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Abstract
Question answering (QA) systems have
reached human-level accuracy; however, these
systems are not robust enough and are vulner-
able to adversarial examples. Recently, adver-
sarial attacks have been widely investigated in
text classification. However, there have been
few research efforts on this topic in QA. In this
article, we have modified the attack algorithms
widely used in text classification to fit those
algorithms for QA systems. We have evalu-
ated the impact of various attack methods on
QA systems at character, word, and sentence
levels. Furthermore, we have developed a new
framework, named RobustQA, as the first open-
source toolkit for investigating textual adversar-
ial attacks in QA systems. RobustQA consists
of seven modules: Tokenizer, Victim Model,
Goals, Metrics, Attacker, Attack Selector, and
Evaluator. It currently supports six different
attack algorithms. Furthermore, the framework
simplifies the development of new attack algo-
rithms in QA.

1 Introduction

With the release of large and high-quality datasets
in the field of question answering (QA) (Rajpurkar
et al., 2016; Joshi et al., 2017; Trischler et al.,
2017; Kočiský et al., 2018), we witness signifi-
cant progress in this area of research. With the
aid of deep neural networks (DNNs), the newly
presented models have even reached human-level
accuracy. However, it has been shown that these
models are not yet robust enough and are vulnera-
ble to adversarial examples (Gil et al., 2019; Ren
et al., 2019).

In the context of QA systems, the model’s accu-
racy drops drastically when some adversarial sen-
tences are added to the input paragraphs (Jia and
Liang, 2017). Accordingly, extensive research ef-
forts have been conducted addressing various tech-
niques to increase the robustness of DNN models in

*These authors contributed equally to this work.

different fields. One of the most popular techniques
to overcome this issue is the so-called adversarial
training. In adversarial training, some adversar-
ial examples are used during the training phase of
the model to increase its robustness against textual
adversarial attacks (Jia and Liang, 2017; Gan and
Ng, 2019). In another research, the impact of the
knowledge distillation technique on the robustness
of QA models has been analyzed (Boreshban et al.,
2023).

Adversarial attacks have been widely investi-
gated in the field of text classification (Li et al.,
2020; Jin et al., 2020). Furthermore, OpenAt-
tack (Zeng et al., 2021) and TextAttack (Morris
et al., 2020) frameworks have been presented to
simplify the implementation and analysis of differ-
ent attack methods in text classification. However,
there has been only a limited number of efforts in
this regard for the QA systems.

The contributions of the paper can be summa-
rized as follows: 1) We modify the attack algo-
rithms that have been widely used in the field of
text classification for QA systems. 2) We show
that these modified attack algorithms can easily be
evaluated on QA systems in three different charac-
ters, words, and sentence levels. 3) We build a new
open-source framework named RobustQA, aiming
at simplifying the research on textual adversarial
attacks in QA systems. 4) We have incorporated
both adversarial text generation and data augmen-
tation in RobustQA for being used in adversarial
training methods to improve the robustness and
generalization of QA models.

In this paper, we introduce the related works
in Section 2. We compare the QA task against
text classification and describe a sample textual
adversarial attack algorithm implemented for the
QA task in Section 3. Next, we introduce the Ro-
bustQA framework modules in detail in Section 4
and demonstrate the framework’s usage in Sec-
tion 5. We present our setup and experimental
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results in Section 6. Finally, our conclusions and
future works are presented in Section 7.

2 Related works

2.1 Adversarial Sentences in Text
Classification

Adversarial attacks have been extensively stud-
ied on continuous data (Goodfellow et al., 2014;
Moosavi-Dezfooli et al., 2017); however, address-
ing these attacks on discrete data such as text (Xu
et al., 2020; Zhang et al., 2020) poses significant
challenges.

Adversarial attacks can be categorized based on
different aspects. Attacks are primarily divided into
two types of white and black boxes. In white box
attacks, the attacker has full access to the model and
its parameters. In this type of attack, the gradient
of the cost function relative to the input is used to
generate an adversarial example (Papernot et al.,
2016; Ebrahimi et al., 2018; Li et al., 2018; Wallace
et al., 2019). In the black box attack, however, there
is limited knowledge regarding the model, and thus
one can only use the output of the model to generate
an adversarial example (Jin et al., 2020; Garg and
Ramakrishnan, 2020; Li et al., 2020).

