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Abstract

The challenge of low-latency speech transla-
tion has recently draw significant interest in
the research community as shown by several
publications and shared tasks. Therefore, it is
essential to evaluate these different approaches
in realistic scenarios. However, currently only
specific aspects of the systems are evaluated
and often it is not possible to compare different
approaches.

In this work, we propose the first framework
to perform and evaluate the various aspects of
low-latency speech translation under realistic
conditions. The evaluation is carried out in an
end-to-end fashion. This includes the segmen-
tation of the audio as well as the run-time of
the different components.

Secondly, we compare different approaches to
low-latency speech translation using this frame-
work. We evaluate models with the option to
revise the output as well as methods with fixed
output. Furthermore, we directly compare state-
of-the-art cascaded as well as end-to-end sys-
tems. Finally, the framework allows to automat-
ically evaluate the translation quality as well
as latency and also provides a web interface to
show the low-latency model outputs to the user.

1 Introduction

In many applications scenarios for speech transla-
tion, the quality of the translations is not the only
important metric, but it is also essential to provide
the translation with a low latency. This is for exam-
ple the case in translations of presentations or meet-
ings. Therefore, we observe an increasing interest
in the field of low-latency speech translations, as
shown by numerous published techniques and the
organization of a dedicated shared task as part of
the International Conference on Spoken Language
Translations (IWSLT) (Agrawal et al., 2023).

In order to enable further progress in the field as
well as a wide adoption of the technique a frame-
work to evaluate different approaches is essential.
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Figure 1: Framework overview

However, the current evaluation only considers a
limited number of aspects or techniques. In con-
trast, for an overall evaluation of different archi-
tectures (end-to-end and cascaded) and presenta-
tion style (revision and fixed) a general evaluation
framework is needed. This should also consider
the computational latency as well as the ability to
process several sessions in parallel.

Motivated by this, we present a new framework
to apply and evaluate low-latency, simultaneous
speech translation. Thereby we focus on a frame-
work that can evaluate the different approaches in
as realistic conditions as possible. The system is
able to simulate different load conditions as well
as compare systems using different design choices.
Finally, we also provide a web interface1 to present
the low-latency model outputs to the user.

The main contributions of our paper are:

• A framework2 for low-latency speech transla-
tion with dynamic latency adjustment

• An evaluation setup that allows for assessing
the quality and latency of a low-latency sce-
nario in an end-to-end fashion

1https://lecture-translator.kit.edu
2https://git.scc.kit.edu/isl/lt-middleware/

ltpipeline
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• A comprehensive evaluation of different trans-
lation approaches and streaming algorithms

In the next section, we describe the overall ar-
chitecture of the framework. The two following
sections explain the streaming algorithms for the
speech and text processing components. After that,
we illustrate how we evaluate our framework and
then how the experimental setup looks like. In Sec-
tion 7 we present the results. Then, we review the
related work. At the end we describe the limitations
and conclude our work.

2 Dynamic Framework for low-latency
speech translation

Motivated by previous work (Cho et al., 2013), we
use a central mediator that coordinates the inter-
action of the different components (see Figure 1).
The user sends data to an API component which
then sends the data to the mediator. The media-
tor forwards all arriving data to the corresponding
component(s), e.g., the audio signal from the user
to the speech processing component, the resulting
transcripts to the text processing component and
the output (through the API) to the user. In order to
allow a flexible processing, for each session a graph
dynamically defines how the data is sent to the dif-
ferent components. We process different requests
at each component using the existing streaming
framework Kafka3.

Each component consists of a middleware and
a backend with the processing separated into three
steps:

1) Input processing: The middleware imple-
ments the streaming algorithms and can be run
on the CPU. It uses the state of the current ses-
sion to generate requests to the backend. Other
approaches (Niehues et al., 2018) repeatedly send
requests to the backend for all input messages. This
can result in increasing latency if the backend is
not able to keep up in high-load situations. In or-
der to minimize this, we enable the middleware to
skip intermediate processing steps. This is done by
combining multiple input messages by concatenat-
ing audio or text. Several middleware workers can
be run in parallel. We achieve the locality of the
state by sticky queues, where a message from the
same session is always sent to the same middleware
worker.

