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Abstract

Detecting factual errors in textual information,
whether generated by large language models
(LLM) or curated by humans, is crucial for
making informed decisions. LLMs’ inabil-
ity to attribute their claims to external knowl-
edge and their tendency to hallucinate makes
it difficult to rely on their responses. Humans,
too, are prone to factual errors in their writ-
ing. Since manual detection and correction
of factual errors is labor-intensive, develop-
ing an automatic approach can greatly reduce
human effort. We present FLEEK, a proto-
type tool that automatically extracts factual
claims from text, gathers evidence from exter-
nal knowledge sources, evaluates the factual-
ity of each claim, and suggests revisions for
identified errors using the collected evidence.
Initial empirical evaluation on fact error de-
tection (77-85% F1) shows the potential of
FLEEK. A video demo of FLEEK can be found
at https://youtu.be/NapJFUlkPdQ.

1 Introduction

While textual information offers a convenient and
efficient means of communication, it is critical to
acknowledge its potential for misuse or unintended
consequences. False or misleading information
spreads easily over online platforms (Webb et al.,
2016). Additionally, the emergence of powerful
Large Language Models (LLMs) such as GPT mod-
els 1, Vicuna (Chiang et al., 2023), and Alpaca
(Taori et al., 2023) have introduced a new avenue
for knowledge-seeking inquiries. These models,
however, have a tendency to hallucinate and pro-
vide creative and fluent responses that are not fac-
tually accurate (Pan et al., 2023). The limitation
of LLMs to attribute their responses to external
valid evidence makes it challenging to trust their re-
sponses. Therefore, having a robust fact-checking

∗Work done while the author was an intern at Apple.
1https://platform.openai.com/docs/models

mechanism is of paramount importance to ensure
the integrity and accuracy of information.

Previous works (Zhong et al., 2019; Liello et al.,
2022; Liu et al., 2020) and systems like FACTGPT
2, typically formulates the fact verification as a clas-
sification task where the input consists of the evi-
dence sentence(s) and the claim, and the output is
a label indicating the veracity of the entire claim as
SUPPORTED, REFUTED, or IRRELEVANT. As
a concrete example, if the claim is “United States
is in North America and has 51 states”, then a
sentence-level classification task would classify
this claim as incorrect since there are 50 states
in the United States. However, this claim actu-
ally contains one valid sub-claim: “United States
is in North America” ✓, and one false sub-claim:
“United States has 51 States ✗. Providing a sin-
gle label stating that this claim is not supported
or a single score indicating its factual accuracy is
not helpful. It would still require users to manu-
ally identify text spans corresponding to potential
incorrect facts, generate search queries to gather
evidence from the open web, and ultimately make
a decision based on multiple pieces of evidence.

In this work, we present FLEEK (FactuaL
Error detection and correction with Evidence Re-
trieved from external Knowledge), an intelligent
and model-agnostic tool designed to support end
users (e.g. human graders) in fact verification and
correction. Our tool features an intuitive and user-
friendly interface, capable of automatically identi-
fying potential verifiable facts from input text. It
generated questions for each fact and queries both
curated knowledge graphs and the open web to
collect evidence. Our tool then verifies the correct-
ness of the facts using the gathered evidence, and
suggests revisions to the original text.

Our verification process is naturally interpretable
since the extracted facts, generated questions, and
retrieved evidence all directly reflect which infor-

2https://factgpt-fe.vercel.app/

124

https://youtu.be/NapJFUlkPdQ
https://platform.openai.com/docs/models
https://factgpt-fe.vercel.app/


mation units contribute to the verification process.
For the example mentioned above, FLEEK would
highlight verifiable facts with different colors indi-
cating their factuality levels (see Figure 1(a)), and
these clickable highlights can open a dialog that
further lists evidence retrieved to support or refute
each claim (see Figure 1(b)).

(a) Factuality annotations by FLEEK

(b) A clickable questionable fact
Figure 1: Screenshots of FLEEK

To the best of our knowledge, FLEEK is the first
verification and correction system that provides
fact-level decisions, attributes them with evidence
from online sources of information, and proposes
factual revisions.