Adversarial attacks are also divided into untar-
geted and targeted categories. In untargeted attacks,
the goal is merely to cause the model to produce an
incorrect output label (Pruthi et al., 2019; Garg and
Ramakrishnan, 2020); whereas in targeted ones,
more restrictions are applied to impose a specific
wrong prediction (Gao et al., 2018; Wang et al.,
2020).

Textual adversarial attacks are divided into three
categories in terms of perturbation levels, i.e., char-
acter, word, and sentence. Character-level attacks
usually manipulate characters based on insertion,
deletion, swap, substitution, and repetition opera-
tions (Gao et al., 2018; Eger et al., 2019; Gil et al.,
2019; He et al., 2021). In word-level attacks, words
are replaced with their synonyms. In this case,
the algorithms consist of two stages. At first, re-
sources such as the word embedding (Jin et al.,
2020), language models (Li et al., 2020; Garg and
Ramakrishnan, 2020), and semantic networks (Ren
et al., 2019) are used to produce a set of pertur-
bations. In the second stage, using different algo-
rithms such as greedy search (Li et al., 2018; Ren
et al., 2019), beam search (Ebrahimi et al., 2018),
genetic algorithm (Alzantot et al., 2018), and par-
ticle swarm optimization (Zang et al., 2020), suc-

cessful queries are selected. Finally, in sentence-
level attacks, special techniques such as adding
misleading sentences to the text (Jia and Liang,
2017), paraphrasing (Iyyer et al., 2018; Ribeiro
et al., 2018; Gan and Ng, 2019; Huang and Chang,
2021), and using the autoencoder structure (Zhao
et al., 2017; Wang et al., 2020) are employed to
produce adversarial sentences.

2.2 Adversarial Sentences in QA Systems

There have been only a few research initiatives
focused on textual adversarial attacks in the field
of QA.

Jia and Liang (2017) showed that QA systems
get confused by appending misleading sentences
to the input paragraph. They introduced two algo-
rithms called AddSent and AddAny. Later, Yang
et al. (2021) improved these algorithms by intro-
ducing AddSentDivers to increase the diversity of
the generated adversarial sentences.

It has been demonstrated that paraphrasing the
questions is an alternative method for generating
adversarial sentences. In this regard, Ribeiro et al.
(2018) used the back translation technique to ob-
tain question paraphrase rules. Also, Gan and Ng
(2019) used a transformer model to produce para-
phrased questions and introduced two types of ad-
versarial questions. The autoencoder structure was
utilized in another recent research to generate ad-
versarial sentences (Wang et al., 2020).

2.3 Available Frameworks

There are several open-source libraries for building
adversarial examples on continuous data. The most
notable ones are CleverHans (Papernot et al., 2016),
Foolbox (Rauber et al., 2017), Adversarial Robust-
ness Toolbox (Nicolae et al., 2018), and AsvBox
(Goodman et al., 2020). On the contrary, a limited
number of open-source libraries operable on the
discrete data are available. SeqAttack (Simoncini
and Spanakis, 2021) is a framework for conducting
adversarial attacks on the named entity recogni-
tion problems. The most famous frameworks for
creating adversarial sentences in text classification
are OpenAttack (Zeng et al., 2021) and TextAttack
(Morris et al., 2020). Although these frameworks
are suitable for text classification, these algorithms
do not currently support QA systems.
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3 Question Answering vs. Text
Classification

3.1 Task Structure
In QA systems, the question and context are
represented as a sequence of tokens, Q =
{q1, q2, q3, ..., qn} and C = {c1, c2, c3, ..., cn}, re-
spectively. In these systems, the main goal is to
predict the answer, A, in the form of a span within
the context, A = {cj , ..., cj+k}. The returned span
includes a specific start and an end token indices of
the context paragraphs. F1 score and exact match
(EM) criteria are the two common metrics for eval-
uating QA systems.

