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Abstract

We present DOPA METER, a tool suite for the
metrical investigation of written language, that
provides diagnostic means for its division into
discourse categories, such as registers, genres,
and style. The quantitative basis of our sys-
tem are 120 metrics covering a wide range of
lexical, syntactic, and semantic features rele-
vant for language profiling. The scores can be
summarized, compared, and aggregated using
visualization tools that can be tailored accord-
ing to the users’ needs. We also showcase an
application scenario for DOPA METER.

1 Introduction

The way how we encode contents in natural lan-
guage utterances gives rise to linguistic divisions
into registers, genres, style levels, etc. (for a thor-
ough distinction of these terms, see Lee (2001);
Biber and Conrad (2019)) that follow functional
communication requirements, e.g., ease of com-
prehension or adherence to the wording of social
peer groups. The behavioral traits indicating such
divisions are manifold and range from simple to-
ken frequencies, lexical choice options (synonyms,
more specific vs. more general or sublanguage vs.
layman terms), via syntactic variations (easy vs.
complex sentence constructions) over to pragmatic
distinctions (e.g., formal vs. informal language use).
Many of NLP’s most pressing applied research
questions (e.g., hate and fake detection, communi-
cation biases relating to people’s political, religious,
racial, personal orientation) are considered to be
flagged this way (Xiao et al., 2022).

In this paper, we address a large variety of such
behavioral aspects of language use from a metrical
perspective. None of these metrics is new, but their
assembly and broad coverage in a coherent tool
suite and modular software framework is. We also
provide means for summarization, comparison and
aggregation of results and their proper visualiza-
tion.

2 Related Work

The tool-based computational analysis of behav-
ioral traits of language use can be divided into
three branches of research: (1) readability check-
ers with language complexity measures incorpo-
rating mostly surface-level syntactic and lexico-
semantic features of utterances, (2) stylometrics
tools with strong emphasis on powerful lexico-
statistical metrics, and (3) psychometrics devices
with mostly simple frequency-based computations
complemented by dictionaries with psychologically
typed lexical categories.

From the perspective of readability (for a survey,
see Collins-Thompson (2014)), the DELITE system
(vor der Brück et al., 2008) can be considered as
one of the language profiling systems closest to the
design goals and feature types of our system. Still,
its main goal, as a readability checker, is much nar-
rower than ours. DELITE identifies and highlights
passages of text which are difficult to understand
(together with reasons why this is the case). To
reach this goal, DELITE comes with a wide range
of shallow and deep features to score the readabil-
ity of documents, which is also at the heart of our
work. Deep features include, e.g., topological in-
formation from dependency trees for syntactic scor-
ing (e.g., center embedding depth, phrasal fan-out
ratios) and from semantic networks for semantic
scoring (number of readings per lexical entry, num-
ber of propositions per sentence, semantic network
connectivity). Altogether, 48 indicators for read-
ability at the morphological, lexical, syntactic and
semantic level can be calculated, averaged per doc-
ument, and a global document readability score is
finally computed by applying a k-nearest neighbor
classifier. The system ran on German and English
input data, yet has, to the best of our knowledge,
never been made publicly accessible.

In the field of stylometrics (for a survey, see
Neal et al. (2017)), STYLO (Eder et al., 2016) has
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become a de facto standard for the quantitative
study of writing style. STYLO is an R package
equipped with powerful statistical analysis modules
for analytics based on frequency measurements of
character- and token-based n-grams (PoS n-grams
etc., not supplied by default, require externally pre-
processed input). STYLO comes in two flavors.
Its API allows to configure a complete process-
ing pipeline using traditional R scripting, while it
also offers a rich graphical user interface (GUI)
for non-technical users to run stylometric analyses
and interpret their outcome without the need for
elaborate programming experience.

The seamless integration of various analytical
tools under a common programming framework
(making use of R’s core library but also extending
it by various clustering algorithms and machine
learning classifiers) and its public accessibility on
GITHUB1 make STYLO a landmark development
for stylometric tooling. Yet, STYLO does not in-
tegrate any deeper lexical, syntactic and semantic
processing going beyond textual surface computa-
tions (such as distance metrics, e.g., Burrows’s ∆,
very popular in the stylometric community).