2) Backend request: The backend contains the
hosted models. It processes the requests without

3https://kafka.apache.org
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Figure 2: Stability detection

additional state information, is flexible to run on
any device and is shared between different sessions.
Because of the division in a stateful middleware
and a stateless backend, we are able to share the
backend and use batching of the requests.

3) Output processing: The output of a backend
request is used to send information to the next com-
ponent(s). Furthermore, the state of the correspond-
ing session is updated.

Our framework supports two modes for low-
latency speech translation. First, a revision mode
(Niehues et al., 2018) where the component (Auto-
matic speech recognition (ASR) or machine trans-
lation (MT)) can send stable and unstable outputs.
Given more context at a later time step, the com-
ponent can revise the unstable outputs. Second, a
fixed mode (Liu et al., 2020a; Polák et al., 2022)
where the component is only allowed to send stable
output. For fixed mode (and the revision mode of
the ASR component), the component needs to per-
form a stability detection (see Sections 3 and 4 and
Figure 2), i.e., determine which parts of the out-
put should be considered stable. Note that for our
streaming algorithms the backend models need to
support prefix decoding, i.e., one can send a prefix
which is then forced in the output.

Our framework is easily extendable by deploying
additional backend models for different languages,
adding new streaming algorithms in the middle-
ware or adding custom components (e.g., speaker
diarization as a preprocessing step before the ASR)
and including them in the session graph.

3 Low-latency Speech Processing

The speech processing component receives a
stream of audio packets and sends chunks of text
(transcript or translation) to the mediator. For this
two steps are run:

Input processing: First, a voice activity detec-
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tion generates a speech segment that can be ex-
tended when new packets of audio arrive. For this
we use WebRTC Voice Activity Detector (Wise-
man, 2016). Each audio frame (30ms) is classified
if it contains speech or not. Then a moving average
is calculated. If it exceeds a certain threshold, a
new segment is started. New audio is added to this
segment until the moving average falls below a cer-
tain threshold and the segment ends. Second, the
backend model (ASR or speech translation (ST))
is run. If there exist speech segments that already
ended, they are processed only once and the output
is sent as stable text, other segments are constantly
processed until they end.

Stability detection and output processing: We
use the method local agreement two (LA2) from
Polák et al. (2022). The intuition is that if the
prefix of the output stays the same when adding
more audio, the prefix should be considered sta-
ble. Let C denote the chunk size hyperparameter
(LA2_chunk_size). The fixed mode works as fol-
lows (see Figure 2): It waits until the segment con-
tains (at least) C seconds of audio (denoted by M1)
and then runs the model but does not output any
stable text. Let’s denote this first model output by
H1. After the segment contains (at least) C more
seconds of audio (denoted by M2) the model is run
again with all the audio and outputs H2. Then the
component outputs the common prefix of H1 and
H2 as stable output S2. After the segment again
contains (at least) C more seconds of audio (de-
noted by M3) the model is run again with all the
audio. However, now S2 is forced as prefix in the
ASR/ST model decoding. The model outputs H3

and the common prefix from H2 and H3 is the next
stable output S3. This procedure is continued until
the speech segment ends.

Note that the ASR/ST model has a certain maxi-
mum input size due to latency, memory and com-
pute constraints. Therefore, if this limit is reached,
the input audio to the model as well as the corre-
sponding forced prefix is cut away.

The revision mode differs from the fixed mode in
that the last hypothesis except the common prefix
is sent as unstable output. Furthermore, in the time
period until the speech segment contains again C
more seconds of audio, the currently given audio
is run through the model and the hypothesis except
the last stable output is sent as unstable output.

4 Low-latency Text Processing

The text processing component receives a stream
of (potentially revisable) text messages and sends
chunks of text (translation) to the mediator.

