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Abstract

Most NLP tasks are modeled as supervised
learning and thus require labeled training data
to train effective models. However, manu-
ally producing such data at sufficient quality
and quantity is known to be costly and time-
intensive. Current research addresses this bot-
tleneck by exploring a novel paradigm called
zero-shot learning via dataset generation. Here,
a powerful LLM is prompted with a task de-
scription to generate labeled data that can be
used to train a downstream NLP model. For
instance, an LLM might be prompted to “gen-
erate 500 movie reviews with positive over-
all sentiment, and another 500 with negative
sentiment.” The generated data could then be
used to train a binary sentiment classifier, ef-
fectively leveraging an LLM as a teacher to a
smaller student model. With this demo, we in-
troduce FABRICATOR, an open-source Python
toolkit for dataset generation. FABRICATOR
implements common dataset generation work-
flows, supports a wide range of downstream
NLP tasks (such as text classification, question
answering, and entity recognition), and is in-
tegrated with well-known libraries to facilitate
quick experimentation. With FABRICATOR, we
aim to support researchers in conducting re-
producible dataset generation experiments us-
ing LLMs and help practitioners apply this ap-
proach to train models for downstream tasks.

1 Introduction

In recent years, natural language processing (NLP)
has witnessed remarkable progress due to the intro-
duction of pre-trained language models (PLMs)
(Devlin et al., 2019; Liu et al., 2019; Conneau
and Lample, 2019; He et al., 2021). These PLMs
are typically fine-tuned on large human-annotated
datasets, resulting in state-of-the-art performance
in tasks such as text classification, token classifica-
tion, and question answering. However, real-world

Figure 1: The process of learning via dataset generation.
A teacher model (LLM) is prompted to generate 500
movie reviews for each sentiment (positive, negative). A
smaller student PLM is trained on the generated dataset.

applications of this approach face the bottleneck
that sufficient amounts of human-annotated data
are often unavailable and too costly to produce
manually, especially when domain expertise is re-
quired.
Dataset generation with teacher LLMs. Re-
cently, a paradigm called zero-shot learning via
dataset generation (Meng et al., 2022; Ye et al.,
2022a,b) has emerged, potentially obviating the
need for human-annotated data. This approach
leverages the generation capability of large lan-
guage models (LLMs) to create class-conditioned
texts guided by label-descriptive prompts and, op-
tionally, few-shot examples of instances of the de-
sired classes. The generated dataset is then used to
train a smaller student PLM.

Refer to Figure 1 for an illustration of this pro-
cess: In this example, an LLM is instructed to write
500 positive and 500 negative movie reviews. To
guide the process, we include an example of a pos-
itive and negative review in the prompt. With this
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prompt and 1-shot example, we generate a dataset
of 1,000 movie reviews labeled with binary senti-
ment. This dataset is used to train a student model
to perform binary sentiment analysis.
Limitations. However, despite the conceptual sim-
plicity of using LLMs to generate training data,
many open questions remain regarding the specifics
and ultimate potential of this approach. Questions
include: (1) How to best prompt the LLM and
whether to include examples in the prompt, (2) For
which downstream NLP task families and specific
tasks this approach is effective, and (3) Whether
it is better to generate large amounts of training
data or focus on smaller, high-quality generation
efforts. While various current works are investigat-
ing these questions for specific tasks, we find that,
at present, no open-source library specifically sup-
ports research on dataset generation with LLMs.
Contributions. To close this gap, we present
FABRICATOR, an open-source Python library for
dataset generation with LLMs. Our main goals are
to facilitate experimentation, enable the application
of dataset generation to specific downstream tasks,
and encourage the reproducibility of experiments.

FABRICATOR modularizes the dataset generation
process and provides a simple interface to facilitate
experimentation: Users may choose which LLM to
use, define prompts and label definitions, and lever-
age existing NLP datasets for few-shot examples
and NLP task definitions. Our library includes an
integration into HuggingFace’s DATASETS library
(Lhoest et al., 2021), allowing users to easily share
generated datasets and use them for training NLP
models. We provide examples for various NLP task
families, including text classification, textual entail-
ment, question answering, and entity recognition.
In this paper:

• We introduce the FABRICATOR library, give
an overview of core concepts and usage work-
flows (Section 2).