The third stream of work emphasizes human lexi-
cal choice patterns in terms of the psychometrics
of word use. Perhaps its most prominent represen-
tative is the Linguistic Inquiry and Word Count ap-
proach and its associated LIWC engine (Tausczik
and Pennebaker, 2010).2 LIWC’s focus is on a cat-
egorically stratified dictionary resource (the current
master dictionary comprises 6,400 words, word
stems, and selected emoticons) with simple de-
scriptive statistical tools though. LIWC reads doc-
uments word-by-word, matches each word with its
dictionaries and outputs simple frequency-based
lexical and PoS statistics. Overall more than 80
psychologically relevant categories ranging from
linguistic ones (such as function vs. content words,
parts of speech, tense markers) to psychological
ones (such as Cognitive, Perceptual, and Biologi-
cal Processes) are attached to single lexical entries
and counted during text analysis.

LIWC was recently compared and outperformed
by the SEANCE system (Crossley et al., 2017)
which makes use of a range of newer, even more
specialized dictionaries with a larger number of

1https://github.com/computationalstylistics/
stylo

2The most recent version, LIWC2015, is available under
http://liwc.wpengine.com/ and must be purchased for a
modest fee for academic and industrial use.

more expressive psychological categories and vari-
ables and a higher coverage of entries. Crossley
et al. (2019) use a battery of independent systems
for their experiments, each one highly specialized
for computing different dimensions of readability,
such as syntactic complexity (177 indices from
the TAASSC system (Kyle and Crossley, 2018)),
lexico-semantic frequency and richness (135 in-
dices from the TAALES system (Kyle and Crossley,
2015)), text cohesion (over 150 indices from the
TAACO system (Crossley et al., 2016)), and senti-
ment and social cognition scores (20 indices from
the SEANCE system (Crossley et al., 2017)). Hence,
roughly 500 individual scores have to be assembled
from these stand-alone systems and combined in an
umbrella system for result merging. Alternatively
(not used by Crossley et al. (2019), but playing a
prominent role in many recent readability studies),
COH-METRIX3 (Graesser et al., 2011) provides
a multi-dimensional set of (psycho)linguistic and
discourse features (version 3.0 incorporates 108
different indices).

Recently, Štajner et al. (2020) introduced COCO,
an advanced system with cognitively plausible fea-
tures, yet its focus is limited on conceptual com-
plexity computation of texts. SENTSPACE (Tuckute
et al., 2022) is a sentence-focused analysis engine
rather close to the design goals of our work, which
also uses a range of cognitively plausible lexical,
syntactic and semantic features. However, it lacks
classical stylometric and readability indices and
is limited to analyses up to the single document
level only. In contrast to this work, we aim at cross-
document and cross-corpus analyses for more pow-
erful register, genre and style analyses.

Despite the remarkable progress that has been
made already—the proliferation of surface-level,
linguistic and cognitive features under scrutiny,
and the growing number of metrics making use
of them—we observe a fundamental lack of inte-
gration of and abstraction from single counts and
scores in these precursors. Accordingly, a major
goal of our work is to provide reasonable summa-
rization, comparison, and aggregation levels for
single metrics so that divisions into registers, gen-
res and styles can be computed on the fly based
on the contributions of a wide range of linguistic
layers (integrating lexical, syntactic, and semantic
features) for complex collections of (multilingual)
linguistic data in terms of (sets of) corpora.

3http://www.cohmetrix.com
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Figure 1: Overview of the building blocks of DOPA METER

3 DOPA METER’s System Architecture

DOPA METER is based on PYTHON and SPACY4

and supports all SPACY compatible language
modules. Our system is publicly accessible via
GITHUB.5 It is based on strict software engineer-
ing principles, such as modularity, easy resource
maintenance and (re-)configuration (selection and
augmentation of metrics and language resources,
such as corpora and lexicons).

The three-layered architecture of DOPA METER

is depicted in Fig. 1. It consists of
• arbitrarily many text corpora that can also

be grouped into collections of corpora which
serve as textual input channel (including a pre-
processing pipeline),

• the feature hub that elicits relevant features
from the corpora for use by a large variety of
metrics,

• and three analytics layers—apart from sim-
ple report generation (summaries of metrics-
derived scores), we offer a comparison mode
across documents and corpora, as well as
cluster-based aggregation of results.

3.1 Input and Pre-processing
The input for DOPA METER consists of a set of
text corpora that can be bundled into collections,
for convenience. Each corpus consists of single
text files, the documents, each of which will auto-
matically be pre-processed and split into sentences
and tokens.