Input processing: First, all input text that ar-
rived is split into sentences by punctuation. Then,
the backend model (MT) is run.

Stability detection and output processing: All
sentences containing only stable text are processed
once and the output is sent as stable text. For the
other sentences containing unstable text the behav-
ior depends on the mode. If text is stable or not is
given by the speech processing component.

The revision mode works as follows: All sen-
tences containing unstable text are processed by
the backend model and the output text is sent as
unstable text. A similar approach is not possible in
the speech processing revision mode (see Section
3) since speech segments are not limited in size but
the model input size is.

For the fixed mode we use the method local
agreement from Liu et al. (2020a). The processing
is similar to the speech processing. The difference
is that the backend model is run when at least one
new word is given instead of at least C seconds
of audio. In our preliminary experiments, up to
at least five words but the results were basically
identical since the input is extended by a few words
most of the time. Furthermore, only the stable part
of the sentences containing unstable text is used as
input. This restriction is not necessary in the speech
processing component since there is no unstable
audio input.

5 Evaluation Framework

We evaluate our system in an end-to-end fashion.
That is, given an input audio, we send it to the
system and evaluate the final returned transcript and
translation. We provide an evaluation framework4

that assess the system in different aspects and logs
the results to categorized experiments on an UI
board using MLflow (Zaharia et al., 2018). We
consider different evaluation metrics as follows.

BLEU: In order to assess the translation quality,
we use case-sensitive BLEU score, calculated using
sacreBLEU (Post, 2018). We extract the final stable
translation, align it sentence-wise with the gold
reference using mwerSegmenter (Matusov et al.,
2005) before calculating the BLEU score.

4https://git.scc.kit.edu/isl/lt-middleware/
lt-evaluation
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Figure 3: Example of collecting first-unchanged mes-
sages from an unstable-to-stable message block. The
first-unchanged messages are in green.

WER: In order to assess the transcription qual-
ity of the ASR component in the cascaded setting,
we use the case-sensitive Word Error Rate (WER)
calculated using JiWER5. Similar as before, we ex-
tract the final stable transcription, align it sentence-
wise with the gold reference using mwerSegmenter
(Matusov et al., 2005) before calculating the WER.

Latency: We evaluate the latency of the system
in an end-to-end manner. Factors such as network
latency influence our latency metrics. However,
our experiments are conducted locally, thus such
factors are constant and negligible.

We define the end-to-end latency of the system
as the average time (in seconds) it takes since an
utterance is spoken until its first-unchanged trans-
lation is returned by the system. Note that the first-
unchanged translation is not necessarily already
marked as “stable" by the system.

For each message returned by the system, we
have the stable/unstable flag along with three times-
tamps, ts, te, tr. The timestamps ts and te are the
start and end time of the audio segment that aligns
to the message. The timestamp tr is when the mes-
sage was received. We collect the first unchanged
messages as follows. We split the received mes-
sages into blocks of messages marked from “unsta-
ble" to “stable". In each unstable-to-stable block,
from the last stable message, we backtrack the pre-
viously received unstable messages to find the first
ones that has prefix-overlaps with the final stable
message. The illustration is shown in Figure 3.

Once we have collected the first-unchanged mes-
sages, we can calculate the latency. We use the
same definition of delay as Niehues et al. (2016),
where the average delay of the ith message is:

d(tis, t
i
e, t

i
r) = tir −

tis + tie
2

.

5https://github.com/jitsi/jiwer
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Figure 4: Example of flickers (denoted by red arrows)
in an unstable-to-stable message block.

Then we calculate the latency as the weighted
average of the delays of all m first-unchanged mes-
sages based on their length:

D =

∑m
i=1 d(t

i
s, t

i
e, t

i
r) ∗ (tie − tis)∑m

i=1(t
i
e − tis)

.

Note that the timestamps ts and te in our la-
tency formula are calculated by the used streaming
algorithm. Therefore, we also tried another model-
independent latency metric that only uses tr. This
metric approximates the segment-message align-
ment by assuming that each word output by the
system has the duration of 0.3 second in the au-
dio. Due to the strong assumption, this metric does
not represent well the perceived latency. We only
use this metric in order to verify our main model-
dependent latency metric.

