 2
layer decoder). There is a clear gap in performance
between the two models, which is decreasing as
more layers are added, i.e. S4 seems to benefit more
from increasing the number of layers.

Width Scaling In Figure 2c we examine the in-
fluence of the hidden size on both S4 and Trans-
former, for the 0-6 and 6-6 architectures, respec-
tively. While S4’s performance improves with in-
creasing width, the returns are diminishing, and the
gap to the Transformer does not go way.

4.3 Translation Quality Comparison

Despite our extensive tuning of the S4 architecture,
a gap of almost 4 BLEU points to the Transformer
remains. In this section, we delve deeper into S4’s
results to determine why it is struggling.

0.0 0.2 0.4 0.6 0.8

14

17

20

23

26
B

LE
U

S4
Transformer

(a) Encoder parameter allocation (ratio).

50M 100M 150M
17

20

23

26

0-2

0-3

0-6
0-9 0-12 0-14 0-20

1-2

3-3

6-6 9-9 12-12 15-15 21-21

S4
Transformer

(b) Number of parameters (depth).

256 512 1024
17

20

23

26

22M

67M
222M

21M

65M
218M

S4
Transformer

(c) Hidden size (width).

Figure 2: Scaling plots for S4 and the Transformer. We explore shifting the parameter allocation between
the encoder (a), depth scaling (with a fixed hidden size of 512), symmetrically for the encoder-decoder
Transformer, and on the decoder for S4 (b), and hidden size (width) scaling (c), with 0-6 and 6-6 layers of
S4 and Transformer, respectively.

Sentence Length In Table 2, we split the source
sentences into 3 buckets according to their length6,
and show the BLEU scores for both S4 and the
Transformer. There is a clear gap between the
two models, which increases with sentence length.
Specifically, the gap is 1.9 and 2.5 BLEU for short
and medium-length sentences, respectively, but it
increases to 5 for the longest bucket. This observa-
tion is not entirely surprising: S4 uses a fixed-size
vector to compress the full source sentence and the
previous target tokens, which is not enough for long
sentences. The Transformer, on the other hand, has
no such constraint, as its attention mechanism lets
it retrieve previous states as needed.

Reversing Source Sentences To further investi-
gate whether the limited representation size is caus-
ing the poor performance of the model, we applied
a technique from the earlier neural MT literature.
Before the introduction of attention (Bahdanau et
al., 2015), it was observed that reversing the source
sequence could improve performance by decreasing
the distance between cross-language dependencies
(Sutskever et al., 2014). We trained a model on
reversed source sentences, and report the results in
Table 2 as S4-Reverse. Compared with the regu-
lar model, we get a small overall improvement of
0.4 BLEU points, but a large improvement of 1.1
BLEU on long sentences. This observation suggests
that although the HiPPO matrix has promising tem-
poral characteristics, S4 is not able to adequately
represent the source sentence and utilize its content
during the decoding phase.

6To limit spuriousness issues, we chose the buckets so that
each bucket has roughly 1k sentences.

4.4 The Importance of Attention

In the previous section, we showed that S4 struggles
to translate long sentences. In this section, we study
the influence of each source token on the output of
the model.

Attention Heatmaps To investigate the extent to
which S4 captures dependencies between source
and target words, we use a method from He et al.
(2019). For each generated target token, we mask
out the source tokens, one by one, and replace them
with padding tokens. Then, we measure the relative
change in the decoder’s final layer activation caused
by this intervention using L2 distance. By repeating
this process for each source token, we obtain a two-
dimensional matrix measuring the impact of each
source token on each target token. Similarly, we
can perform the same procedure by masking the
previous target tokens to obtain a similar plot for
target-side self-dependencies.

We show the heatmaps for both S4 and the Trans-
former7 in Figure 3. As shown, the differences are
stark. The Transformer is focused on just a few
words (sharp diagonal in fig. 3b), while S4 is is
much more “blurred” and unable to appropriately
attend to specific parts of the source sentence. The
difference is not as pronounced for short sentences
(see Figure 4), indicating that a single hidden state
is not enough to capture all the information the
model needs for longer sentences.

