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Abstract

This work presents an unsupervised
method of selecting filters and threshold
values for the OpusFilter parallel corpus
cleaning toolbox. The method clusters
sentence pairs into noisy and clean cate-
gories and uses the features of the noisy
cluster center as filtering parameters.
Our approach utilizes feature importance
analysis to disregard filters that do not
differentiate between clean and noisy
data. A randomly sampled subset of a
given corpus is used for filter selection
and ineffective filters are not run for the
full corpus. We use a set of automatic
evaluation metrics to assess the quality
of translation models trained with data
filtered by our method and data filtered
with OpusFilter’s default parameters. The
trained models cover English-German and
English-Ukrainian in both directions. The
proposed method outperforms the default
parameters in all translation directions for
almost all evaluation metrics.

1 Introduction

Neural machine translation (NMT) is dependent
on large parallel text corpora. Available train-
ing data can often be noisy, especially if the data
is retrieved by the common method of extract-
ing bitexts from web crawls (Esplà-Gomis et al.,
2019; Schwenk et al., 2021; Bañón et al., 2020).
Training NMT on noisy data can be detrimental
to the translation models. Ensuring that the train-
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ing examples are clean sentence pairs leads to bet-
ter translation quality and more efficient training
(Khayrallah and Koehn, 2018). If clean paral-
lel corpora are not readily available, a common
practice is to refine a noisy corpus by filtering
out low quality training examples. The amount
and type of noise varies between different cor-
pora. Selecting the kind of filters that are optimal
for cleaning a specific parallel corpus can take a
lot of trial and error. Several methods and tools
for corpus cleaning have been proposed and de-
veloped (Taghipour et al., 2011; Carpuat et al.,
2017; Ramı́rez-Sánchez et al., 2020). OpusFilter
(Aulamo et al., 2020) is one such toolkit. It pro-
vides a selection of configurable filters, but suffers
from the same issue of having to manually choose
the filters and their parameters. In this work, we
propose an unsupervised method of selecting ef-
fective filters and filtering thresholds based on the
properties of a given corpus. Our method automat-
ically generates a filtering configuration file which
serves as a solid starting point for finding the op-
timal settings for an OpusFilter corpus cleaning
pipeline. We assess the proposed method by com-
paring the translation quality of models trained
with data filtered with default parameters from
OpusFilter and data filtered with autogenerated pa-
rameters. Our implementation of the filter selec-
tion method is available at https://github.
com/Helsinki-NLP/OpusFilter.

2 Related work

Corpus cleaning has been a part of training
pipelines since the statistical machine translation
(SMT) era. Some of the most common and most
straightforward methods include sentence length
based methods, for example removing too short
and too long sentences and sentence pairs where



the ratio of source and target lengths is above a
given threshold. The Moses toolkit (Koehn et al.,
2007) offers commonly used scripts for this pur-
pose. Taghipour et al. (2011) map sentence pairs
into an N-dimensional space and filter out the out-
liers. Cui et al. (2013) propose a graph-based
random walk filtering method which is based on
the idea that better sentence pairs lead to better
phrase extraction and that good sentence pairs con-
tain more frequent phrase pairs. The Zipporah data
cleaning system (Xu and Koehn, 2017) maps sen-
tence pairs into a feature space and uses logistic
regression to classify good and bad data. As the
features, they use bag-of-word translation scores
and n-gram language model scores.

Training data quality has a strong effect on NMT
performance. Khayrallah and Koehn (2018) study
several types of noise and their impact on trans-
lation quality. They report that NMT is less ro-
bust against noisy data than SMT. Rikters (2018)
points out common problems in parallel corpora
that can result in low quality NMT and provides
filters to overcome these issues. These problems
include mismatch of non-alphabetic characters be-
tween source and target segments, wrong language
and repeating tokens.