2 Methodology

Figure 2 shows the overall architecture of FLEEK.
Basically, FLEEK can perform two tasks: Fact
verification and Fact Revision. Next, we describe
the methodology used to enable the two tasks.
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Figure 2: FLEEK verification and revision framework.

2.1 Fact Verification

Given an input passage p, we split it into a set of
sentences {s1, ...si}. We then verify each sentence
using the sequential pipeline described below.

2.1.1 Fact Extraction
In this work, we define a fact as a unit of infor-
mation that (1) describes a certain entity or (2)
captures the relation between two entities (3) de-
scribes an event. Each fact consists of a subject,
a predicate, and at least one object. We use the
semi-structured triple format to represent such a
fact. Our goal is to break a sentence into a set of
triples such that each triple represents a verifiable
piece of information. This way, we can provide
more fine-grained verification details for each sen-
tence. To exhaustively extract facts, we consider
two triple formats:
Flat Triple: For binary predicates, i.e., predicates
with one object, we represent the fact in the form
of (Subject; Predicate; Object). For example, the
triple representation of the fact “Taylor Swift is 30
years old.” is (Taylor Swift; age; 30 years old).
Extended Triple Ilyas et al. (2022): For n-ary
predicates where n > 2, i.e., predicates with mul-
tiple objects, we utilize the extended triple format
to capture the relations between fact constituents.
The extended triple format is (Subject; Predicate;
Predicate_ID; Predicate_attribute; Object) where
Predicate_ID is an artificial predicate identifier,
Predicate_attribute is the name of the predicate’s
attribute, and Object is the attribute’s value. For
instance, the representation of the sentence “Taylor
Swift moved to Nashville at the age of 14.” is:
(Taylor Swift; moved; move_ID; place; Nashville)
(Taylor Swift; moved; move_ID; age; 14).

For an input sentence si, the task of Fact Ex-
traction is to extract flat triples Tf = {tf1 , ..., tfm}
and extended triples Te = {te1 , ..., ten}. These
triples are extracted from the sentence using an
open information extraction format, with each
triple representing a single predicate attribute. The
final output of this component is: T = Tf ∪ Te.

To extract these triples, we came up with five
challenging human demonstrations such that, for
an input sentence, they include different combina-
tions of flat and extended triples. We prompt two
instructable LLMs to obtain such triples. More
details on LLMs utilized for this task, along with
an in-depth analysis of the errors they generate, is
provided in section 4.
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2.1.2 Question Generation (QGen)
Given the output of the Fact Extraction component
T , the task of Question Generation is to generate
questions for each t ∈ T such that the answer to the
question is the Object part of t. In this way, various
answers retrieved from different sources can be
used to verify each triple t. Depending on the
format of triple t (flat or extended), we introduce
two different question generation paradigms.
Type-aware Question Generation (TQGen).
Consider the triple (Taylor Swift; birthdate; 1989).
If the output of the QGen component is: “When
was Taylor Swift born?”, the retrieved evidence
would probably be the exact birthdate. To gen-
erate a question as specific and close to the an-
swer as desired, we propose a type-aware question
generation approach. Using TQGen, the gener-
ated question will be: “In which year was Taylor
Swift born?”. To this end, we adopt the Chain-of-
Thought paradigm. This involves two steps: we
instruct our model to first find the “type” of the
Object in the input triple, and then generate a ques-
tion conditioned on the obtained type information.
TQGen guides the subsequent information retrieval
component to target and retrieve the exact fact that
we aim to verify. Prompting LLMs with two human
demonstrations was sufficient for this task.
Context-driven Question Generation (CQGen).
In addition to generating a precise type-aware ques-
tion, we need to provide context for extended
triples so that the retrieved evidence corresponds to
the exact situation that requires verification. Con-
sider the extended triples mentioned earlier,
(Taylor Swift; moved; move_ID; place; Nashville)
(Taylor Swift; moved; move_ID; age; 14)
where the focus is on generating a question for the
first triple. If we only feed the first triple to QGen,
the output would not consider the time when the
relocation happened. To generate a context-driven
question, we need to also feed the second triple, the
context triple, to Context-driven QGen (CQGen).
The output of CQGen in this example is “To which
city did Taylor Swift move to at the age of 14?”.
For this task, we prompt LLMs with two examples.