On the other hand, in the text classification task,
the main goal is to recognize the correct class of
an input text. Due to the substantial differences
between QA and text classification tasks, the algo-
rithms designed for dealing with the attacks in the
text classification are not directly applicable to the
QA problems. The main distinctions are related to
their differences in the structure of the input data
and the goal function of attack scenarios.

3.2 Input Data Structure
In text classification of an input text X with the
corresponding ground truth label Y and the victim
model F, the goal of an attack scenario is to have
an attack set up that transforms X to X̃ with the
minimum perturbation in such a way that the victim
model predicts an incorrect label Ỹ , where Y ̸= Ỹ .

In QA tasks, every input X is composed of a
question Q and a context C.

X = x1x2 · · ·xi · · ·xn, xi ∈ {Q,C} (1)

The ground truth label Y, which is a part of the
given context with specific start and end tokens,
represents the correct answer to the given question.

Y = cj · · · cj+k cj ∈ {C} (2)

The predicted answer Ỹ is computed by consid-
ering the maximum probability for the start and
end tokens.

Ỹ = F(argmax
x∈C

P(x)) (3)

Akin to the text classification, the goal of an at-
tack scenario here is to have an attack set up that
transforms X to X̃ with the minimum perturba-
tion ∆x in a way that the victim model predicts an
incorrect answer span Ỹ, where

x̃ = x+∆x, ||∆x||p < ϵ (4)

Ỹ ̸= Y (5)

3.3 Goal Function Criteria
In both text classification and QA tasks, the goal
function of an attack scenario determines the suc-
cess of the attack on a given victim model. In
text classification, an attack scenario for a given in-
put example is regarded as successful if the model
prediction for the example is not equal to its cor-
responding ground truth label. In this task, the
goal function can be simply evaluated by a single
criterion.

However, in QA tasks, since a prediction label
includes two items (i.e., the start and the end tokens
of the predicted answer span), the goal function is
usually evaluated by both F1 and EM criteria.

3.4 Attack Methods
To demonstrate the required modifications of an
attack method to cope with the mentioned differ-
ences, we discuss the details of the changes applied
to the TextFooler algorithm (Jin et al., 2020). We
have applied similar changes to few other attack
algorithms in the new framework to make those
algorithms fit for QA tasks.

The TextFooler algorithm is a score-based tex-
tual adversarial attack that consists of two primary
steps. The first step is the word importance ranking,
in which words are sorted according to their impor-
tance. The second step is the word transformation,
which produces suitable substitutes for the words
with the highest importance level obtained from the
first step to generate an adversary example.

Algorithm 1 shows the pseudo-code of a revised
version of the TextFooler algorithm, which is com-
patible with QA tasks.

Word Importance Ranking (line 1-11) The in-
put example X, which includes context C and ques-
tion Q, accompanied by its corresponding ground
truth label Y, is passed to the algorithm. The goal
is to confuse the victim model by generating a new
question Q̃, with the minimum perturbation to Q.
One metric among the F1 score and EM measure
is used for marking an adversarial example. In Al-
gorithm 1, we use the F1 score and δ, a threshold
value empirically set to 0.9, as the goal function
criterion.
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Algorithm 1: QA Adversarial Attack by TextFooler
Input: Input example X = {Q,C} = {w1, w2, · · · , wn}, the corresponding ground truth label

Y, victim model F, victim model’s prediction P, sentence similarity function Sim(·),
sentence similarity threshold ϵ, word embeddings Emb over the vocabulary Vocab, F1
score function F1(·), goal’s F1 score threshold δ, adversarial question Q̃

Output: Adversarial example X̃ = {Q̃,C}
1 Initialization: X̃← X
2 for each word wi in Q do
3 Compute the importance score of the start and end answer span, Iwi = (Iswi

, Iewi
)

4 if F(X) = F(X\wi
) = Y then

5 (Iswi
, Iewi

)← PY(X)− PY(X\wi
)

6 else if F(X) = Y, F(X\wi
) = Ȳ, and Y ̸= Ȳ then

7 (Iswi
, Iewi

)← (PY(X)− PY(X\wi
)) + (PȲ(X\wi

)− PȲ(X))