Ramı́rez-Sánchez et al. (2020) present two tools
for more careful corpus cleaning with NMT in
mind: Bifixer and Bicleaner. Bifixer is a restora-
tive cleaner; it only removes sentence pairs with
either side being empty but otherwise it fixes text-
related issues in place. Bifixer corrects char-
acter encoding and orthography issues, conducts
re-splitting of the sentences and identifies dupli-
cates. Bicleaner consists of filtering rules, lan-
guage model scoring and a classification part. The
filtering rules are predefined, but other steps of
Bicleaner require training a language model and
a classifier. However, pretrained models are pro-
vided for many language pairs.

OpusFilter (Aulamo et al., 2020) is a config-
urable parallel corpus cleaning toolbox. OpusFil-
ter provides a variety of data selection, text pro-
cessing, filtering and classification features that
can be combined into a reproducible corpus clean-
ing pipeline. An important step in constructing this
pipeline is to choose which filters to use and with
what parameters. The filters work by producing
a score for a sentence pair and checking whether
the score exceeds a threshold value. OpusFilter
defines default threshold values for each filter, but

there is no guarantee that these values are optimal
for a given corpus and language pair.

We propose an unsupervised method to choose
filters that are useful in differentiating between
clean and noisy sentence pairs and to initialize
threshold values based on features extracted from
a parallel corpus. The approach consists of cluster-
ing sentence pairs into noisy and clean categories
and using the features of the noisy cluster center
as the threshold values. This method is especially
useful in setting initial OpusFilter parameters that
are adapted to the characteristics of a given corpus.

3 Method

Our proposed method of selecting relevant filters
and useful threshold values for OpusFilter is based
on clustering sentence pairs into clean and noisy
categories and using the features of the noisy clus-
ter center as our filtering parameters. To select the
filters that are actually useful in detecting noisy
sentence pairs, we convert the clustering task into
a classification task and find the features that af-
fect classification accuracy the most. For cluster-
ing, classification and feature importance inspec-
tion, we use the scikit-learn Python package
(Pedregosa et al., 2011).

3.1 Filter scores as features

In order to extract features from a parallel cor-
pus, we select a set of filters and use them to pro-
duce scores for sentence pairs with OpusFilter’s
score function. We conduct this procedure on a
randomly sampled subset of 100k sentence pairs
from the training corpus in order to keep the con-
figuration generation reasonably fast even for large
corpora. In this work, we use the following filter
scores as features:

• AlphabetRatioFilter: The proportion of al-
phabetic characters in the segments.

• CharacterScoreFilter: The proportion of char-
acters in a valid script.

• LanguageIdFilter: A confidence score from
cld2 language identifier.1

• LengthRatioFilter: The ratio between the
source and target segment lengths. We use
two versions of this score: one with charac-
ters and one with tokens as the length unit.

1https://github.com/CLD2Owners/cld2



• NonZeroNumeralsFilter: The similarity of
numerals in the source and target segments
(Vázquez et al., 2019).

• TerminalPunctuationFilter: A penalty score
for terminal punctuation co-occurrence in the
source and target segments (Vázquez et al.,
2019).

These features are chosen as they are inexpensive
to produce and easy to interpret, but our approach
can be expanded to use any filter that produces
scores ranging from noisy to clean.

3.2 Clustering

We train k-means clustering with the filter scores
as features and we cluster the sentence pairs
into two categories: noisy and clean. We use
the k-means++ algorithm for centroid initializa-
tion (Arthur and Vassilvitskii, 2007). All feature
scores are standardized by removing the mean and
scaling to unit variance before clustering. After
training the clustering algorithm, we look at the
centroids of each cluster to recognize the two cat-
egories. The cluster center which has lower mean
feature score represents the noisy cluster. For some
filters, low values represent clean sentence pairs
and in those cases we use the value’s additive in-
verse when calculating the mean. The features of
the noisy cluster center are used as the generated
filtering threshold parameters.

3.3 Feature importance

Not all features are useful in differentiating be-
tween noisy and clean sentence pairs. The k-
means clustering algorithm does not directly indi-
cate which of the features are important. In order
to determine the feature importance, we convert
the unsupervised clustering task into a supervised
classification task similarly to Ismaili et al. (2014).
We train a random forest classifier with the same
features as extracted for clustering, and as the la-
bels we use the categories assigned to each sen-
tence pair by the clustering step.