3.2 Feature Hub
The computation of features is divided into (1) sim-
ple feature counts whose results feed (2) a collec-
tion of metrics. We here distinguish micro statistics
(at the document level) and macro statistics (at the
corpus level).

4https://spacy.io
5https://github.com/dopameter/dopameter

The feature hub comprises sets of single features
and groups them for better comprehensibility (see
the discussion below and Table 3 in the Appendix).
The computation of features allows for a tailored
mode (configured by the user via choice options) or
a default mode that takes all features into account.

3.2.1 Basic Counts
In order to get started we perform basic counts of
sentences, tokens, types (vocabulary size), lemmata
and characters using SPACY tooling (Corpus/Doc
Counts in Fig. 1).6

In addition, Token Characteristics7 comprise in-
formation about alphanumeric strings, lower/upper
casing, etc. The counts of Parts of Speech (PoS)
and Named Entities and their tagging are derived
from SPACY’s embedded language models and sup-
ply linguistically more informed feature sets.

3.2.2 n-grams
n-grams are sequential series of (configurable)
n={1,2,3,...} tokens or (PoS) tags. The scores cal-
culate the ratios of n-grams for single documents
and whole corpora or corpus collections.

3.2.3 Lexical Diversity
Lexical Diversity subsumes a group of 24 features
borrowing from stylometric vocabulary metrics.
Among others, this includes the common type-
token ratio (TTR), but also more sophisticated met-
rics such as Guiraud’s R or Herdan’s C. We also
incorporate metrics which address the frequency
spectrum of lexical items (e.g., Sichel’s S) and ones
capturing lexical distributions over the whole doc-
ument (e.g., Moving-Average TTR). Last but not
least, we also provide metrics for lexical density
such as the ratio of function words. For surveys
of metrics of lexical diversity, see Malvern et al.
(2004); Evert et al. (2017).

6https://spacy.io/usage/linguistic-features
7https://spacy.io/api/token
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3.2.4 Surface Patterns
Surface pattern metrics, also known as Readability
scores, mainly focus on syllable counts, token and
sentence length and thus target surface-level phe-
nomena only. Among the large number of possible
choices, we included into DOPA METER 19 met-
rics, among them Flesch-Kincaid, Dale–Chall (for
English, only), SMOG, Gunning fog, and the four
Wiener Sachtext formulas (Bamberger and Vanacek,
1984) (for German, only). This feature class also
contains a simple Formality score using PoS tags
(Heylighen and Dewaele, 1999).

3.2.5 Syntax
Syntax-focused metrics account for the two ma-
jor syntax representation formats: dependency and
constituency. For dependency parsing, we exploit
the transition-based dependency parser embedded
in SPACY (Honnibal and Johnson, 2015), for con-
stituency parsing we use the Berkeley Neural Parser
(Kitaev and Klein, 2018; Kitaev et al., 2019).

The parse metrics take general parse graph prop-
erties into account, such as the average maximum
depth for each parse tree, i.e., the longest path from
the root node to a leaf node, the maximum fan-out
of each parse tree, i.e., the largest number of child
nodes of a node in the entire parse tree, and the
inverse average out-degree centrality value, i.e.,
the number of out-going edges, computed over all
dependency graphs of all sentences of a document.

3.2.6 Semantic Relations
We here focus on lexico-semantic resources that
provide a linkage between lemmas in terms of var-
ious semantic relations. Lexicons structured this
way can be regarded as semantic networks. Our
focus is on relations typically provided by WORD-
NET-style specifications which feature synonymy,
antonymy, taxonomy (hyponyms/hypernyms), and
partonymy (parts and wholes).

Based on such knowledge-“heavy” resources we
define several metrics that exploit the topological
structures spanned in these semantic networks as
instantiated by the lexical items we identify as lem-
mas of these lexicons within each sentence. Ac-
cordingly, we defined metrics which focus on re-
lational depth by determining the minimal path
length of each reading of each lemma within a doc-
ument (i.e., the distance from the top node of the
semantic network to the lemma) following taxo-
nomic links (hypernymy or hyponymy links, only),
sum up these individual length scores and average

over the number of all the lemmas’ readings, and
on semantic richness, i.e., for each (reading of the)
lemma in a sentence, we determine all semantic re-
lation instances (i.e., hypernyms, hyponyms, parts
(is-part) and wholes (has-part), antonyms) it shares
with other lemmas in the lexicon and average this
number over all readings per lemma in the docu-
ment. Scores and their averages are also available
for each individual semantic relation only (e.g., the
number of hyponyms of all instantiated lemmas).

