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Abstract

We approach the task of assessing the
suitability of a source text for translation
by transferring the knowledge from estab-
lished MT evaluation metrics to a model
able to predict MT quality a priori from
the source text alone. To open the door
to experiments in this regard, we depart
from reference English–German parallel
corpora to build a corpus of 14,253 source
text–quality score tuples. The tuples in-
clude four state-of-the-art metrics: cush-
LEPOR, BERTScore, COMET, and Tran-
sQuest. With this new resource at hand,
we fine-tune XLM-RoBERTa, both in a
single-task and a multi-task setting, to
predict these evaluation scores from the
source text alone. Results for this method-
ology are promising, with the single-task
model able to approximate well-established
MT evaluation and quality estimation met-
rics —without looking at the actual ma-
chine translations— achieving low Root
Mean Square Error values in the [0.1–0.2]
range and Pearson’s correlation scores up
to 0.688.

1 Introduction

There are many factors in play when assessing the
suitability of a text for machine translation (MT).
Readability might account for part of the problem,
but the metrics designed for its estimation aim at
assessing the level of education necessary to un-
derstand a given text, from a monolingual perspec-
tive (Gunning, 1969). As evidenced by Vanroy et
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al. (2019), there is a clear-cut distinction between
translatability, “the difficulty of a translation task”,
and readability, “the difficulty of a monolingual
text”. They argue that, although the two might
overlap in some regards, a translation task cannot
be solely defined based on monolingual features.
Their study is centred on human translation (HT),
but given that MT and post-editing (PE) represent
the strongest future trend for both industry and
academia, according to the latest ELIS language
industry report (European Language Industry Sur-
vey Research, 2022), our work seeks to advance the
discussion in the field of MT.

In fact, although quality improvements over the
last few years have indeed been significant, the
translation world has expressed a need, time and
time again, for new methods and technologies to
properly assess its quality (Kocmi et al., 2021).
Most of the previous work in this regard has focused
on the target translation; both in the reference-based
machine translation evaluation (MTE), where the
machine-translated segment is compared against a
human reference, and in the more recent quality
estimation techniques (QE), where the machine-
translated segment is evaluated without any refer-
ence (Freitag et al., 2021; Specia et al., 2021).

This paper seeks a different perspective, switch-
ing the focus to the source text, to assess whether a
given segment will produce a high quality machine
translation. We define this task as Machine Transla-
tion Suitability. Existing MTE and QE techniques
either use a reference translation or an MT output,
meaning they both require to first translate all the
segments with MT system in order to obtain a qual-
ity evaluation. Many such segments will inevitably
not meet the desired quality and will be discarded,
constituing a net loss. Given that most commercial
MT systems are paid by word, our approach would



serve to reduce the costs of the overall system by
avoiding to send certain segments to MT, thus creat-
ing a more efficient production pipeline. Moreover,
recent studies have also pointed towards a lower
lexical variation of post-edited MT segments, as
well as an overall lower quality of those segments
with respect to translations from scratch (Volkart
and Bouillon, 2022), while others highlight the chal-
lenges of generating comprehensive guidelines for
post-editors, especially regarding what constitutes
an error in a given scenario and how to correctly
provide quality assurance for such segments (Nun-
ziatini and Marg, 2020). Therefore, the presence of
an additional evaluation step before generating the
machine-translated segments would help avoid hav-
ing to undergo an expensive PE step or reroute to
human translation. Lastly, applying such a model
could reduce the pipeline’s carbon footprint, be-
cause it would not need to compute a translation
using large, resource heavy models.

With the purpose of advancing research in this
field, we thus formulate the following research ques-
tion:

RQ: Is it possible to accurately predict
the MTE or QE score of a translation
from the source text alone?

In order to give light to the RQ, we compile an
ad-hoc corpus pairing source segments with the
evaluation scores of their automatic translations
in the English–German language pair from one of
the most prominent MT engines available: Mod-
ernMT1. We select two reference-based evaluation
metrics and two quality estimation metrics: cush-
LEPOR, BERTScore, COMET, and TransQuest,
according to the state of the art (Freitag et al., 2021;
Specia et al., 2021). We frame the task as a re-
gression problem and fine-tune our model to repro-
duce the evaluation score by looking at the source
text alone. The experiments are conducted us-
ing the multilingual model XLM-RoBERTa (XLM-
R) (Conneau et al., 2020)2 and approach the task
in two different settings: single-task and multi-task.
In the former, a model is fine-tuned on each eval-
uation score individually, whereas in the latter, a
model is trained on all four scores to exploit the
shared knowledge among the different metrics.