Once the classifier is trained, we find the im-
portant features using permutation feature impor-
tance scores which show how much the classifi-
cation accuracy is affected by shuffling the values
of a given feature (Breiman, 2001). In order to
determine which features are important enough to
keep in the filtering configuration, we compare the
importance value of each feature to the mean of

all importance values. The importance threshold
that each feature has to cross is the mean multi-
plied by a rejection coefficient. This coefficient is
used to lower the threshold in order to accept all
features in cases where all importance values are
close to the mean. In our preliminary experiments,
we found using 0.1 as the coefficient to work in
rejecting features that do not differentiate between
noisy and clean sentence pairs. The default value
for the coefficient is 0.1 but it can be set to other
values. Finding the optimal value is not trivial as
this would require examining the results of running
the filters on full datasets and possibly training MT
systems to assess the datasets. Finding a more ro-
bust approach for rejecting filters remains for fu-
ture work.

Noisy Clean Importance
AlphabetRatio.src 0.74 0.82 0.086
AlphabetRatio.trg 0.76 0.84 0.104
CharacterScore.src 1.0 1.0 0.0
CharacterScore.trg 0.99 1.0 0.010
LanguageID.src 0.94 0.92 0.001
LanguageID.trg 0.91 0.92 0.001
LengthRatio.char 1.18 1.17 0.001
LengthRatio.word 1.21 1.21 0.001
NonZeroNum 0.67 0.99 0.088
TerminalPunctuation -0.67 -0.05 0.063

Table 1: Feature selection for English-Ukrainian. The ta-
ble shows the feature values of the noisy and clean cluster
centers. The rightmost column shows the importance val-
ues determined by the random forest classification task. The
mean importance is 0.036 and rejection coefficient is set to
0.1. Thus, the threshold to be considered an important fea-
ture is 0.0036. Five of the features are rejected as they do not
cross this threshold. Rejected importance values have a grey
background.

Table 1 shows an example of feature selection
for the English-Ukrainian training set used in our
translation experiments in Section 4. Five of the
ten features are rejected as they do not cross the
importance score threshold. The features that are
rejected appear to have similar values in both the
noisy and clean cluster centers. On the other hand,
the character score on the target side is not rejected
despite having values very close to each other in
both clusters. This can be explained by the fact that
the importance values take into account the whole
distribution of feature scores, while the cluster cen-
ters only represent the means of each feature.

4 Translation experiments

In order to assess the impact of our data filtering
method, we train translation models for English-
German (en-de) and English-Ukrainian (en-uk) in



Default Autogen Default Autogen
en-de en-uk en-de en-uk en-de en-uk

AlphabetRatio 0.75, 0.75 0.73, 0.76 0.74, 0.76 13.5% 16.2% 10.6% 15.0%
CharacterScore 1, 1 –, – –, 0.99 0.1% 14.1% – 11.1%
LanguageId 0, 0 –, 0.85 –, – 8.5% 10.6% 8.7% –
LengthRatio.char 3 – – 0.0% 0.0% – –
LengthRatio.word 3 – – 0.0% 0.0% – –
NonZeroNumeral 0.5 0.60 0.67 7.9% 7.8% 9.6% 11.9%
TerminalPunctuation -2 -0.66 -0.67 0.8% 0.7% 19.1% 14.9%

Table 2: The left side shows the default thresholds and the generated thresholds for each filter. The default thresholds are the
same for both language pairs. AlphabetRatio, CharacterScore and LanguageId filters each have two threshold values: one for
the source and one for the target sentence. The right side shows the proportions of data that each filter would remove with these
thresholds if ran individually. The hyphens indicate filters that have been rejected by the autogeneration method.

both translation directions. These language pairs
are chosen as the latest WMT shared transla-
tion task (Kocmi et al., 2022) provides develop-
ment and test data for them and there is available
ParaCrawl data for both language pairs (Esplà-
Gomis et al., 2019; Bañón et al., 2020). We train
models with three different training datasets: one
unfiltered set, one cleaned with the default param-
eters from OpusFilter, and one cleaned with filters
and parameters selected by our proposed configu-
ration generation method. We compare the transla-
tion quality of the resulting models with automatic
metrics.