3.2.7 Emotion
DOPA METER supports scores for the eight funda-
mental emotional variables (valence, arousal, dom-
inance, joy, anger, sadness, fear and disgust) based
on dictionary look-ups incorporating the emotion
lexicons from Buechel et al. (2020) in the JEMAS

pipeline (Buechel and Hahn, 2016).8

3.3 DOPA METER’s Analytics
3.3.1 Summarization Mode
In the summarization mode, statistical reports of
the resulting scores are generated per document
and corpus (collection), including common infor-
mation, such as min/max values, means, quartiles,
etc. This reporting mode describes fundamental
quantitative characteristics in the feature hub and
can already pinpoint at differences between docu-
ments and corpora that can be deeper explored by
larger-scale clustering or classification algorithms.

3.3.2 Comparison Mode
The comparison mode points out differences or
similarities between complete text corpora or user-
defined subsets therefrom. It is based on a differen-
tial analysis of the corpus vocabulary, n-grams and
the metrics targeting different levels of linguistic
analysis mentioned above.

Besides the metrics already introduced, we also
make use of well-known distance metrics from the
field of stylometrics and authorship detection, e.g.,
Burrows’ ∆ (Burrows, 2002).

In addition to these stylometric computations,
we incorporate scores originating from the field of
machine translation, such as BLEU (Papineni et al.,
2002), METEOR (Denkowski and Lavie, 2014) and
NIST (Doddington, 2002).

3.3.3 Aggregation Mode
Going beyond the micro statistics at the single doc-
ument and corpus level, the aggregation mode is

8https://github.com/JULIELab/JEmAS/releases
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able to compute dependencies between different
(sets of) corpora at the macro level of analysis.
With varying configurations of features, k-means
and t-distributed Stochastic Neighbor Embedding
(t-SNE) (van der Maaten and Hinton, 2008) with
DBSCAN (Ester et al., 1996) are used as cluster-
ing algorithms at the moment. Our modular archi-
tecture, however, is open to extension by a wider
range of additional clustering algorithms and other
machine learning libraries.

4 DOPA METER in Action

We now illustrate facets of the rich functionality
of DOPA METER. Our scenario features two lan-
guages, English and German, and a broad applica-
tion domain (medicine) with six corpora (collec-
tions) from a wide range of genres (see Table 1):9

Corpus Documents Sentences Tokens
de.Clin 3 497 145 870 1 649 156
de.PubMed 1 028 5 676 101 173
de.SocMed 4 000 30 943 433 999
de.Wiki 4 400 326 721 4 348 255
en.Clin 5 918 437 598 7 065 887
en.SocMed 3 601 13 168 172 927

Table 1: Quantitative data of the demo corpus collection

de.Clin is composed of several publicly available
German clinical corpora: JSYNCC (Lohr et al.,
2018), ASSESS (Miñarro Giménez et al., 2019),
BRONCO (Kittner et al., 2021), GRASCCO (Mod-
ersohn et al., 2022), EX4CDS (Roller et al., 2022),
CARDIO:DE (Richter-Pechanski et al., 2023) and a
set of X-ray reports (Dewald et al., 2023),
de.PubMed contains the German subset of
PUBMED abstracts featuring clinical cases,10

de.SocMed contains medical layman and expert ex-
pressions from a patient forum (Seiffe et al., 2020),
de.Wiki collects medical articles from Wikipedia
including info-box data with an ICD-10 code,11

en.Clin incorporates public corpora supplied for
the I2B2 and N2C2 challenge series,12 and
en.SocMed combines English language TWITTER

corpora with biomedical content: BEAR (Wührl
and Klinger, 2022), COVERT (Mohr et al., 2022),
and BIOCLAIM (Wührl and Klinger, 2021).

9Instructions how to build the corpora in order to reproduce
our experiments can be found under https://doi.org/10.
5281/zenodo.10000771

10https://pubmed.ncbi.nlm.nih.gov/, running the
query "Case Reports[Publication Type] AND GER[LA]"

11https://www.wikipedia.de/
12https://portal.dbmi.hms.harvard.edu/projects/

n2c2-nlp/

Summarization Mode:
The boxplots from Figure 2 depict the results

from surface-level formality scoring (based on Hey-
lighen and Dewaele (1999)) in a visual way. Clini-
cal documents, for both languages, are in the high
end of formal language use, whereas social media
language, not surprisingly, scores at the lower end,
with news, WIKIPEDIA, and PUBMED in between.