• We present a set of example experiments in
which FABRICATOR is used to create datasets
for various text classification, question an-
swering, and textual entailment tasks (Sec-
tion 3).

We publish the code on GitHub1 under the
Apache 2 license.

1https://github.com/flairNLP/fabricator

2 FABRICATOR

We first give a high-level overview of sup-
ported generation workflows in FABRICATOR (Sec-
tion 2.1), discuss the main classes and concepts
(Section 2.2), and walk through an example use
case and script (Section 2.3).

2.1 Generation Workflows
Depending on the downstream task, researchers
may have one of three data generation targets we
support in FABRICATOR:

1. Generate unlabeled data. The first generation
target is to produce unlabeled data. For instance,
during the development of a question answering
system, we might require a corpus of example ques-
tions or a corpus of texts on a particular topic. For
this scenario, users provide a prompt w (such as
“Generate a text in the domain of history that con-
tains facts someone can ask questions about.”), and
the auto-regressive LLM Gθ generates appropriate
text xg.

2. Generate label-conditioned data. The second
generation target is generating data belonging to a
pre-defined class, such as classification tasks. The
LLM generates a text xg corresponding to a spe-
cific label y from a set of labels.

As discussed in the introduction, one example is
to generate training data for a binary sentiment
classifier. To achieve this, one must define a set of
labels (y = {positive, negative}) and a prompt
wy such as “Generate a <y> movie review:.” The
generated sequence xg will be paired with the label
y to form a training pair (xg, y) for fine-tuning.

3. Annotate unlabeled data. The third genera-
tion target holds if an unlabeled text dataset for
a domain is already available and only training la-
bels are missing. For instance, a corpus of movie
reviews might already be available, but sentiment
labels are missing.

In FABRICATOR, researchers can add labels to an
existing corpus by extending prompt w with fixed
label options y to form wy like “Annotate the
movie review either as: positive, negative.” The
generated label y is then paired with the unlabeled
data point xu to form a data pair (xu, y).

The generation targets defined above will be ex-
ecuted multiple times to generate a corpus of a
specified size. The prompt may also be extended to
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Figure 2: With FABRICATOR, the generation process involves a prompt template that creates the final prompt using
all provided arguments. The generator class creates training examples until the maximum number of prompt calls
is reached, or the unlabeled dataset is fully annotated. Ultimately, the generator class produces a HuggingFace
Dataset instance.

include few-shot examples of each class, as shown
in Figure 1. The prompt can also handle multiple
inputs (for example, for tasks like textual similar-
ity) using pre-defined interfaces in FABRICATOR.
In all cases, the correct prompt is composed and
executed in our backend.

2.2 Classes and Concepts
As Figure 2 illustrates, the key module in our ap-
proach is the DatasetGenerator class, which acts
as an orchestrator between the LLM (PromptNode),
the prompt (BasePrompt), and optionally, the few-
shot examples and unlabeled datasets.

The generate() function within the
DatasetGenerator class converts the
BasePrompt and the provided few-shot and
unlabeled data into a processable prompt for the
LLM. The method offers various arguments to
steer the generation process. Users can specify
parameters like the maximum number of API
calls, the sampling strategy of few-shot examples
(uniform vs. stratified), or the number of few-shot
examples to use in a single prompt. Our repository
contains documentation with details on all
available customization options.

2.2.1 HuggingFace Interoperability through
Dataset Class

FABRICATOR operates on the Dataset class from
HuggingFace’s DATASETS library. By default,
generate() produces the generated data as a
Dataset instance. This allows generated datasets
to be directly used in existing training scripts of the
TRANSFORMERS library (Wolf et al., 2020) and to
be shared among researchers via the Huggingface
dataset hub.

An existing dataset may also be used as input
to the generate() method. Since the DATASETS

library supports a wide range of standard bench-
marks and their formats, existing datasets can be
easily loaded and used as input. For instance, in
some generation workflows, we would like to add
labels to an existing corpus or use instances as few-
shot examples within a prompt.