We find that the model-independent latency met-
ric and our model-dependent metric provide the
same relative ranking of the systems. This indi-
cates that the timestamps ts and te provided by the
model itself are reliable to measure latency.

Flickering rate: The flickering rate is the av-
erage number of flickers per reference word. We
count the number of flickers by looking at every
pair of consecutive messages in a message block. If
two words in the same position in the two messages
differ, then it is counted as a flicker (see Figure 4).
The flickering rate is calculated as the total number
of flickers divided by the total number of words in
the reference.

6 Experimental setup

6.1 Evaluation data

We test our system using datasets from different
language pairs. Test datasets includes:

• Test data from the IWSLT shared task (tst19,
tst20) (Anastasopoulos et al., 2021, 2022),
where the domain is TED talks.
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Test data Lang. pair Hours # Utt.
tst19 en→de 4.82 2279
tst20 en→de 4.09 1804
LT CS de→en 6.39 2454
LT nonCS de→en 2.66 1516
mTEDx es→en 2.07 1012

it→en 2.16 999
ACL dev * en→X 0.95 468

Table 1: Statistics of the test data. *Test data containing
en audio with translations into de, ja, zh, ar, nl, fr, fa, pt,
ru and tr.

Cascaded ST E2E ST
Testset C W ↓ B ↑ L ↓ B ↑ L ↓
tst19 .5 20.8 21.6 3.6 20.5 2.1

1 17.0 24.6 5.6 22.8 2.6
2 16.4 25.5 6.8 23.2 3.9
3 16.6 25.7 7.8 23.6 5.0

ACL .5 18.7 29.8 4.3 22.4 2.1
dev 1 16.7 32.6 6.2 25.4 2.7

2 16.7 34.2 7.4 26.5 4.0
3 17.2 35.2 8.6 26.2 5.3

Table 2: Quality vs. latency (in fixed mode).
C: LA2_chunk_size (s), W: WER, B: BLEU score,
L: Latency (s) of the translation output.

• The test split of Multilingual TEDx Corpus
(mTEDx) (Salesky et al., 2021), where the
domain is TED talks.

• Lecture data (LT) which we collected inter-
nally at our university. This test set include
a CS variance which includes lectures on the
Computer Science domain, and a nonCS vari-
ance which includes lectures outside of the
Computer Science domain.

• ACL development (ACL dev) set (Salesky
et al., 2023), where the domain is ACL con-
ference talks.

The detailed statistics of the test data is shown in
Table 1.

6.2 Transcription and translation models
The English ASR models are built based on
pretrained WavLM (Chen et al., 2022) and
BART (Lewis et al., 2019)6, while for Multilin-
gual ASR we utilized the XLS-R models (Babu
et al., 2021) for the encoder and the MBART-
50 model (Liu et al., 2020b) for the decoder fol-
lowing (Pham et al., 2022). On the other hand,
the translation models are based on the pretrained

6With the recipe available at here.
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Figure 5: Latency vs. quality (for the cas-
caded model) in revision mode or fixed mode.
C: LA2_chunk_size (s).

DeltaLM (Ma et al., 2021). For the en→X direc-
tion, the models are fine-tuned to optimize for ACL
talks based on Liu et al. (2023). For other direc-
tions, DeltaLM is fine-tuned on the combination of
commonly available datasets7.

Finally, for the end-to-end ST system, we used
the language-agnostic model from Huber et al.
(2022) that can decode en-de ST and de ASR.

7 Results and Discussion

7.1 Quality vs Latency trade-off

In the first experiment, we assess the trade-off be-
tween translation quality and latency by modifying
the LA2_chunk_size parameter. The results are
shown in Table 2. As can be seen, as we increase
chunk size, the translation quality improves while
the latency gets worse, both for cascaded ST and
end-to-end ST. This is expected, since higher chunk
size means longer input given to the model at each
step, thus the output has better quality due to hav-
ing more context, while the latency gets worse due
to more waiting time for collecting the input.