4.1 Experiment setting

For our experiments, we use ParaCrawl v9 data,
which has been previously shown to contain a good
amount of noise (Kreutzer et al., 2022). To con-
duct basic initial cleaning on our training datasets,
we remove duplicates and filter out sentences by
length (we remove sentences shorter than 3 words
and longer than 100 words). The en-uk training
set has 12,605,229 sentence pairs after the initial
filtering. For en-de, we take a sample of 30M sen-
tence pairs from the initially filtered set to serve as
the training data.

Our translation models, trained using the Mar-
ianNMT toolkit (Junczys-Dowmunt et al., 2018),
are transformer-base with an encoder and decoder
depth of 6. We train SentencePiece (Kudo and
Richardson, 2018) unigram tokenizers for each
model and restrict the vocabulary size to 32k fol-
lowing Gowda and May (2020). For en-de we
choose a shared vocabulary, while for en-uk we
choose to have separate vocabularies of 32k for
each script. All models are trained until conver-
gence with early-stopping on development data,
for which we use Flores-101 (Goyal et al., 2022).
Flores-101 is the only development set for en-uk
in WMT22 and we aim to create consistent train-

ing conditions for all our experiments. Therefore,
we use Flores-101 development data for en-de as
well. We use 1 single NVIDIA Volta V100 GPU
for training.

We train models in both translation directions
for each language pair based on three different data
filtering methods:

• baseline: raw data deduplicated and fil-
tered by length.

• default: data filtered with OpusFilter’s de-
fault parameters.

• autogen: data filtered with OpusFilter con-
figuration files produced with the proposed
autogeneration method.

4.2 Corpus filtering
We filter the training sets for both language pairs
with two different methods: using the default
parameters from OpusFilter and using automat-
ically generated parameters. In both methods,
we use the filters defined in Section 3.1. Ta-
ble 2 shows the default thresholds for each filter
as well as the thresholds generated by the auto-
generation method. Many filtering thresholds are
rejected as the configuration generation procedure
does not consider them useful for differentiating
between noisy and clean sentence pairs. For exam-
ple, the length ratio score distributions are similar
in the noisy and clean clusters for both language
pairs and consequently, the length ratio filters are
dropped for both language pairs. Language iden-
tification scores are not found important for en-uk
but for the en-de training set, the threshold for the
German side is kept. All character score thresh-
olds are rejected except for the Ukrainian side of
the en-uk set.

Table 2 also shows how much data each filter
would remove with default and autogenerated pa-
rameters if each filter was run individually. The



BLEU chrF COMET
en-uk uk-en en-de de-en en-uk uk-en en-de de-en en-uk uk-en en-de de-en

Baseline 11.1 21.3 24.6 24.1 35.3 45.8 52.6 49.6 -0.395 -0.177 0.198 0.152
Default 15.8 28.9 b24.6 24.6 43.4 53.2 b52.5 50.9 0.027 0.108 b0.201 0.202
Autogen 16.3 29.9 25.5 d24.6 44.2 54.4 53.7 d50.8 0.065 0.164 0.230 d0.212

Table 3: Results of the translation experiments. When the results from default parameters or autogenerated parameters are not
significantly different from the baseline results, we prefix them with b. When the results from autogenerated parameters are not
significantly different from the default parameter results, we prefix them with d.

proportion of sentence pairs removed by the four
length ratio filters with default thresholds ranges
from none at all to 0.0005%. This supports the hy-
pothesis that length ratio values are not useful for
finding noisy data in these training sets. Similarly,
the character score filter with default parameters
removes only 0.1% of the en-de set and the filter
is not present in the generated configuration. On
the other hand, the language identification score
for the en-uk set does not follow this trend: the
default thresholds filter out a substantial portion of
the data, 10.6%, but it is still rejected by the auto-
generation method.