2.2.2 Prompt Class
Prompting is crucial when operating on large lan-
guage models as it guides the auto-regressive gener-
ation process. While in the simplest case, a prompt
is a single textual string, we find that many scenar-
ios require more complex prompts and customiza-
tion options. For instance, when including few-shot
examples in a prompt, questions include how many
examples to include in each prompt and how these
are sampled (uniform vs. stratified) from available
few-shot data across different prompt calls. Sim-
ilarly, the complexity increases for tasks such as
textual entailment (requiring multiple inputs) and
entity recognition (potentially requiring transfor-
mation of token-level BIOES tags into span-level
prompting queries).

To address these challenges, FABRICATOR in-
troduces a simple yet powerful BasePrompt class
that offers clear interfaces for customizing prompts
for various dataset generation tasks. The interface
includes attributes to specify pre-defined label op-
tions for label-conditioned generation, and support
for having few-shot examples or unlabeled datasets
by selecting the relevant columns for generation
and few-shot information in the prompt.

Since the prompt class directly operates on the
dataset columns, FABRICATOR enables a sophis-
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1 import os
2 from datasets import load_dataset
3 from haystack.nodes import PromptNode
4 from fabricator import DatasetGenerator , BasePrompt
5

6 dataset = load_dataset("processed_fewshot_imdb", split="train")
7

8 prompt = BasePrompt(
9 task_description="Generate a {} movie review.",

10 label_options =["positive", "negative"],
11 generate_data_for_column="text",
12 )
13

14 prompt_node = PromptNode(
15 model_name_or_path="gpt -3.5- turbo",
16 api_key=os.environ.get("OPENAI_API_KEY"),
17 max_length =100,
18 )
19

20 generator = DatasetGenerator(prompt_node)
21 generated_dataset = generator.generate(
22 prompt_template=prompt ,
23 fewshot_dataset=dataset ,
24 fewshot_sampling_strategy="uniform",
25 fewshot_examples_per_class =1,
26 fewshot_sampling_column="label",
27 )
28 generated_dataset.push_to_hub("generated -movie -reviews")

Listing 1: A script that uses FABRICATOR and generates additional movie reviews based on few-shot examples.

ticated and flexible prompt design. To illustrate,
when performing a textual similarity task, the user
can specify the first sentence and the label as the
few-shot information and prompt the LLM to gen-
erate a second sentence corresponding to the given
sentence and label.

2.2.3 LLMs

The LLM interface must be stable and ideally
compatible with models hosted as APIs or self-
hosted LLMs. We leverage the HAYSTACK2

framework (Pietsch et al., 2019), specifically the
PromptNode class, for interactions with LLMs.
The PromptNode implementation allows users
to select and use LLMs from various model
providers, including HuggingFace, OpenAI, Azure,
Anthropic, and Cohere.

2.3 Example Script

In Listing 1, we introduce an example script in
which FABRICATOR is used to generate additional
movie reviews for training a binary sentiment clas-
sification model (refer to generation workflow 2
as defined in Section 2.1). To implement this, we
define:

2https://github.com/deepset-ai/Haystack

• a pre-processed few-shot dataset (dataset,
line 6) having labels in natural language form
(e.g., 0 becomes “negative”). These examples
are used to augment the generation prompt,

• a prompt template (prompt, line 8) specifying
the instruction to the LLM,

• an LLM to use as teacher model
(prompt_node, line 14),

• a DatasetGenerator to execute the genera-
tion process with all parameters (generator,
line 20).

The prompt is configured in the construc-
tor of the BasePrompt class (lines 8-12): We
set a task_description with a placeholder for
label_options that we provide as a separate ar-
gument. We also specify for which column in the
loaded dataset to predict labels.