7.2 Revision mode vs fixed mode

Second, we report the results of comparing the
revision mode to the fixed mode with different
LA2_chunk_size values when performing cas-
caded translation on the en-de ACL dev set. As
can be seen in Figure 5, in general, revision mode
has better BLEU score yet worse latency than fixed
mode. This is expected, since for the revision mode,
when more input audio is available, the system can
correct its previous output, thus ending up having
better translation quality yet worse latency due to
the additional re-translation overhead.

7Paracrawl, UNPC, EUBookshop, MultiUN, EuroPat,
TildeMODEL, DGT, Europarl, QED and NewsCommentary.
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Figure 6: Latency vs. quality (in revision mode)
for the cascaded ST or End-to-End ST model.
C: LA2_chunk_size (s).

7.3 Cascaded vs End-to-End

Third, we report the results of comparing the cas-
caded setting to the end-to-end setting when per-
forming online translation with revision mode on
the ACL dev set. As can be seen in Figure 6, in
general, cascaded ST has better BLEU score yet
worse latency than end-to-end ST. Cascaded ST has
worse latency since it contains two components and
each component has to do computation. However,
we observe that, with a similar latency of ∼ 3.5
seconds, cascaded ST still obtains a better BLEU
score. On the other hand, end-to-end ST has a bet-
ter minimum latency that can be achieved (almost
two seconds lower than the cascaded system).

7.4 Load balancing

In order to assess the system’s capability to balance
loads, we conduct experiments on running multi-
ple sessions simultaneously using the same hosted
model, with and without scaling the system’s num-
ber of middleware workers. For speech processing,
we test parallel sessions on ACL dev en-de using
the end-to-end ST model. For text processing, we
test one cascaded ST session on ACL dev where
the number of parallel sessions is the number of
requested MT languages. In all experiments, we set
LA2_chunk_size = 2. We report only the en-de
results.

The results are shown in Table 3. As expected,
the latency gets worse as the number of parallel ses-
sions increases. Using multiple middleware work-
ers counteracts that to some extent by making sure
that the backend model is always busy and not wait-
ing for the next request. Furthermore, we see that
when the number of parallel sessions increases, the
flickering rate decreases. This is because during
higher load, fewer requests are sent to the backend
and we observe less flickering. Here our automatic
load balancing can be seen in action.

Speech processing Text processing
w s B ↑ L ↓ F ↓ B ↑ L ↓ F ↓
1 1 25.9 3.2 0.5 34.9 6.7 0.5

2 26.1 20.2 0.5 34.6 8.4 0.4
5 21.3 28.2 0.2 34.8 28.1 0.2

5 1 26.2 3.2 0.6 35.1 6.1 0.5
2 26.5 4.6 0.5 33.6 8.0 0.5
5 25.3 16.7 0.3 34.5 15.9 0.2

Table 3: Quality, latency and flickering rate when
scaling the number of sessions (with one hosted
model per language). w: number of middle-
ware workers, s: number of parallel sessions, B: Qual-
ity (BLEU score), L: Latency (s), F: Flickering rate.
LA2_chunk_size is set to 2 seconds.

8 Related work

SimulEval (Ma et al., 2020) provides an evaluation
framework for low-latency simultaneous speech
translation with a decoupled client-server archi-
tecture allowing to plug-in translation models and
stability detection policies. As the main difference
we leave the audio segmentation up to the model
whereas Ma et al. (2020) rely on a pre-segmentation
of the audio, we factor in the computational latency
in addition to the model latency and explore the
scaling behavior in multi-session scenarios, both
for a more realistic deployment scenario. Similar
to this work Franceschini et al. (2020) implement
a low-latency speech translation pipeline, however,
their architecture does not scale well to multiple
sessions and is not well suited for end-to-end eval-
uation.