1https://github.com/modernmt/modernmt
2We use a multilingual model instead of a monolingual one in
order to have a realistic baseline and to facilitate future work
in multiple language pairs.

By achieving low RMSE values in the [0.1–0.2]
range and Pearson correlation scores up to 0.688,
our results are promising and indicate that it is
indeed possible to distil the knowledge acquired
from different MT evaluation metrics into a model
trained solely on the source text, thus confirming
our RQ.

2 Related Work

Nowadays, the state of the art is divided between
MTE metrics, similar to BLEU (Marie et al., 2021;
Papineni et al., 2002; Post, 2018), which employ
the source text, target text and a reference transla-
tion, and QE metrics which assess quality without
looking at a reference (Specia et al., 2021).

Some of the most prominent reference-based
metrics include cushLEPOR, an n-gram based met-
ric whose parameters are automatically tuned using
pre-trained language models (Han et al., 2021), and
BERTScore, which exploits embedding similarity
and has been shown to highly correlate with hu-
man judgments on sentence-level and system-level
evaluation (Zhang et al., 2020; Freitag et al., 2021).

Being somewhat new, the field of QE achieved
impressive results in the past few years by employ-
ing multilingual pre-trained representations from
very large language models to generate their pre-
dictions. Nevertheless, it instead appears to have
no single metric being consistently deployed to pro-
duction in either the industry or institutions, with
the only exception being COMET, which has con-
sistently achieved top scores for three years in a
row in the annual WMT QE shared task (Specia et
al., 2021; Zerva et al., 2022).

Both MTE and QE metrics, though, depend on
the underlying target translation produced by an
MT engine and research specifically focused on the
source text has been limited. Vanroy et al. (2019)
aimed at developing a “translatability prediction
system”. It assigns a global difficulty score to a
source text and identifies which passages are more
problematic for translation. Albeit promising, this
work solely addressed human translation difficulty
and no study tailored to MT has been published yet.

SmartLQA (Smart Linguistic Quality Assess-
ment), aims at analysing the impact of the source
text on MT (Yanishevsky, 2021). It handles the
prediction of at-risk content prior to translation,
identifying the most problematic linguistic aspects
within the source text via linguistic features and
readability tests, such as the Flesch–Kincaid met-



ric (Kincaid et al., 1975). They conclude that poor
source-text quality leads to poor target-text quality.
To the best of our knowledge, no predictive model
using these features has been proposed.

Additional work in this direction was carried out
by Cambra and Nunziatini (2022), who use the
source segment and MT training data to approxi-
mate translation quality without the target. Their
method is based on the assumption that a similar-
ity can be found between the source segment to
be translated and the underlying data seen by the
MT system. They employ either a bag-of-word
representation or the “all-mpnet-base-v2” sentence
transformer model (Song et al., 2020) to encode
both the source and the training segments and apply
similarity metrics on their vectorial representations,
also accounting for words unknown to the MT sys-
tem. Their technique achieves results comparable
to QE metrics. Similarly, Tezcan (2022) shows how
fuzzy matches retrieved from the training data can
be highly informative for predicting sentence-level
quality of a given MT model.

Another recent paper instead proposed a new
task, called PreQuEL: Pre-Quality-Estimation
Learning (Don-Yehiya et al., 2022), namely pre-
dicting the likelihood of an MT system to cor-
rectly translate a sentence in a given target language.
They, too, entirely focus on the input text and
their method also proposes to learn to predict qual-
ity evaluation metrics from the source text alone
and for this they employ Direct Assessment (DA)
scores from the WMT shared task on QE (Zerva et
al., 2022). Additionally, they use the open-source
Marian-MT (Junczys-Dowmunt et al., 2018) rather
than commercial systems. Although we recognize
that using quality DA scores would lead to more
reliable target scores, these are not available for
commercial systems, as the authors also point out.
While we share the same objective, our attempt by-
passes the need for manual evaluation to understand
whether a large transformer model would be able to
predict state-of-the-art MTE/QE scores, and instead
uses a small pool of automatically scored data. Ad-
ditionally, they employ the monolingual RoBERTa
architecture, which limits their experiments to be
carried out on English source texts (Liu et al., 2019).
Hence, we opt for the multilingual XLM-R to cre-
ate a solid baseline which could be easily extended
to multiple language pairs and directions.