We then define a teacher LLM (lines 14-18)
and pass datasets, prompt, and LLM to the
DatasetGenerator orchestrator class (lines 20-
27). Here, we specify a few-shot strategy to sample
one label from the “label” column uniformly during
generation. We do so to generate either a positive or
a negative review. Upon completion, the generate
function returns the annotated Dataset instance.
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Dataset Labels # Training examples
50 500 1k all (max. 10k)

IMDB
Gold 37.6± 35.8 88.5± 0.8 90.0± 0.4 93.0± 0.2

Generated 53.8 ± 11.5 88.8 ± 0.6 90.2 ± 0.4 92.0 ± 0.1

MRPC
Gold 66.6± 0.8 73.0± 1.3 75.2± 1.1 83.9± 0.2

Generated 68.4 ± 0.8 72.1 ± 1.0 72.4± 1.2 75.8± 0.7

SNLI
Gold 38.5± 2.5 64.7± 0.9 71.3± 0.7 82.1± 0.4

Generated 42.2 ± 2.4 54.8± 1.0 56.1± 1.1 63.1± 0.7

TREC-6
Gold 50.4± 7.6 93.6± 0.6 94.9± 1.1 97.5± 0.4

Generated 39.8± 4.5 79.3± 2.2 80.8± 3.0 82.4± 1.1

SQuAD
Gold - - 39.1± 4.9 68.8± 0.5

Generated - - 46.8 ± 1.1 52.5± 0.3

Table 1: Results on re-annotation experiments using 2 few-shot examples per prompt (uniformly sampled from 6
few-shot examples per class). We report accuracy except for SQuAD, where we report F1, and highlight bold those
experiments where generated data yielded similar scores as human-annotated data. We observe that GPT-3.5 is not
able to annotate on human-level performance except for simple classification tasks such as IMDB.

3 Experiments

To illustrate how FABRICATOR could be used in
research, we conduct an exploratory evaluation of
two scenarios: (1) how models trained on gener-
ated datasets compare to models trained on human-
annotated datasets, and (2) whether few-shot exam-
ples in the prompt improve generated datasets.

To do so, we train smaller PLMs on gener-
ated datasets and evaluate them on the human-
labeled test split of the respective benchmark. For
question answering, we fine-tune a roberta-base
PLM (Liu et al., 2019). For all other tasks, we fine-
tune a bert-base-uncased PLM (Devlin et al.,
2019). The hyperparameters are listed in Ap-
pendix A.2. We report the score and standard
deviation averaged over 5 random seeds for each
experiment.

3.1 Experiment 1: Comparison of Generated
and Human-Annotated Datasets

We re-annotate existing benchmark datasets with
generated labels in the first experiment. This ex-
periment aims to measure the difference in accu-
racy of downstream task models trained on human-
annotated data compared to models trained on gen-
erated data. We evaluate text classification, textual
similarity, and extractive question answering tasks.
Experimental setup. We conduct this evaluation
on 5 datasets spanning 3 NLP tasks: We use IMDB
(Maas et al., 2011), a binary sentiment classifica-
tion benchmark, and TREC-6 (Li and Roth, 2002),

a 6-class question type categorization dataset to
evaluate text classification tasks. We use the 2-
class MRPC (Dolan and Brockett, 2005) and the
3-class SNLI (Bowman et al., 2015)) datasets to
evaluate textual similarity tasks. Finally, we use
SQuAD-v2 (Rajpurkar et al., 2016)) to evaluate
extractive question answering. We use generation
prompts augmented by 2 examples per prompt sam-
pled from 6 possible few-shot examples per class.
Results (Table 1). For all datasets, we compare a
generated dataset of 50, 500, 1k and the full dataset
(limited to 10k if it is larger) to gold-annotated
data of the same size. For question answering,
models need to be trained on at least 1k to obtain
representative results, so we do not report scores
for 50 or 500 examples for SQuAD.

We find that for simple tasks such as binary sen-
timent classification (IMDB), models trained on
the annotations by LLMs achieve similar accuracy
on the gold-labeled test split (↓1.0 pp. in accuracy
with 10k training examples). However, we as the
complexity of datasets increases (text classifica-
tion with more classes and extractive question an-
swering), we observe that the performance of mod-
els trained on LLM-annotated datasets falls short
(↓19.0 pp. for SNLI and ↓16.3 pp. for SQuAD, with
10k training examples).