9 Limitations and Conclusion

Since we run and evaluate the experiments in a
realistic real-world scenario, it is difficult to exactly
reproduce the results. The experiments are non-
deterministic, e.g., because of network latencies.
Furthermore, the results depend on the speed of the
used hardware, especially the used hardware for the
backend models. Additionally, we expect that each
streaming algorithm implemented returns start and
end timestamps. This may not be the case for all
streaming algorithms one could want to compare.

In conclusion, this paper presented a frame-
work for running and evaluating low-latency speech
translation under realistic conditions. The research
opens up new possibilities for advancing low-
latency translation systems and serves as a resource
for researchers seeking to improve the latency and
quality of real-time speech translation applications
by being able to properly evaluate different models
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and streaming algorithms.
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jar, and Alexander Waibel. 2022. Cuni-kit system for
simultaneous speech translation task at iwslt 2022.
arXiv preprint arXiv:2204.06028.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Brussels, Belgium. Association for Computa-
tional Linguistics.

Elizabeth Salesky, Kareem Darwish, Mohamed Al-
Badrashiny, Mona Diab, and Jan Niehues. 2023.
Evaluating Multilingual Speech Translation Under

Realistic Conditions with Resegmentation and Ter-
minology. In Proceedings of the 20th International
Conference on Spoken Language Translation (IWSLT
2023). Association for Computational Linguistics.

Elizabeth Salesky, Matthew Wiesner, Jacob Bremerman,
Roldano Cattoni, Matteo Negri, Marco Turchi, Dou-
glas W Oard, and Matt Post. 2021. The multilingual
tedx corpus for speech recognition and translation.
arXiv preprint arXiv:2102.01757.

John Wiseman. 2016. py-webrtcvad. https://github.
com/wiseman/py-webrtcvad. Accessed on: 03-08-
2023.

Matei A. Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Siddharth
Murching, Tomas Nykodym, Paul Ogilvie, Mani
Parkhe, Fen Xie, and Corey Zumar. 2018. Accel-
erating the machine learning lifecycle with mlflow.
IEEE Data Eng. Bull., 41:39–45.

A Detailed results

We report the overall performance of our system on
different test data and language pairs with different
settings at Table 4. In this experiment, we use the
cascaded setting with LA2_chunk_size = 2. As
can be seen, the BLEU scores drop around by one
point when we move from offline to online setting
(in fixed mode a little more), depending on the
language directions.

B Additional information

A video demonstrating the system can be found
here: Video link
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Offline Online: Revision mode Online: Fixed mode
BLEU ↑ ∆BLEU ↑ Latency ↓ Flickering rate ↓ ∆BLEU ↑ Latency ↓

TED
(en→de)

tst19 27.2 -1.3 5.4 0.5 -1.7 5.3
tst20 29.8 -1.1 5.1 0.5 -1.5 6.9

LT
(de→en)

CS 25.2 -2.0 5.6 0.6 -2.4 6.0
nonCS 28.5 -0.2 7.1 0.6 -1.2 5.7

mTEDx
(X→en)

es 31.0 -2.5 7.5 0.4 -2.6 7.6
it 31.5 -4.2 12.5 0.5 -5.1 11.6

ACL dev
(en→X)

de 36.5 -1.9 6.6 0.5 -2.0 7.5
ja 39.6 -1.6 8.4 0.1 -5.2 8.7
zh 45.3 -0.5 8.0 0.1 -4.6 8.0
ar 28.3 -0.8 6.8 0.5 -1.1 7.3
nl 42.7 -1.3 6.4 0.5 -2.5 7.4
fr 43.7 -0.4 5.9 0.5 -1.0 7.6
fa 21.8 -0.8 6.8 0.7 -1.8 7.5
pt 45.2 -1.2 6.0 0.4 -1.8 7.3
ru 13.5 -1.0 6.5 0.5 -1.2 7.4
tr 20.1 -0.9 6.6 0.5 -1.2 7.4

Table 4: Overall performance of our cascaded system with LA2_chunk_size set to 2 seconds: Quality, latency and
flickering rate. ∆BLEU: difference compared the corresponding offline setting.
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