Figure 2: Surface Heylighen formality scores

Table 2 contains scores that illustrate corpus-
based metrics from Surface Patterns (Flesch Read-
ing Ease index), Syntax (depth of dependency parse
trees (Dep-Depth)), and WORDNET-based Seman-
tic Relations (semantic richness of synonyms).

Surface Syntax Semantics
Corpus Flesch Dep-Depth Synonym-Rich
de.Clin 69.97 4.28 2.05
de.PubMed 59.91 4.75 3.45
de.SocMed 35.88 6.34 4.09
de.Wiki 87.68 4.74 3.10
en.Clin 85.59 4.98 0.80
en.SocMed 85.07 4.14 0.81

Table 2: Scores for Flesch Reading Ease (Flesch), aver-
age maximum depth of dependency trees (Dep-Depth),
and semantic richness of synonyms from WORDNET
(Synonym-Rich) (maxima in red, minima in blue)

Surprisingly, German WIKIPEDIA texts are the
hardest to understand, in a similar readability range
with English clinical documents and social media
chats. The German expert-layman data is by far the
easiest to read. German clinical documents exhibit
a higher readability than English ones.

The highest syntactic complexity in terms of
parse tree depth is attributed to the German expert-
layman corpus (expert statements seem to suffer
from ‘hard’ syntax), with no substantial differences
for the remaining corpora.

The German social media corpus (in contrast
to the English one) is the richest in terms of syn-
onyms, whereas both clinical corpora are seman-
tically poor at that level (adhering to canonical
medical terminology—the English one being even
poorer than the German one). The medical German
WIKIPEDIA is in a similar range with German clin-
ical and PUBMED documents on that dimension.
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Comparison Mode:
To highlight the lexical intersection among cor-
pora, the heatmap in Fig. 3 is provided for 1-grams.
The language division is obvious, yet the status
of the German (medical) WIKIPEDIA is interest-
ing insofar as it has a rather strong overlap with
with German PUBMED and expert-layman social
media data. Furthermore, German clinical reports
share a remarkable portion of vocabulary with Ger-
man PUBMED and, to a lesser degree though, with
expert-layman interaction in social media.

Figure 3: Vocabulary Intersection

Aggregation Mode:
Figure 4 depicts the distribution of the scores

for formal token attributes, e.g., whether a token is
alphanumeric or a punctuation mark, using T-SNE
(van der Maaten and Hinton, 2008), thus mapping
high-dimensional data onto two dimensions.

Figure 4: Clustering by token characteristics (1)
Again, the division between languages is ob-

vious. There are clear differences between Ger-

man (upper part of Fig. 4) and English language
(lower part). Social media corpora (de.SocMed
and en.SocMed) of both languages lie close to each
other (green and brown area) as are the samples
from PUBMED and WIKIPEDIA (orange and green
parts). Yet, the samples of German clinical lan-
guage are divided into three distinct clusters (blue
dots, with labels for the three largest corpora; for
more details, see Section D in the Appendix), parts
of which are close to WIKIPEDIA and PUBMED, or
even overlap with those from the English language.

All these observations indicate that none of the
features in isolation is capable of properly predict-
ing specific discourse categories, such as registers
or text genres. Hence, a deeper exploration of de-
pendencies between the features we measure seems
more appropriate and DOPA METER might be a
suitable toolkit for this endeavor.

5 Conclusions

We introduced DOPA METER, a toolkit for quanti-
fying feature distributions at the lexical, syntactic
and semantic dimension. We supply 120 metrics
for scoring linguistic behavior at these axes. Scores
can be summarized, compared, and aggregated us-
ing flexibly tailorable visualization tools.

DOPA METER’s feature collection reflects one
main design goal of our work, namely the inte-
gration of as many linguistic levels as possible,
thus moving away from much more selective ap-
proaches in stylometrics and psychometrics. A
second unique feature of our approach is its fo-
cus on lucid system architecture for flexible sys-
tem engineering, i.e., easy maintainability and aug-
mentation by new metrics and language resources
(corpora, lexicons) in a coherent all-in-one sys-
tem design. This contrasts with the proliferation
of stylometric extensions spread over lots of local
GITHUB links lacking further integration, on the
one hand, and frozen system packages in the psy-
chometric domain, on the other hand. The source
code and its documentation are provided under the
open MIT licence and our tool can be conveniently
expanded and adapted to specific needs.