8 end
9 end

10 Create a set W of all words wi ∈ Q sorted by the descending order of their importance score,
either using start Iswi

or average (Iswi
+ Iewi

)/2 importance score.
11 Filter out the stop words in W.
12 for each word wj in W do
13 Initiate the set of candidates CANDIDATES by extracting the top N synonyms using

CosSim(Embwj ,Embword) for each word in Vocab.
14 CANDIDATES ← POSFilter(CANDIDATES)
15 FINCANDIDATES ← {}
16 for ck in CANDIDATES do
17 X′ ← Replace wj with ck in X̃

18 if Sim(Q′, Q̃) > ϵ then
19 FINCANDIDATES ← FINCANDIDATES ∪ {ck}
20 Yk ← F(X′)
21 Pk ← FYk

(X′)
22 end
23 end
24 α = (F1(X)− F1(X′))/F1(X)
25 if there exists ck where α > δ then
26 In FINCANDIDATES, only keep the candidates ck where α > δ
27 c∗ ← argmax

c∈FINCANDIDATES
Sim(Q,Q′

wj→c)

28 Q̃← Replace wj with c∗ in Q̃

29 return {Q̃,C}
30 else if min

ck∈FINCANDIDATES
Pk < PYk

(X̃) then

31 c∗ ← argmin
ck∈FINCANDIDATES

Pk

32 Q̃← Replace wj with c∗ in Q̃

33 end
34 end
35 return None
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First, a copy of X is taken as a potential adversar-
ial example X̃. Then, question Q is systematically
altered for n number of times by in turn deleting the
token wi. Each altered question is then passed to
the victim model to predict the answer span based
on the highest probability values of the start and
end tokens. Next, the model predictions for the
initial question (i.e., Y) and that of each altered
question (i.e., Ȳ) are compared. Accordingly, the
importance score of the start and end tokens of the
answer span Iwi = (Iswi

, Iewi
) for each altered ques-

tion is computed by either line 5 (i.e., in the case
of equality) or line 7 (i.e., otherwise).
PY(X) and PȲ(X) respectively represent the

probability values of the start and end tokens of
the answer span provided by the ground truth la-
bel Y and that of the label Ȳ predicted by the at-
tacked model for the original question X. Similarly,
PY(X\wi

) and PȲ(X\wi
) respectively represent

the probability values of the start and end tokens of
the answers predicted by the original and attacked
model for the perturbed question, in which wi has
been omitted from the original question.

In line 10, a set of W of all words wi ∈ Q is
created and sorted by the descending order of their
importance score (i.e., using Iswi

or (Iswi
+ Iewi

)/2).
In our experiments, we have chosen Iswi

to compute
the importance score.

Word Transformation (line 12-34) In lines 12-
14, using the Cosine similarity metric, a set of can-
didates CANDIDATES is created by extracting the
top N synonyms of word wj with the same part of
speech as that of wj .

In lines 15 to 23, each word wj is in turn substi-
tuted by a candidate (i.e., ck) to create an altered
example (i.e., X′). Among all the candidates, those
that cause the similarity between the potential ad-
versarial question (i.e., Q̃) and the altered question
(i.e., Q′) to exceed a predefined threshold (that we
empirically set it to 0.7), are considered as final
candidates. Each final candidate along with its pre-
dicted label (i.e., Yk) and the probability values of
its start and end tokens (i.e., Pk) are stored.

In lines 24-33, at first, the eligibility of each final
candidate as an adversarial example is determined
by computing an α value for the candidate and
comparing the value against a predefined threshold
δ. If a candidate modifies the initial question Q in
a way that results in an altered question Q′ having
the maximum semantic similarity with Q, then Q′

will be chosen as an adversarial question. However,

if a candidate does not satisfy this condition, one of
the final candidates with the least confidence score
is instead selected.