3 Corpus

In order to produce our corpus, we departed from a
collection of parallel segments from OPUS (Tiede-
mann, 2012), including Europarl3, Ubuntu4 and
News-commentary v165. We target the English–
German language pair because it is especially
prominent for both MTE and QE (Specia et al.,
2021; Freitag et al., 2021).

Although these corpora have been already exten-
sively used in the literature, their pre-processing
is done automatically, without any type of man-
ual corrections. To ensure their quality for our ex-
periments, two additional filtering steps have been
carried out on the translation units (TUs), follow-
ing Koehn et al. (2020). It involved the removal of
both very long and very short segments from the
corpora, set to a minimum length of 25 characters
and a maximum length relative to each corpus and
language. We removed outliers with respect to each
subcorpus, since we do not deem them informative
for modeling translation difficulty in a real use-case.
The maximum allowed TU length is determined as:

MaxLength =
1

n

n∑
i=1

leni + σ , (1)

where n is the number of segments in the corpus,
leni is the length of the i-th segment and σ is one
unit of the standard deviation over the corpus. Ad-
ditionally, we applied an adaption of the filtering
approach from the open-source version of Mod-
ernMT6. A TU is also discarded if either the source
or the target-segment character length exceeds the
length of the other segment by more than 50%. In
order to prevent the filter from discarding short
valid sentence pairs, an arbitrary value of 15 is
added to the initial character count.

We randomly selected a subset of the resulting
TUs and generated their automatic translations, on
which we could obtain the quality scores to be
learned by the model. We used the out-of-the-box
NMT system ModernMT, based on the state-of-the-
art transformer architecture and trained on a large
pool of parallel data (Bertoldi et al., 2018). In or-
der to score the resulting automatic translations, we
considered four evaluation metrics:

3https://opus.nlpl.eu/Europarl.php
4https://opus.nlpl.eu/Ubuntu.php
5https://opus.nlpl.eu/News-Commentary.php
6https://github.com/modernmt/DataCollection/blob/
dev/baseline/filter_hunalign_bitext.py



corpus train test length
Europarl 4,223 528 151.5±90.5
News 4,223 528 137.5±69.3
Ubuntu 4,223 528 33.2±74.6
Total 12,669 1,584 107.4±78.1

Table 1: Statistics of the full corpus, incl. number of instances
and average character length of the source segments with their
respective standard deviation.

hLEPOR. We used cushLEPOR, a version of hLE-
POR with optimised settings for the en>de lan-
guage pair (Han et al., 2021):7 Alpha = 2.95,
Beta = 2.68, n = 2, weight_elp = 2.95,
weight_pos = 11.29, weight_pr = 1.87.

BERTScore. We adopted the official repository re-
lease (Zhang et al., 2020).8

COMET. Even if the most recent release turns the
score within a [0, 1] range, we opted for the
early release wmt20-comet-qe-da, which pro-
vides an unbounded score (Rei et al., 2020).9

TransQuest. We used the en>de version
monotransquest-da-en_de-wiki instead of
the multilingual model because of its better
performance, as reported in (Ranasinghe et
al., 2020a; Ranasinghe et al., 2020b).10

For our MT suitability experiments, the source
text segments are paired with their respective qual-
ity scores by combining only the source text and
the scores. Our objective is to produce a model
to predict the quality score from the source text
alone. With such a model, it would be possible to
know how well an MT engine would translate that
segment in advance and thus how “suitable” would
it be for machine translation. Figure 1 represents a
possible pipeline, including the rerouting step from
source text to either MT, MT+PE or HT, depending
on the expected quality —suitability— of the ma-
chine translation. We partition the corpus into two:
12,669 instances for training and 1584 instances for
testing. Table 1 shows its statistics.

Since the original corpora used for this work
are open-source and specifically designed for NMT
training (Tiedemann, 2012), it is likely that they

7https://github.com/poethan/cushLEPOR
8https://github.com/Tiiiger/bert_score
9https://github.com/Unbabel/COMET
10https://huggingface.co/TransQuest/
monotransquest-da-en_de-wiki

Figure 1: The MT Suitability workflow. A source segment
is evaluated by the suitability module and then directed to the
appropriate workflow based on quality: MT (high quality),
MT+PE (mid quality) or HT (low quality).

have already been seen by ModernMT during train-
ing. This would be problematic because an at-
tempt at learning MT suitability using these corpora
would not necessarily be applicable to unseen texts.
Hence, we compare the distributions of the training
corpus to those of a new, smaller corpus, whose
texts have surely not been seen by the system. If
the scores’ distribution of this secondary corpus
were very similar to that of the training corpus, it
would mean that there is no significant difference
in the scores of unseen and already seen TUs.