In total, filtering with default values keeps
22,586,611 (75.3%) sentence pairs for the en-
de set and 8,069,599 (64.0%) for the en-uk set.
In turn, after filtering with the autogenerated
threshold parameters, the dataset size for en-de
is 19,417,755 (64.7%) and for en-uk 8,316,491
(66.0%) sentence pairs. The en-de training sets
have 19,031,231 overlapping sentence pairs which
is 84.3% of the default set and 98.0% of the auto-
generation set. For en-uk, the number of overlap-
ping sentence pairs is 7,280,959 which is 90.2% of
the default set and 87.5% of the autogeneration set.

4.3 Results

The trained translation models are evaluated with
three evaluation metrics: BLEU (Papineni et al.,
2002), chrF (Popović, 2015) and COMET (Rei et
al., 2020). We use SacreBLEU (Post, 2018) to
calculate BLEU and chrF. COMET is computed
with the unbabel-comet Python package2 us-
ing evaluation model wmt20-comet-da. Addi-
tionally, we conduct significance testing by us-
ing paired bootstrap resampling (Koehn, 2004) to
compare the filtered training sets to the baseline,
and to compare the default and autogeneration
methods to each other. Results are shown in Ta-
ble 3 for the WMT22 general test sets (Kocmi et
al., 2022).

Autogeneration performs better than the base-

2https://github.com/Unbabel/COMET

line for all metrics and language pairs. The perfor-
mance gains are especially noticeable for the en-
uk and uk-en translation pairs. Default filtering
scores are higher than the baseline in all transla-
tion directions except en-de where the scores are
not significantly different from the baseline by any
metric. Autogeneration outperforms default filter-
ing in all language pairs except de-en for which
there are no significant performance differences
between the two approaches.

These results suggest that the proposed method
is able to improve the translation quality of mod-
els trained on parallel corpora that are filtered by
extracting and clustering corpus-specific features.
Additionally, our method makes the corpus filter-
ing phase more efficient. We select the filters and
their thresholds based on a 100k sentence pair sam-
ple of a much larger corpus. This allows us to
avoid unnecessarily running filters that do not re-
move noisy sentence pairs on the whole corpus. In
our experiments, running the filters with default
parameters took 1h3m12s for en-de and 31m21s
for en-uk. Using the generated configurations, the
filtering times were 47m4s (25.5% faster) for en-de
and 18m35s (40.7% faster) for en-uk. Generating
the filtering parameters takes one to two minutes.
The filters used in this work are quite inexpensive
and fast to run but our method can be easily ex-
panded to more demanding cleaning.

5 Conclusion

We propose an unsupervised method for selecting
filters and filtering thresholds for OpusFilter. We
evaluate our method in translation tasks where we
train models on data filtered with the default pa-
rameters of OpusFilter and another set of mod-
els trained on data filtered with generated filter-
ing configuration files. The autogeneration method
outperforms the default parameters in almost all
cases. Additionally, our method makes corpus fil-
tering more efficient as we only run useful filters
with appropriate parameters on the full training set.

In future work, we will evaluate our method in a



larger variety of corpus cleaning scenarios to con-
firm our findings. One point of interest is to test
the method for corpora with different proportions
of noisy data. We will also conduct tests in low-
resource language settings. Additionally, we will
evaluate the effects of expanding our approach by
integrating a larger range of different filters. In or-
der to improve the autogeneration method, more
careful analysis of the feature selection process
will be performed, for example manual evalua-
tion of sentence pairs in noisy and clean categories
in order to assess the clustering accuracy. We
will also explore using statistical inference (e.g.
Welch’s t-test) for finding effective filters as an al-
ternative for the feature importance analysis. Re-
lying on statistical significance could be a more ro-
bust approach for discarding filters than the current
rejection coefficient method.
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Popel, and Maja Popović. 2022. Findings of the
2022 conference on machine translation (WMT22).
In Proceedings of the Seventh Conference on Ma-
chine Translation (WMT), pages 1–45, Abu Dhabi,
United Arab Emirates (Hybrid), December. Associa-
tion for Computational Linguistics.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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