This way, DOPA METER may be useful as a
metadata generator for documents and text cor-
pora, with facilities for quantitative data description
(scoring), comparison and aggregation. Such an
approach may also pave the way towards an empir-
ically sound way of routinely running NLP data
diagnostics (Xiao et al., 2022).
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D Fine-Grained Clustering of All Individual Corpora

The following figure provides a more detailed view of the data aggregated in Fig. 4.

Figure 5: Clustering by token characteristics (2): Finer-grained visualization of Fig. 4
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E Feature Hub Summary

Feature Hub Metrics Amount of Metrics Modus / Analysis
German English Mult. Count Metrics Compare

Corpus / Doc Counts characters, sentences, different_sentences, tokens, types, lemmata 6 6 6 ✓

Token Charcteristics
is_alpha, is_ascii, is_digit, is_lower, is_upper, is_title, is_punct, is_left_punct,
is_right_punct, is_space, is_bracket, is_quote, is_currency, like_url, like_num,
like_email, is_stop

17 17 17 ✓ ✓

Part of Speech
depends on spaCy language model
German (de_core_news_sm): TIGER tagset (e.g., DET, NOUN, VERB, ADP, ...)
English (en_core_web_sm): Onto Notes 5 (e.g., AUX, NOUN, VERB, PROPN, ...)

1 1 1 ✓ ✓

Named Entities
depends on spaCy language model
German (de_core_news_sm): WikiNER (only LOC, PERS, MISC, ORG)
English (en_core_web_sm): WordNet 3.0 (e.g., DATE, LOC, PERSON, ORG)

1 1 1 ✓ ✓

n-grams (tfidf) depends on configuration of n and most frequent words, preferred: n={1,2,3} 1 1 1 ✓ ✓ ✓

Lexical Diversity
type_token_ratio, lexical_density, guiraud_r, herdan_c, dugast_k, maas_a2,
dugast_u, tuldava_ln, brunet_w, cttr, summer_s, sttr, sichel_s, michea_m, honore_h,
entropy, yule_k, simpson_d, herdan_vm, hdd, evenness, mattr, mtld

23 23 23 ✓ ✓ ✓

Surface Patterns

avg_token_len_chars, avg_sent_len_tokens, avg_sent_len_chars,
flesch_kincaid_grade_level, smog, coleman_liau, ari, forcast,
gunning_fog, heylighen_formality
no default: toks_min_three_syllables, toks_larger_six_letters, toks_one_syllable,
syllables letter_tokens no_digit_tokens
only German: flesch_reading_ease, wiener_sachtextformel_1,
wiener_sachtextformel_2, wiener_sachtextformel_3, wiener_sachtextformel_4
only English: flesch_reading_ease, dale_chall

23 20 18 ✓ ✓ ✓

Syntax - Dependency
AvgFan, MaxFan, AvgMaxDepth, AvgDepDist, MaxDepDist,
AvgOutdegreeCentralization, AvgClosenessCentralization,
occurrences of tree nodes (depending on spaCy language model)

8 8 8 ✓ ✓

Syntax - Constituency

AvgMaxDepth, AvgFan, MaxFan, AvgNonTerminales_sent, AvgConstituents_sent,
AvgTunits_sent, AvgLenConstituents, AvgLenTunits, AvgOutdegreeCentralization,
MaxOutdegreeCentralization, AvgClosenessCentralization,
MaxClosenessCentralization occurrences of tree nodes

13 13 13 ✓ ✓

Emotion valence, arousal, dominance, joy, anger, sadness, fear, disgust 8 8 8 ✓

Semantic Relations

sem_rich_hypernyms, sem_rich_hyponyms, sem_rich_taxonyms,
sem_rich_antonyms, sem_rich_synonyms, sem_rich_meronyms,
sem_rich_holonyms, sem_rich, min_depths_avg,
min_depths_min, min_depths_max, max_depths_avg,
max_depths_min, max_depths_max, synsets_avg, senses_avg,
occurrences of synsets, occurrences of senses

18 18 18 ✓ ✓ ✓

Amount of all Metrics 119 116 114

Table 3: Summary of all Feature Hubs and all Metrics of DOPA METER
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