To test this hypothesis, we performed a Mann-
Whitney U test on all 4 independent vari-
ables (Mann and Whitney, 1947) between our cor-
pus and a collection of texts from Globalvoices for
which we had guarantees of not having been used
for the training of the MT model. Appendix A con-
tains all the details of the test. In summary, there
was no significant difference (p>0.05) between the
training and the Globalvoices dataset for all metrics
except for TransQuest. This gives confidence that
both corpora belong to the same non-gaussian dis-
tribution, meaning there is no significant difference
in the quality scores obtained by texts translated
using our training corpus and a corpus containing
texts not seen by the MT system.

4 Experiments

We perform two sets of experiments: once in a
single-task setting and once in a multi-task setting.
The single-task experiment involves one training
session per evaluation metric, thus resulting in four
distinct models.

In addition to attempting to learn each of the four
metrics independently, we also experiment with
Multi-Task Learning (Caruana, 1997) to link the
various label representations together instead of
training separate models. This approach has been



applied to multiple areas of NLP, ranging from the
estimation of the check-worthiness of claims in
political debates (Vasileva et al., 2019), to a de-
mographic classifier based on features extracted
from tweets (Vijayaraghavan et al., 2017) and fine-
tuning of transformer models to improve perfor-
mance on the GLUE benchmark (Karimi Mahabadi
et al., 2021). Appendix B includes details on the
batch size and other model settings for the multi-
task approach, constrained by design decisions and
the hardware at hand. Figure 2 offers a representa-
tion of the model.

We used xlm-roberta-base (Wolf et al., 2020)
for our architecture, which has a total of 125 million
parameters.11 While it may be possible to achieve
a higher performance with a monolingual English-
only model, we believe that this would not accu-
rately reflect the potential performance on other lan-
guages, because high-quality transformer models
are not available for all languages. Furthermore, our
choice is in line with the current trend in the WMT
Shared Task on Quality Estimation, where XLM-R
is one of the most commonly used transformer ar-
chitectures (Specia et al., 2021; Zerva et al., 2022).
All the experiments used a learning rate of 2e− 5
and employed the AdamW optimiser. We explored
an effective training batch size ∈ [2, 16, 32] and
epochs ∈ [1, 5, 10], as suggested for XLM-R by
a recent study on the performance of multilingual
language models by Hu et al. (2020).12

Additionally, for our use case, we used Huber-
Loss as the loss function (Huber, 1992).13 This loss
combines the advantages of both the MSELoss and
the L1Loss because it employs a squared term if
the absolute element-wise error falls below a pre-
defined δ and a δ-scaled L1Loss otherwise (we use
the default value for δ), making HuberLoss less
sensitive to outliers.

We use Root Mean Square Error (RMSE) for
the evaluation (lower values correspond to a bet-
ter performance). Since it is scale-dependent, and
the distributions of the labels fall within different
ranges, the RMSE is not comparable across tasks.
This makes it only informative with respect to the
original distribution. In order to obtain a value
which is not only comparable but also easily in-
terpretable across tasks, all model predictions and
gold labels are reshaped into the range [0, 1]. We
11https://huggingface.co/xlm-roberta-base
12https://github.com/JunjieHu/xtreme-dev/issues/2
13https://pytorch.org/docs/stable/generated/torch.
nn.HuberLoss.html.

Figure 2: Representation of the multi-task model. Each box
represents a separate encoder with a different prediction head,
one for every MTE and QE score, each one connected via an
external task mapping module.

also compute both Pearson’s and Spearman’s corre-
lation coefficients (Cohen et al., 2009; Spearman,
1987) between the predicted outputs and the orig-
inal predictions, similarly to what is done in the
ranking of WMT tasks, except that we use MTE/QE
scores as reference values instead of human evalua-
tions (Zerva et al., 2022).