In Appendix B, we explore how B impacts the
heatmaps. We find that increasing B sharpens the
heatmaps, although they never get as sharp as those
of the Transformer.
7The plots are qualitatively similar to the usual attention
weights heatmaps for the Transformer. We show these “mask-
ing” maps for both models for fair comparison.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

masked target

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(a) ∅-S4

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

masked target

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(b) TR-TR

Figure 3: Change in the final decoder hidden state for each generated token when masking out source and
target tokens in one long sample of EN-DE (109 tokens), for the decoder-only S4 (a) and the Transformer
(b). While the latter can discriminate between source words very accurately (sharp diagonal in b), S4 fails
to do so.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

masked target

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(a) ∅-S4

masked source

ta
rg

et
0.0

0.2

0.4

0.6

0.8

1.0

masked target

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(b) TR-TR

Figure 4: Change in the final decoder hidden state for each generated token when masking out source and
target tokens in one short sample of EN-DE (11 tokens) for the decoder-only S4 and the Transformer. In
the case of short sentences, S4 is able to more accurately align source and target words.

4.5 Attention-enhanced Architectures

In the previous experiments, we found that S4
underperforms on long sentences, and hypothe-
sized that this is due to its fixed-size representa-
tion, which makes it unable to recall the full source
sentence. To address this, we now extend the S4
decoder with an attention mechanism, which al-
lows us to use an encoder-decoder setup, S4-S4A.
For more details on the attention mechanism, see
Section 3.2.

We conducted experiments similar to those in Sec-
tion 4.2 to determine the optimal B and how to al-
locate layers to the encoder and the decoder, while
keeping the total number of parameters constant.
We summarize the findings in Tables 3 and 4. We
found the best results with a balanced architecture,
5 − 5, and B = 3. This model improves perfor-
mance by almost 3 BLEU points on the WMT’14
validation set, from 22.7 to 25.6. From here on-
ward, encoders and decoders have 5 layers for S4
and 6 layers for Transformer.

In Table 5 we compare the performance of S4-S4A

and the Transformer (TR-TR) for short, medium,
and long sentences. Although there is a noticeable
improvement over the attention-free S4 model (∅-

B LE LD |θ| BLEU

2 6 6 66M 24.9
3 5 5 64M 25.4
5 4 4 64M 25.4
8 3 3 63M 25.2

Table 3: Effect of number of B and number of
encoder (LE) and decoder (LD) layers for the S4-
S4A encoder-decoder architecture.

LE 1 2 3 4 5 6 7 8 9

LD 9 8 7 6 5 4 3 2 1

BLEU 24.5 24.8 25.1 25.1 25.4 25.1 25.1 25.1 23.7

Table 4: Effect of allocating layers to the encoder
or to the decoder on the S4-S4A architecture, with
B = 3. The models have a total of 10 layers be-
tween the encoder and decoder.

S4), especially for longer sentences, there is still
gap between the two models. One possible expla-
nation for the comparatively poorer performance
of S4-S4A is the unidirectional nature of the S4
encoder. This results in subpar representations for
the initial words in the source sentence. Indeed,
when using a S4 encoder with a Transformer de-

Short Medium Long Overall
[1, 17] [18, 29] [30, 117]

∅-S4 24.0 24.3 21.4 22.7
TR-TR 25.9 26.8 26.4 26.4

S4-TR 24.7 25.5 25.2 25.2
S4-S4A 25.0 26.5 25.3 25.6

S4BI-TR 25.5 25.9 25.6 25.7
S4BI-S4A 25.3 26.5 25.8 25.9

TR-S4 24.2 24.8 22.9 23.7
TR-S4A 25.6 26.9 26.5 26.5

Table 5: Translation quality of different attention-
enhanced models on the WMT’14 EN-DE valida-
tion set for different source sentence lengths. Each
bucket has approximately 1k sentences. All models
have 64M < |θ| < 66M parameters.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

masked target

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Comparison of TR-S4A’s change in the
final decoder hidden state for each generated to-
ken when masking out source tokens for one long
sample of EN-DE (the same sample as Figure 3).
Enhancing S4 with attention helps it to focus on the
source tokens, similar to TR-TR.

coder (S4-TR), the performance is still behind that
of TR-TR, and replacing the S4 encoder with a
Transformer (TR-S4A) allows us to match the per-
formance Transformer. Making the S4 encoder
bidirectional (S4BI), we are able to narrow the per-
formance gap to the Transformer to just 0.5 BLEU

points (see S4BI-S4A).