These performance gaps indicate that the useful-
ness of LLMs as teacher models depends on the
specific task. In the next section, we present an
experiment that explores how to close this gap by
using additional few-shot examples.
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Dataset # few-shot examples # examples per class used in prompt
per class 0 1 2 3 4

TREC-6

0 45.5± 2.3 - - - -
2 - 70.0± 1.6 65.5± 0.9 - -
4 - 79.5± 1.1 71.1± 2.0 86.6 ± 0.6 69.8± 1.5

8 - 76.1± 1.9 79.5 ± 1.3 81.0 ± 1.8 87.4 ± 0.6

16 - 72.7± 2.1 78.1± 1.9 81.0 ± 2.4 74.2± 1.4

Table 2: Results on 500 annotated TREC-6 examples using varying amounts of few-shot examples. We sweep over
the number of few-shot examples and the number of few-shot examples used in the actual prompt. We highlight
bold where increasing few-shot examples improves over the 79.3 TREC-6 score of Experiment 1 (Table 1).

3.2 Experiment 2: Impact of Few-Shot
Examples

In the second example experiment, we re-annotate
TREC-6 using a varying number of few-shot exam-
ples. This experiment aims to determine whether
adding few-shot examples for each class improves
dataset generation with FABRICATOR. We investi-
gate two variables: (1) The total number of avail-
able few-shot examples per class and (2) the actual
number of few-shot examples included per prompt.
For instance, there might be 8 few-shot examples
available in total, but only 3 are randomly sampled
to be included in each prompt call.
Results (Table 2). We note a generally positive
trend in that increasing the number of available
few-shot examples (column # few-shot examples
per class) and increasing the number of examples
used in each prompt (column # examples per class
used in prompt) improves model performance. In
particular, we find many settings that outperform
the numbers of our previous experiment (where we
sampled 2 examples per prompt out of a total of 6
possible examples), highlighted bold in Table 2.

However, we also find that improvements be-
come uneven when # examples per class used in
prompt is increased above 3, indicating prompts
should not be overloaded with too many examples.

4 Related Work

Significant progress has been achieved in enhanc-
ing dataset generation with teacher LLMs (Schick
and Schütze, 2021b; Meng et al., 2022; Ye et al.,
2022a; Bonifacio et al., 2022; Peng et al., 2023;
Meng et al., 2023), effectively selecting few-shot
examples (Liu et al., 2022; Gunasekar et al., 2023)
and assessing the quality of datasets produced by
LLMs (Gilardi et al., 2023; Chen et al., 2023).

However, we note a lack of accessible frameworks
that facilitate straightforward and reproducible
dataset generation using teacher LLMs. While ex-
isting open-source toolkits like OpenPrompt (Ding
et al., 2022) partially extend to dataset generation
scenarios, our approach stands apart by having
lightweight, dedicated interfaces for the introduced
generation tasks, supporting a wide range of LLMs
using haystack, and integrating with HuggingFace
DATASETS for easy evaluation.

Prompt-based learning (Liu et al., 2021; Gao
et al., 2021; Schick and Schütze, 2021a; Le Scao
and Rush, 2021) is another line of research that has
proven useful in improving downstream tasks in
zero- and few-shot settings by leveraging LLMs’
pre-training objectives (Brown et al., 2020; Ouyang
et al., 2022; Zhang et al., 2022; Scao et al., 2023;
Touvron et al., 2023). However, the availability
of training data in low-resource scenarios is still
crucial (Perez et al., 2021; Sahu et al., 2022). There-
fore, our method also seeks to fill this gap by pro-
viding a comprehensive and easily reproducible
dataset generation toolkit.

5 Conclusion

We introduced FABRICATOR, a user-friendly li-
brary for dataset generation utilizing LLMs. With
FABRICATOR, researchers access a highly cus-
tomizable interface that enables efficient research
on zero-shot and few-shot learning via dataset gen-
eration. Further, we implemented various baselines
using generated datasets to illustrate potential ap-
plications of our repository and plan to support
further downstream tasks in the future. We be-
lieve that FABRICATOR will be a valuable tool for
the NLP community, facilitating advancements in
dataset generation and fostering research in various
natural language processing domains.
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Limitations

While our paper aims to address dataset creation
for a wide range of downstream tasks, it is im-
portant to acknowledge certain limitations in our
study. Firstly, during our repository’s evaluation
phase, we could only test and assess a subset of
tasks due to resource and time constraints. Our
evaluation may only cover a portion of the tasks
researchers and practitioners commonly encounter
in their work. Future work must expand the evalua-
tion to include a broader range of tasks to provide
a more comprehensive understanding of the reposi-
tory’s effectiveness.