Table 2 shows the RMSE results for both the
single-task and multi-task XLM-R model, trained
on a batch size of 2. The multi-task model per-
forms poorly on all tasks except for BERTScore,
for which it shows significant improvements over
the single-task model, which instead converges to
the mean value (0.7229). All models show an in-
creased performance at smaller epochs, suggesting
that with such a small batch size the models are
likely overfitting. The only exception appears to be
COMET, whose best model can actually be found
at 5 epochs. Overall, though, the performance is
generally poor, which is also confirmed by the ex-
tremely low values of Pearson’s R and Spearman’s
ρ, which all approach 0, except for the single-task
model (see Table 3).

Table 2 also shows the results for the single-task
XLM-R models using the same learning rate as
before but exploring a batch size of 16 and 32, re-
spectively. Scaling to higher batch sizes yields bet-
ter performance, as attested by the overall smaller
RMSE values. All models show significant signs
of learning as early as the first epoch, ramping up
but remaining very close with respect to the RMSE
value from 5 to 10 epochs. These results are con-
firmed by the correlation values, which are signifi-
cantly higher for all tasks, showing definite corre-
lation with values as high as 0.688 for TransQuest.
This is especially evident at 5 epochs, where the
overall strongest correlation is found (see Table 3).



2b@1* 2b@5* 2b@10* 2b@1 2b@5 2b@10
hLEPOR 0.4006 0.3800 0.4611 0.1361 0.1498 0.1601
BERTScore 0.2676 0.3063 0.3075 0.3500 0.6030 0.4215
COMET 0.3910 0.2439 0.3354 0.2972 0.1461 0.2248
TransQuest 0.3019 0.2035 0.2281 0.2010 0.2212 0.2127

16b@1 16b@5 16b@10 32b@1 32b@5 32b@10
hLEPOR 0.1342 0.1292 0.1387 0.1456 0.1260 0.1386
BERTScore 0.3359 0.1931 0.1747 0.3381 0.2069 0.1833
COMET 0.2731 0.1161 0.1419 0.1598 0.1309 0.1126
TransQuest 0.1493 0.1339 0.2116 0.1543 0.1569 0.1338

Table 2: Results using a training batch size of 16 and 32 at different epochs [1, 5, 10], only using single-task models. The score
is reported as normalized RMSE value and the best performances are highlighted in bold.

hLEPOR BERTScore COMET TransQuest
e=1
multi -0.017 -0.014 0.019 0.008
2b 0.546 0.357 0.395 0.549
e=5
16b 0.565 0.415 0.475 0.688
32b 0.589 0.420 0.444 0.660
e=10
16b 0.521 0.412 0.477 0.596
32b 0.519 0.381 0.446 0.686

Table 3: Correlation values between the predictions of the
most accurate models and the original evaluation metrics. The
score is calculated using Pearson’s R. The best result on each
metric is in bold.

5 Discussion

The obtained results are promising. Given that,
on average, the reported RMSE values of the best
models lie in the [0.11, 0.17] range, whereas their
correlation scores are in the [0.420, 0.688] range
for Pearson’s R and in the [0.379, 0.652] range for
Spearman’s ρ. This means that all single-task mod-
els are able to reproduce the MTE/QE fairly accu-
rately starting from the source text alone, which
corroborates our RQ.

Overall, the best performing batch size for the
single-task model is 32, also thanks to its reduced
training time, even though it is certainly more costly
in terms of memory requirements.

Especially encouraging are the Pearson’s correla-
tion scores. Not only do they confirm the results ob-
tained using the RMSE values, but they are also in
line with the latest results of the WMT shared task
in Quality Estimation for the English–German lan-
guage pair, where the top-performing IST-Unbabel
submission to the segment-level evaluation track
has obtained a correlation score of 0.559 (Rei et al.,

hLEPOR BERTScore COMET TransQuest
e=1
multi -0.033 -0.007 0.023 0.009
2b 0.335 0.340 0.464 0.434
e=5
16b 0.358 0.404 0.503 0.652
32b 0.352 0.416 0.487 0.629
e=10
16b 0.374 0.402 0.516 0.546
32b 0.379 0.378 0.515 0.643

Table 4: Correlation values between the predictions of the
most accurate models and the original evaluation metrics. The
score is calculated using Spearman’s ρ. The best result on each
metric is in bold.

2022; Zerva et al., 2022). It is also interesting to
note the higher correlation achieved by our model
with QE scores in comparison to MTE scores, a
division clearly visible in Tables 3 and 4. Given
that in our case the model is completely blind to the
target sentences, these results coult be connected
to the findings of Sun et al. (2020), who show that
QE metrics tend to assign higher scores to fluent
translations or source segments with low complex-
ity, regardless of their semantic similarity to the
original source sentence. These correlations should
be further investigated to better understand what
are the implications for QE models with respect to
the source text.