2.1.3 Evidence Retrieval
The generated questions will be sent to two retrieval
systems: a knowledge graph (KG)-based system
and a web-based system.
Knowledge Graph-based: We send the question
generated for each triple t to our KG question an-
swering (KGQA) system and collect the retrieved

short answers. The answer and can either be a
single value (e.g., birth date, birthplace) or a list
(e.g., profession, spouses). The ensuing entailment
decision is derived differently for these two forms
of answers (more details in Section 2.1.4).
Web-based: Similarly, we also submit the same
question(s) to our web search engine (Web Search).
We then take the top-k (e.g., 5) web passages re-
turned for each question and combine them to
create a consolidated set of answers. Addition-
ally, Web Search is able to highlight the short
answer a for each retrieved passage p. The fi-
nal retrieval list from Web Search is in the format
[(p1, a1), (p2, a2), ..., (pk, ak)].

2.1.4 Verification
Given the triple representation of a fact t, the set
of KG answers Akg = {a1, a2, ...}, and the set
of Web answers Aw = {(p1, a1), (p2, a2), ..}, the
task is to decide whether t is supported by the set
of retrieved evidence. This involves two steps:

Step 1 - Verify against KG answers. Based on
our observation, when the evidence retrieved from
the KG is a singular value, the expected answer to
the question is most likely to also be a single value
(e.g. city of birth). Therefore when |Akg| = 1,
we classify the fact as “Strongly Supported” if it
is entailed by the answer, and “questionable” oth-
erwise. However, if the KG answer is a list, we
classify each answer in Akg as either “supporting”
or “not supporting” based on whether it entails the
fact. In this case, due to the limited coverage of
facts in KG (Dong et al., 2014; Peng et al., 2023),
we verify the fact t against web answers as well.

Step 2 - Verify against Web answers. In case
the KG answer is empty or a list, web answers will
be also used to make a decision. We classify the
answers in Aw as either “supporting” or “not sup-
porting” evidence. Finally, the fact is labeled as

“Likely Supported” if our system finds at least one
“supporting” evidence and “Questionable” other-
wise. In what follows, we describe how perform
evidence classification.

Triple Entailment. For every triple t, we have a
set of retrieved answers A = Akg ∪ {ai|ai ∈ Aw}.
Our task is to classify each answer as either “sup-
porting” or “not supporting”. To this end, we con-
struct an evidence triple te by replacing the object
part of the triple with the short answer retrieved.
Therefore, for each a ∈ A and triple t = (S;P ;O),
the corresponding evidence triple is te = (S;P ; a).
If the claim triple t = (S;P ;Pid;P_attr;O)
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Figure 3: FLEEK LLM view.

Figure 4: Playground view.

is extended, the corresponding evidence triple is
te = (S;P ;Pid;P_attr; a). The claim and its
corresponding evidence triple are then used to form
a prompt and fed to LLM to make a final decision.

2.2 Fact Revision

The Fact Revision module aims to correct a ques-
tionable fact triple stated in an input sentence
into its corrected version while preserving every-
thing else stated in the sentence. More specifi-
cally, let s be a sentence containing a questionable
triple tsrc, i.e., s |= tsrc (i.e., s entails fact tsrc).
Let the evidence triple formed by the verification
process outlined above be tdest. The Fact Revi-
sion model will thus rewrite s into s′ such that
s′ ̸|= tsrc ∧ s′ |= tdest, and s′ |= ti where ti ̸= tsrc
is any triple entailed by s. Following is an example

(the objects of the triples are in bold):
s = “Taylor Swift is 30 years old.”
tsrc =(Taylor Swift; age; 30)
tdest =(Taylor Swift; age; 33)
s′ = “Taylor Swift is 33 years old.”
In our implementation, we prompt LLMs with one
demonstration to obtain satisfactory results.