Additionally, despite our best efforts in design-
ing the repository layout to be versatile and adapt-
able, there might be specific tasks or domains
where our repository’s structure or features may
not be directly applicable. We acknowledge that
the landscape of downstream tasks is diverse and
constantly evolving, which may require tailored ap-
proaches or extensions to our existing framework.
Further, we aim to include existing research target-
ing high-quality dataset generation (e.g., Ye et al.
(2022b)) and conduct our own research on quality
and diversity metrics to steer the generation pro-
cess. We encourage open-source contributions and
active engagement from the community to address
these limitations. By involving a more comprehen-
sive range of perspectives and expertise, we aim to
consistently improve the repository and enhance its
suitability for various task requirements.

Furthermore, while we have endeavored to pro-
vide thorough documentation and guidelines within
the repository, there is always a possibility of over-
looked issues or unforeseen challenges that may
arise during dataset creation.

Ethics Statement

While large language models have shown remark-
able advancements in natural language understand-
ing and generation, their capabilities also raise im-
portant ethical considerations. One prominent con-
cern is the potential for hallucination, where the
models may generate false or misleading informa-
tion. This aspect can have serious implications,
especially when datasets are created for critical do-
mains such as medicine, law, or journalism. It is
crucial to exercise caution and verify the accuracy
and reliability of outputs generated by our reposi-
tory, particularly when making decisions that have
real-world consequences.

Another ethical concern is the presence of biases
in language models, which can perpetuate and am-
plify societal prejudices and inequalities. These
biases can arise from biased training data (Haller
et al., 2023) or biased patterns in human-generated
text that the models learn from. Since our reposi-
tory is in an early stage, we emphasize to carefully
inspect created datasets to identify and rectify bi-
ases that may be present.

To ensure a responsible dataset creation process,
it is essential to engage in thorough data valida-
tion, including identifying and addressing potential
biases, checking data sources for reliability and
credibility, and involving diverse perspectives in
dataset collection and annotation processes. More-
over, continuous monitoring and auditing of the
models’ outputs and performance can help iden-
tify and rectify any ethical concerns arising during
deployment.
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A Appendix

A.1 Screencast

A screencast about the FABRICATOR framework
can be found on Vimeo.

A.2 Hyperparameters for Experiments

We used AdamW (Loshchilov and Hutter, 2019) as
our optimizer with a batch size of 16. Further,
we used a linear warm-up for 10% of the opti-
mization steps. We fine-tune roberta-base for
question answering with a learning rate of 1e−5

for two epochs without early stopping. For the
bert-base-uncased PLM, we fine-tune using a
learning rate of 2e−5 for either 5 (if training data
has more than 1000 examples), 10 (if training
dataset has at least 500 but less than 1001 exam-
ples) or 20 epochs (if training data is less than 501
examples). Further, across all experiments, we use
10% of the data as a validation split for model se-
lection.

A.3 Generate Label-Conditioned Training
Data

This experiment used label-conditioned generation
to create new data for the TREC dataset containing
six classes. To achieve this, we sampled a small
few-shot dataset from the existing training split,
consisting of 8 examples per class. During genera-
tion, for each label y, we included three uniformly
sampled few-shot examples associated with that
label. We generated 10k data pairs (xg, y) and used
them for fine-tuning. It is important to note that
the gold-labeled dataset contains only around 3k
examples. Thus the column “all” refers either to
the 10k examples generated with GPT or to the ~3k
gold-labeled examples. The experimental setup is
identical to Section 3.

The results are depicted in Table 3. We ob-
serve significant performance drops compared to

the re-annotation experiments for TREC from Sec-
tion 3.1. For instance, using 10k generated exam-
ples achieves a performance level similar to us-
ing 50 human-annotated examples (compare to Ta-
ble 1). However, we note that we performed no
prompt optimization techniques or hyperparame-
ter searches in all experiments. Additionally, we
generated a uniform distribution of classes, while
the gold-labeled dataset is skewed towards certain
categories. It is worth mentioning that this class
distribution information may not be available in
real-world few-shot settings.