Considering all of the above, we conclude that
the RQ is corroborated by the results obtained by
the single-task model, meaning that it is possible to
accurately predict evaluation scores from the source
text alone.

With regards to which approach is better suited
to the problem, the answer is indeed more challeng-
ing. Although the single-task model appears to be



decidedly better than the multi-task model in 3 out
of 4 target scores, there certainly is room for im-
provement for the multi-task model, given that it
never showed a tendency to converge to the mean,
contrary to the single-task model, and especially
on BERTScore, the knowledge transfer obtained by
training on multiple metrics seemed to be beneficial.
The results for all other metrics are overall stable,
showing no noticeable sign of improvement past
the 5-epoch margin (see Table 2). As stated in the
previous section, this might be a sign of overfitting
which, based on the current results and their sta-
bility, might be solved by scaling to bigger batch
sizes, meaning the model could indeed experience
an increased benefit from seeing multiple segments
at once. In this regard, researching higher batch
sizes would thus be the natural follow-up step to
the current study.

The low error margins and the good correlation
values shown in these experiments point towards
the possibility to achieve an accurate estimate of the
quality of MT based on the source text alone, with-
out needing to even obtain a machine translated ver-
sion of the given segment. Additionally, given that
these automatic metrics are not perfect themselves,
future research should focus on testing this model
on either Human DA provided by WMT (Zerva et
al., 2022), similarly to Don-Yehiya et al. (2022), or
by assessing post-editing effort based on the scores
produced, working towards the definition of thresh-
olds to generate an actual implementation of the
workflow sketched in Figure 1.

Nevertheless, it is also imperative to stress two
limitations of this study. The corpus which was
used in this study contains segments which have
likely been seen by the MT system already during
training. Although a set of exploratory experiments
has shown no significant difference between unseen
and seen texts, this remains an aspect that requires
further attention, since it would be possible to argue
that to properly learn how difficult a text was for
a given system, this had to never be seen by the
system during training in the first place.

We also need to consider the issue of sustainabil-
ity. In recent years the carbon footprint of large lan-
guage models has become increasingly impactful
and longer training times have been disincentivised
by the research community (Anthony et al., 2020;
Bannour et al., 2021). The multi-task model used
for this study took around 32 hours to train, much
longer than the single-task model, which took a

fifth of the time, further decreased to 2:30 hours
when scaling to higher batch sizes. Additionally,
since it needs to load four distinct copies of the
same XLM-R model, the total number of parame-
ters used increases from 125 million to 500 million
in training. This led to the experiments for the multi-
task model to be only carried out on a batch size of
2 and, given the significant improvements obtained
by the single-task model both in training time and
performance, a greater batch size could therefore
not only improve the performance of the multi-task
model but also reduce its carbon footprint.

6 Conclusions

This work attempted to answer one main research
question: is it possible to accurately predict the Ma-
chine Translation Evaluation or Quality Estimation
score from the source text alone? It was motivated
by the increasing need to automatically assess the
quality of machine translation in a way that is both
dynamic and scalable, without the limitation of pro-
viding very expensive reference translations.

While there exists a field entirely dedicated to
reference-less metrics, namely Quality Estimation,
this paper tried to explore innovative techniques
that would focus entirely on the source text. Such
an approach offers an alternative that could further
reduce the costs of machine translation by stream-
lining the post-editing process without the need to
first generate every time the machine-translated ver-
sion of all the segments, given that many will be
inevitably discarded, which constitues a net loss.
In fact, it might even be beneficial to avoid having
these low-quality segments undergo post-editing,
since recent studies have pointed towards lower
lexical variation of post-edited machine translation
segments, leading to an overall lower quality of the
resulting translation (Volkart and Bouillon, 2022).

Additionally, post-editing also leads to several
challenges in liaising with the post-editors them-
selves, especially with respect to what constitutes
an error in a given scenario and how to provide
quality assurance, leading to increased costs (Nun-
ziatini and Marg, 2020). In order to streamline
these processes, reducing costs and improving ef-
ficiency, our proposed model can be integrated as
part of a workflow which includes a Machine Trans-
lation Suitability module to reroute a source text to
MT, PE or human translation (HT) depending on
the assessed level of suitability (See Figure 1).