3 The User Interface of FLEEK

The frontend of FLEEK is built using Angular3

and Bootstrap UI4, which allows for creating
dynamic, interactive, and visually appealing user
interface. The backend of FLEEK is handled by
Django5, a Python-based server-side framework

3https://angular.io/
4https://getbootstrap.com/
5https://www.djangoproject.com/
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that facilitates the integration with ML-based
libraries. The entry point to the system is the two
views, LLM and Playground, shown at Figure 3,
which we describe next.
LLM View. In this view, the user can check the
factual consistency of an LLM (e.g. GPT-3.5) that
the user provided (as an endpoint). To interact with
FLEEK, first in the Input Panel (Figure 3, upper
panel), the user can type their query in the ques-
tion bar, e.g., ‘How old is Taylor Swift?’ (or
click one of the sample queries) and hit the AskLLM
button. FLEEK would send the query to the LLM
(GPT-3 in this example) and render its response
in the Response Panel (Figure 3, the upper sec-
ond panel in dark grey). The verification process
will kick in once the user hit the Start Checking
button. FLEEK verifies the claim(s) made by the
LLM by going through the process described in
Section 2.1. The verification results are shown in
the Verification Panel (Figure 3, middle panel).
With our design, FLEEK is able to highlight the
sub-claims in the original text with different color
codes to indicate their factual accuracy categories
based on the collected evidence. Additionally, the
highlighted spans are clickable, which leads to a
detailed dialog containing the evidence associated
with the claims (illustrated in Figure 1 and Figure
??). Evidence retrieved from web are accompanied
with a source link as well. At the bottom, the
user can request FLEEK (hit the Revise button) to
revise the original claims using the collected evi-
dence. Based on the evidence retrieved from the
KG and web, we can have multiple revision alterna-
tives. Verification results for the example shown in
Figure 3 and 4 allow for only one possible revision.
Playground View. This view allows the user to ver-
ify any specific piece of text of their choosing. This
feature empowers users to automatically fact-check
tweets, trending news, arbitrary LLM outputs, or
even their own writing with just a few clicks. Fig-
ure 4 illustrates the view. The user can input their
desired text into the designated input panel (scratch-
pad) and hit the "Start Checking" Button (Figure 4,
upper panel). The verification and revision process
is the same as in the LLM View.

4 Evaluation

Previous benchmarks on fact verification (Thorne
et al., 2018; Aly et al., 2021) provide a single de-
cision for the entire claim based on the retrieved
evidence. However, in this work, we introduce fine-

grained fact verification with attribution to external
knowledge. As this is the first study on this task,
there exist no benchmarks for evaluating FLEEK’s
performance. Next, we conduct preliminary exper-
iments using manually created evaluation data.

4.1 Evaluation Data Creation

Our system has two use cases. The first one is
to verify the responses generated by LLMs (in
this case, GPT-3). To evaluate our system’s per-
formance, we selected 50 questions from WikiQA
(Wikipedia open-domain Question Answering) test
set (Yang et al., 2015) and collected their corre-
sponding GPT-3 responses. We then manually an-
notated each response using the following steps:
(1) identify the facts within the response, (2) label
each fact as “Strongly Supported”, “Likely Sup-
ported”, or “Questionable”, (3) accompany each
fact with an evidence set, particularly the question-
able facts. We call this dataset BenchLLM . Each
instance in the BenchLLM contains the annotated
GPT-3-generated response.

The second use case is to verify an arbitrary input
text. To create evaluation data that suits this task,
we target the introduction section of Wikipedia
pages. To partially perturb sentences and create in-
correct facts, we sample 50 random sentences with
at least one hyperlink. Then, we retrieve the hyper-
link’s corresponding entity from Wikidata 6, find
the entity’s type (instance of property), and retrieve
candidate entities with the same type. Finally, we
perturb the sentence by replacing the original hyper-
link with one randomly selected entity within the
candidate list. After perturbation, we annotate the
sentence the same way that we created BenchLLM .
We call this dataset BenchText.

4.2 Large Language Models

All FLEEK’s components that facilitate fact ver-
ification and correction use few-shot prompting
with a large language model. Any model that can
learn from in-context demonstrations can be used
to instantiate FLEEK. We choose one open-source
model, Vicuna (33 billion parameters), and one
closed source model, GPT-3 (175 billion parame-
ters), to create two instances of our tool. We call the
instance with Vicuna as its large language model
FLEEK V icuna and the instance that utilizes GPT-3
as its large language model FLEEK GPT−3. We
evaluate both instances in the following section.