A.4 Impact of Few-Shot Examples on
Label-Conditioned Generation

In this experiment, we generated 500 label-
conditioned data pairs for the TREC dataset, fol-
lowing the approach described in Section 3.2. We
conducted a sweeping analysis over two factors:
the total number of few-shot examples per class
and the number of few-shot examples included in
the actual prompt.

The results are depicted in Table 4. Our find-
ings show that including even a small number of
few-shot examples (< 4) yields better results com-
pared to generating without any few-shot examples.
Moreover, when we used at least four examples per
class, we observed significant improvements in the
generation results, from 30.2 to 54.8 in accuracy
(↑ 24.6 pp. in accuracy). Additionally, using more
examples in a distinct prompt slightly improved the
model performance. We encountered one outlier
when using 16 examples per class and including
five examples in the prompt for generation, which
resulted in lower performance than sampling from
8 few-shot examples per prompt. It is important to
note that during this experiment, we did not adjust
any hyper-parameters of the LLM for generation,
such as temperature or top-k sampling.

A.5 Instruction-tuning open-source models
In this experiment, we compare the annotation per-
formance of OpenAI’s GPT-3.5 with an instruction-
tuned open-source LLaMA model. To conduct this
evaluation, we choose the token classification task
on the CoNLL-03 dataset (Tjong Kim Sang and
De Meulder, 2003), which generates one label for
each token in the input, making it a structured task.

The results are shown in Table 5. We observe
that using the dataset as-is results in often unusable
annotation outputs, primarily due to imprecise for-
matting. To address this, we convert the token-level
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Dataset Data # Training examples
50 500 1000 all

TREC-6
Gold 42.7± 9.6 93.8± 0.3 95.1± 0.6 97.1± 0.3

Generated 27.5± 11.0 56.2± 3.3 57.9± 1.6 62.6± 3.4

Table 3: Results on TREC-6 with generated questions by GPT-3.5 using 3 few-shot examples (uniformly sampled
from 8 possible few-shot examples per class). We observe that the generation performance is worse compared
to an equally sized human-annotated dataset. However, the performance increases with the number of examples
generated.

Dataset # few-shot examples # examples per class used in prompt
per class 0 2 3 4 5

TREC-6

0 30.2± 0.6 - - - -
2 - 43.0± 3.7 - - -
4 - 56.0± 0.5 56.3± 2.4 58.3± 2.2 -
8 - 52.8± 1.5 58.8± 1.0 58.2± 1.0 64.0± 2.0

16 - 58.3± 0.8 59.8± 2.5 58.7± 1.1 54.8± 1.5

Table 4: Results on 500 generated TREC-6 examples with different sizes of few-shot examples and number of
few-shot examples included in the prompt. We observe that more few-shot examples result in better performance on
the gold annotated test split.

Model Acc. (micro) F1

LLaMAv2 + Instr. Tuning 92.4 60.0

GPT-3.5∗ 88.4 52.5

Table 5: Comparison of instruction-tuned LLaMA mod-
els with 3-shot GPT-3.5 based on the training split of
CoNLL-03. We report accuracy and span-level F1 score
the annotation on the validation split. ∗: We convert
tag sequences to spans in order to prompt the LLM
with strings rather than sequence. However, 38% of
the validation split annotations have different lengths
after tokenization which have been filtered out for a fair
comparison.

labels into spans and prompt the LLM to extract all
named entities for the relevant categories. We then
transform the found entities into token-level tags
by searching for the annotations as substrings of
the input text. We compare the performance of this
approach with a instruction-tuned LLaMA model
on the entire training split of CoNLL-03 by letting
both LLMs annotate the validation set.

Unlike the previous evaluation, we did not train
and evaluate a smaller PLM on the gold-labeled
test set. Instead, we assess the performance be-
tween the gold-annotated validation split and the
annotations made by the LLM. Our findings indi-

cate that the annotation quality of instruction-tuned
LLMs can significantly improve over OpenAI’s
GPT, as evident from the higher F1 score. This
finding suggests that instruction-tuned models for
dataset generation have the potential to facilitate
the generation process for complex downstream
tasks in future research endeavors.
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