The scripts and corpora used for the experiments



are available for research purposes.14 While further
studies involving human evaluation are still needed,
by obtaining an RMSE score as low as 0.11 and
good correlations of up to 0.688 with MTE/QE met-
rics, we show a possible link between MT quality
prediction and the source text. We also show that,
while the multi-task model might be well-suited for
this task, its performance is subpar when compared
to the single-task model and there remain concerns
regarding its computational cost and sustainability
issues. Nevertheless, the results point toward the
possibility of obtaining accurate machine transla-
tion evaluations starting from the source text alone,
paving the way for further research in the field of
MT Suitability.

Future research could improve many aspects
touched by this work. Exploring correlations with
Human DA scores, research on source text translata-
bility for humans or assessing post-editing effort
based on the scores produced are all paramount as-
pects to investigate in order to correctly define the
thresholds for the workflow proposed in Figure 1.
Moreover, since XLM-R is a multilingual model,
an additional focus could be posed on extending
the experiments to other language pairs, surveying
significant differences among different language
combinations and directions to further confirm the
current findings. Especially interesting would be
to expand the analysis on the higher correlation
between our metric and the QE metrics when com-
pared to MTE metrics, because it may shed further
light on what state-of-the-art QE models are actu-
ally predicting. Additionally, adding a pipeline for
terminology recognition in the source text could
offer valuable information for the final prediction,
given how terminology is still a problematic aspect
for many MT systems (Dinu et al., 2019). Lastly,
two main aspects could be improved in order to
surpass the current limitations: the training corpus
and the training methodology, especially by scaling
the current architecture to greater batch sizes.
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A Mann–Whitney U Test

In order to perform the Mann–Whitney U Test, we
have selected three recently published texts avail-
able on the Globalvoices website15 in both English
and German, which have been manually extracted
15https://globalvoices.org/about/



and segmented. This website was selected because
one of the subcorpora from OPUS, the News subcor-
pus, contains some texts from Globalvoices (Tiede-
mann, 2012).16 The Mann-Whitney U test assesses
whether two independent populations belong to the
same distribution. In order to perform the test, four
assumptions are needed: (1) the dependent variable
should be measured at the ordinal or continuous
level (evaluation metrics are continuous), (2) the
independent variable should consist of two categori-
cal, independent groups (i.e., the corpus with “seen”
texts and the corpus with “unseen” texts), (3) there
is independence of observations (there is no inher-
ent relationship among the various segments), and
(4) the two variables are not normally distributed.

hLEPOR BERTScore COMET TransQuest
glob 0.8555 0.6642 0.5651 0.7346
std 0.1548 0.1841 0.4232 0.0155

med 0.8875 0.6720 0.6941 0.7368
min 0.0 0.0 -2.4113 0.6548
max 1.0 1.0 1.3308 0.7759

Table 5: ModernMT corpus scores distribution

U p-value
hLEPOR 749851.0 0.0713
BERTScore 808062.0 0.4736
COMET 764728.0 0.1338
TransQuest 670510.5 0.0004

Table 6: Mann-Whitney U Test results for the comparison
among the ModernMT and Globalvoices dataset distributions

16We do not use this corpus as a test set, because it is restricted
to the “news” domain and only contains 128 TUs.

hLEPOR BERTScore COMET TransQuest
train 0.888 0.672 0.694 0.737
glob 0.879 0.671 0.714 0.740

Table 7: Median values for comparison between the training
dataset and the Globalvoices dataset.

Our data adheres to these assumptions, as ob-
served in Table 5. Tables 6 and 7 show the results of
the test. There is no significant difference (p>0.05)
between the training and the Globalvoices dataset
for all metrics except for TransQuest. This gives
confidence that both corpora belong to the same
non-gaussian distribution, meaning we can safely
proceed with assuming there is no difference in the
quality scores obtained by texts translated using our
training corpus and a corpus containing texts not
seen by the MT system.

B Multi-task Setting Details

We test the multi-task architecture using the same
settings as the single-label one, with the major dif-
ference being the effective training batch size. In
order to generate the multi-task model, it is nec-
essary to load four copies of the same language
model simultaneously on the GPU. As a result, the
total parameters see an increase from 125 million to
500 million. This led us to only test the multi-task
model with an effective training batch size of 2 due
to its significant computational cost. All experi-
ments were carried out using an NVIDIA Quadro
P4000 8 GB GPU; the training lasted 6 hours for
each single-task model and 32 hours for the multi-
task model.