6https://wikidata.org/
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Instance Category BenchLLM BenchText

P R F1 P R F1

FLEEKV icuna

Strongly Supported 91.66 84.61 87.99 84.61 91.66 87.99
Likely Supported 94.73 58.69 72.47 87.5 37.33 52.33

Questionable 54.54 60 57.13 93.61 74.57 83.01
Total 88.75 61.73 72.81 90.21 56.84 69.73

FLEEKGPT−3

Strongly Supported 100 95.23 97.55 100 100 100
Likely Supported 93.22 61.79 74.31 95.77 79.06 86.61

Questionable 66.66 100 79.99 87.75 69.35 77.47
Total 89.0 76.06 82.02 93.28 77.16 84.45

Table 1: Evaluating two instances of FLEEK on BenchLLM and BenchText.

4.3 Experimental Results
Consider the set of system-generated spans
S = {s1, ..., sn} and ground truth spans G =
{g1, ..., gm}. We measure the number of textual
spans that are correctly identified, labeled, and
attributed to the valid supporting evidence as ov.
Then, we calculate verification system’s precision
as ov

|S| , recall as ov
|G| , and the F1 score. Table 1 shows

the performance of our verification systems on both
evaluation datasets. As illustrated, FLEEK GPT−3

outperforms FLEEK V icuna on both datasets by
a large margin (12 F1 pts). However, given that
Vicuna is about 5× smaller than GPT-3, the av-
erage performance of FLEEK V icuna (71.27 F1)
shows its efficiency in Fact Verification. Moreover,
the results show that both systems can identify the

“Strongly Supported” facts with high precision and
recall. However, they fail to detect all facts or at-
tribute them to the correct evidence for “Likely
Supported” or “Questionable” cases.

We also measure the accuracy of revisions pro-
posed by the fact correction component. Both sys-
tems have on-par performance with an average ac-
curacy of 72.7%. However, our investigation shows
that 54.1% of incorrect revisions are a result of er-
rors in previous components propagated through
the system. Thus, Fact Correction’s average preci-
sion, given the correct verification results, is 87.5%.

Note that although our initial results show great
promise, both evaluation datasets are small (50
sentences) and come from the same data source
(Wikpedia). One ongoing work is to create a larger
benchmark (with different levels of difficulty from
more diverse sources) for a more extensive and
reliable evaluation of our system.

Error Analysis. We randomly select 30 exam-
ples where FLEEK GPT−3 made erroneous deci-
sions and investigate the types of errors each of
its components made (Figure 5). In general, the
Fact Extraction component accounted for a sig-
nificant portion, approximately 49%, of the total
errors. This emphasizes the difficulty of mastering

Figure 5: Percentage of total errors generated by differ-
ent components of FLEEK GPT−3.

Fact Extraction through in-context learning. Er-
rors produced by this component include, but are
not limited to, wrong triple format, broken n-ary
relations, missing triples, and hallucination. Fig-
ure 5 further indicates that the GPT-3 might not
excel in reasoning, as the entailment component
also contributes significantly to system errors.

5 Conclusion and Future Work

We presented FLEEK, an innovative solution
geared towards assisting users in verifying the ac-
curacy and factuality of textual claims. We aim
to keep improving the FLEEK so that it can be a
handy tool for various stakeholders. As part of our
future work, we intend to do more comprehensive
evaluations of FLEEK, including testing it with var-
ious LLMs and over a comprehensive benchmark.

Limitation. First, our current system depends
on the initial set of responses generated by LLMs
to perform the tasks. Nevertheless, we can prompt
each component multiple times and employ meth-
ods such as majority voting to enhance the accuracy
of each task. Second, experiments presented are
based on small-scale datasets. We plan to expand
both datasets as part of our future endeavors. Fi-
nally, both datasets are manually annotated by one
annotator. We plan to hire more annotators and re-
fine the annotation process so as to provide a more
comprehensive evaluation of our method.
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