Finally, in Figure 5 we show the attention heatmaps
for TR-S4A architecture, which were generated in
the same was as those in Figure 3. These plots show
that the model is now capable of accurately align-
ing source and target words, and are qualitatively
similar to those of the Transformer.

Why does S4 perform well on LM but not MT?
A natural question to ask is why does S4 perform
well on LM (Gu et al., 2022), but not on MT. Our
intuition is that MT is a more challenging task. For
LM, the model only needs to consider a shorter con-
text to accurately predict the next token, whereas

EN-DE DE-EN EN-RO RO-EN

∅-S4 22.1 25.4 12.8 19.7
S4BI-S4A 26.1 29.5 22.7 31.0
TR-S4A 27.3† 31.4 24.1† 33.6†

TR-TR 26.9 31.4 23.8 33.2

Table 6: BLEU scores on test set for each architec-
ture in 4 different language pairs. The † on TR-S4A

indicates statistically significant results.

for MT, it requires accurate access to the source
sentence representations. As the length of the
source sentence increases, a fixed-size state is insuf-
ficient to capture fine-grained representations of the
source, and thus the model’s performance suffers.
This is in line with the observations made by Vig
and Belinkov (2019), who argue that Transformer
LMs tend to pay more attention to the previous few
tokens, emphasizing the importance of short-term
memory over long-term memory.

4.6 Results for Other Language Pairs

In the previous sections, we focused on EN-DE.
In this section, we compare the different S4 archi-
tectures for other language pairs (DE-EN, EN-RO,
and RO-EN) and summarize the results in Table 6.
These numbers are on the test sets of the respective
language pairs. The results align with our previous
findings. Without attention, there is a significant
gap between S4 and the Transformer models, which
is reduced significantly by adding it. Interestingly,
the best performing architecture for all language
pairs is the hybrid TR-S4A, which provides a small
but statistically significant8 improvement over the
Transformer for all but DE→EN.

5 Conclusion and Future Work

In this work, we explored the application of S4 to
Machine Translation and conducted an investiga-
tion into the best architecture and hyperparameters.
Despite our efforts, we found that S4’s translation
accuracy lagged behind the Transformer, and the
performance gap widened for longer sentences. We
then showed that this was due to the limitations of
the fixed-size representation used by S4, which had
to compress the entire prior context, including the
source sentence and previous output tokens. Finally,
we showed that the performance gap can be closed
by incorporating attention.

8We performed statistical significance tests using paired boot-
strap resampling (Koehn, 2004) and a significance of 5%.

Since we did our investigation into S4, numerous
new SSM models have been proposed. Of partic-
ular note are S5 (Smith et al., 2023), which uti-
lizes a multi-input multi-output SSM, instead of
one single-input single-output SSM per feature as
S4 does, and H3 (Dao et al., 2023), which is faster
and better at LM than S4. We hope future research
explores how well these models perform on MT.
Additionally, it is worth noting MEGA (Ma et al.,
2023), which incorporates SSM’s into the Trans-
former attention, and is effective in MT, albeit at
the expense of quadratic complexity.

6 Acknowledgements

We would like to thank António V. Lopes, Hen-
dra Setiawan, and Matthias Sperber for their sug-
gestions and feedback. Their contributions signifi-
cantly improved the final work.

References
Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E.
Hinton. 2016. Layer normalization. arXiv preprint
arXiv:1607.06450.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly learn-
ing to align and translate. In Bengio, Yoshua and Yann
LeCun, editors, 3rd International Conference on Learn-
ing Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings.

Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen
Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-
pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher
Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. 2020. Language models are few-
shot learners. In Larochelle, Hugo, Marc’Aurelio Ran-
zato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin, editors, Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural In-
formation Processing Systems 2020, NeurIPS 2020, De-
cember 6-12, 2020, virtual.

Dao, Tri, Daniel Y. Fu, Khaled K. Saab, Armin W.
Thomas, Atri Rudra, and Christopher Ré. 2023. Hungry
Hungry Hippos: Towards language modeling with state
space models. In International Conference on Learning
Representations.

Dauphin, Yann N., Angela Fan, Michael Auli, and David
Grangier. 2017. Language modeling with gated convo-
lutional networks. In Precup, Doina and Yee Whye Teh,
editors, Proceedings of the 34th International Confer-
ence on Machine Learning, ICML 2017, Sydney, NSW,

Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 933–941. PMLR.

Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of deep
bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, June. Association for Computational Lin-
guistics.

Gao, Yingbo, Christian Herold, Zijian Yang, and Her-
mann Ney. 2022. Is encoder-decoder redundant for
neural machine translation? In He, Yulan, Heng Ji,
Yang Liu, Sujian Li, Chia-Hui Chang, Soujanya Po-
ria, Chenghua Lin, Wray L. Buntine, Maria Liakata,
Hanqi Yan, Zonghan Yan, Sebastian Ruder, Xiaojun
Wan, Miguel Arana-Catania, Zhongyu Wei, Hen-Hsen
Huang, Jheng-Long Wu, Min-Yuh Day, Pengfei Liu, and
Ruifeng Xu, editors, Proceedings of the 2nd Conference
of the Asia-Pacific Chapter of the Association for Com-
putational Linguistics and the 12th International Joint
Conference on Natural Language Processing, AACL/I-
JCNLP 2022 - Volume 1: Long Papers, Online Only,
November 20-23, 2022, pages 562–574. Association for
Computational Linguistics.

Goel, Karan, Albert Gu, Chris Donahue, and Christopher
Ré. 2022. It’s raw! audio generation with state-space
models. In Chaudhuri, Kamalika, Stefanie Jegelka,
Le Song, Csaba Szepesvári, Gang Niu, and Sivan Sabato,
editors, International Conference on Machine Learn-
ing, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning
Research, pages 7616–7633. PMLR.

Gu, Albert, Tri Dao, Stefano Ermon, Atri Rudra, and
Christopher Ré. 2020. Hippo: Recurrent memory with
optimal polynomial projections. In Larochelle, Hugo,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Bal-
can, and Hsuan-Tien Lin, editors, Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Gu, Albert, Karan Goel, and Christopher Re. 2022. Ef-
ficiently modeling long sequences with structured state
spaces. In International Conference on Learning Repre-
sentations.

He, Shilin, Zhaopeng Tu, Xing Wang, Longyue Wang,
Michael Lyu, and Shuming Shi. 2019. Towards under-
standing neural machine translation with word impor-
tance. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 953–962, Hong
Kong, China, November. Association for Computational
Linguistics.

Hendrycks, Dan and Kevin Gimpel. 2016. Gaus-
sian error linear units (gelus). arXiv preprint
arXiv:1606.08415.

Kingma, Diederik P. and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Bengio, Yoshua
and Yann LeCun, editors, 3rd International Conference
on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceed-
ings.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, Richard
Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin,
and Evan Herbst. 2007. Moses: Open source toolkit
for statistical machine translation. In Proceedings of the
45th Annual Meeting of the Association for Computa-
tional Linguistics Companion Volume Proceedings of
the Demo and Poster Sessions, pages 177–180, Prague,
Czech Republic, June. Association for Computational
Linguistics.

Koehn, Philipp. 2004. Statistical significance tests
for machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Natural
Language Processing, pages 388–395, Barcelona, Spain,
July. Association for Computational Linguistics.

Ma, Xuezhe, Chunting Zhou, Xiang Kong, Junxian He,
Liangke Gui, Graham Neubig, Jonathan May, and Luke
Zettlemoyer. 2023. Mega: Moving average equipped
gated attention. In The Eleventh International Confer-
ence on Learning Representations.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Barrault,
Gabriel Mejia Gonzalez, Prangthip Hansanti, John Hoff-
man, Semarley Jarrett, Kaushik Ram Sadagopan, Dirk
Rowe, Shannon Spruit, Chau Tran, Pierre Andrews,
Necip Fazil Ayan, Shruti Bhosale, Sergey Edunov,
Angela Fan, Cynthia Gao, Vedanuj Goswami, Fran-
cisco Guzmán, Philipp Koehn, Alexandre Mourachko,
Christophe Ropers, Safiyyah Saleem, Holger Schwenk,
and Jeff Wang. 2022. No language left behind: Scal-
ing human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Ott, Myle, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for se-
quence modeling. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association
for Computational Linguistics (Demonstrations), pages
48–53, Minneapolis, Minnesota, June. Association for
Computational Linguistics.

Post, Matt. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 186–191,
Brussels, Belgium, October. Association for Computa-
tional Linguistics.

Sennrich, Rico, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1715–1725, Berlin,
Germany, August. Association for Computational Lin-
guistics.

Smith, Jimmy T.H., Andrew Warrington, and Scott Lin-
derman. 2023. Simplified state space layers for se-
quence modeling. In The Eleventh International Confer-
ence on Learning Representations.

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural networks.
In Ghahramani, Zoubin, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27:
Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 3104–3112.

Tay, Yi, Mostafa Dehghani, Samira Abnar, Yikang Shen,
Dara Bahri, Philip Pham, Jinfeng Rao, Liu Yang, Se-
bastian Ruder, and Donald Metzler. 2021. Long range
arena : A benchmark for efficient transformers. In 9th
International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021, pages
1–19.

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. 2017. Attention is all you need.
In Guyon, Isabelle, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 5998–6008.

Vig, Jesse and Yonatan Belinkov. 2019. Analyzing the
structure of attention in a transformer language model.
In Linzen, Tal, Grzegorz Chrupala, Yonatan Belinkov,
and Dieuwke Hupkes, editors, Proceedings of the 2019
ACL Workshop BlackboxNLP: Analyzing and Interpret-
ing Neural Networks for NLP, BlackboxNLP@ACL 2019,
Florence, Italy, August 1, 2019, pages 63–76. Associa-
tion for Computational Linguistics.

Wang, Shuo, Zhaopeng Tu, Zhixing Tan, Wenxuan
Wang, Maosong Sun, and Yang Liu. 2021. Lan-
guage models are good translators. arXiv preprint
arXiv:2106.13627.

A Influence of LAE

In our experiments with the decoder-only architec-
ture, we intentionally excluded the loss term LAE

from Equation (6) as it is not necessary for MT. In
Table 7 we show the effect of including this loss
during training: performance degradation of around
4 BLEU points for both architectures.

B LD |θ| w/ LAE w/o LAE

6 8 65M 17.9 22.3
10 6 68M 18.6 22.5

Table 7: Impact of the autoencoder loss (LAE) on
translation quality on the WMT’14 validation set
for two decoder-only architectures. B is the number
of S4 blocks, LD the number of decoder layers
(this is a decoder-only architecture), and |θ| is the
number of parameters.

B Effect of B in the Cross-Attention
Heatmaps

Using the methodology described in Section 4.4,
Figure 6 shows the cross-attention heatmaps for
the models in Table 1. All models have roughly
the same number of parameters, and differ only
in B and the number of layers (LD). As in Fig-
ure 3, the source sentence has 109 tokens. A notice-
able pattern emerges: as B increases, the heatmap
sharpens, meaning it is easier for S4 to retrieve the
source states. It is worth noting, however, that these
heatmaps never get as sharp as those of the models
with attention.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(a) B = 1 & LD = 17.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(b) B = 2 & LD = 14.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(c) B = 3 & LD = 12.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(d) B = 4 & LD = 10.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(e) B = 6 & LD = 8.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(f) B = 10 & LD = 6.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(g) B = 16 & LD = 4.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(h) B = 22 & LD = 3.

masked source

ta
rg

et

0.0

0.2

0.4

0.6

0.8

1.0

(i) B = 35 & LD = 2.

Figure 6: Cross-attention heatmaps for the models in Table 1. Increasing B (while keeping the total
number of parameters roughly constant) makes the heatmaps less blurry, which means it is easier for the
model to retrieve source states.