In RobustQA, we modified TextFooler (Jin et al.,
2020), VIPER (Eger et al., 2019; He et al., 2021),
Genetic (Alzantot et al., 2018), BERT Attack
(Li et al., 2020), PWWS (Ren et al., 2019), Se-
memePSO (Zang et al., 2020), TextBugger (Li
et al., 2018), SCPN (Iyyer et al., 2018), and Deep-
WordBug (Gao et al., 2018) algorithms to be com-
patible with the QA systems. Note that all the men-
tioned modifications preserve the nature of these
attack algorithms.

4 The RobustQA Framework

We have developed a new attack framework named
RobustQA for applying text adversarial attack algo-
rithms to QA systems. This framework is an exten-
sion of OpenAttack (Zeng et al., 2021), which has
been designed for implementing text classification
adversarial attacks. RobustQA consists of seven
modules, depicted in Figure A.1:

Tokenizer. The tokenizer module of RobustQA
supports multiple tokenization approaches, includ-
ing word-, sub-word-, and character-level tokeniza-
tion. It maintains the consistency between the to-
kenization of the original sample and that of the
adversarial one, enabling the effective evaluation
of the attack algorithms. Furthermore, it currently
supports the Stanford question answering dataset
(SQuAD) dataset (Rajpurkar et al., 2016). How-
ever, it can be extended to support any other QA
datasets, such as TriviaQA (Joshi et al., 2017),
NewsQA (Trischler et al., 2017), etc.

Victim Model. The victim model module sup-
ports the QA-based models. An extended version
of this module is implemented to integrate Hug-
gingFace Transformer-based models*. This mod-
ule contains multiple methods required for exe-
cuting different adversarial attack scenarios in Ro-
bustQA. These methods can be overridden or ex-
tended for any desired customized attack, as they
have access to all the sub-layers of the model’s
output and perform their operation as middleware.

Goals. The primary target of the goal module
is to determine if an input sample is eligible as
an adversarial candidate. The candidate sample
is regarded as an eligible one if it can confuse the
victim model and diminish its performance in terms
of EM or F1 score metrics. Defining a custom goal

*https://huggingface.co/
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for new QA attacks is achievable by extending the
goal module.

Metrics. The evaluation metrics of the attack
scenarios can be selected or extended with this
module. As discussed in Appendix B, the evalua-
tion metrics specific to the QA task (i.e., EM and F1
score) are enabled by default. Other metrics such
as edit distance, fluency, grammatical errors, modi-
fication rate, and semantic similarity are available
for selection.

Attacker. The attacker is an abstract module
with a default implementation of all the required
tools and logic to define an attack algorithm on a
given QA victim model. Based on the F1 score met-
ric and a predefined threshold value, an attack goal
specific to the given QA task is defined and used as
a criterion to determine the adversary potential of
different input examples. The primary method of
creating a custom QA attack algorithm is to extend
the QA attacker module. Various types of adversar-
ial attack algorithms are derived from this module
in RobustQA, ready for experimentation.

Attack Selector. The attack selector module fa-
cilitates the initiation of an attack scenario. This
module enables effortless selection and instanti-
ation of the victim model, tokenizer, dataset, at-
tacker, and evaluation metrics. It also performs data
sampling and preparation. An attack scenario is
easily configured by passing the preferred settings
to the attack selector module. Further comprehen-
sive analysis of the attack algorithms is possible
by providing additional customized metrics to this
module.

Evaluator. The execution and evaluation of the
QA attack algorithms take place in the evaluator
module. Attacks performance is evaluated from dif-
ferent aspects: (1) the attack success rate indicates
the percentage of the attacks that fool the victim
model and produce false predictions; (2) the modifi-
cation rate is the percentage of the modified tokens
in an adversarial example compared to the input
example; (3) the fluency of adversarial examples
are computed by perplexity by GPT-2 (Radford
et al., 2019); (4) the grammatical errors of each
adversarial example is compared to that of the orig-
inal example, using an available language tool; (5)
the semantic similarity between an input example
and an adversarial example is computed using a
universal sentence encoder (Cer et al., 2018); and
finally (6) the average time devoted to the query
and attack execution is used to measure the efficacy

of different attacks.

5 Toolkit Usage

The RobustQA interface empowers users to exe-
cute attack scenarios either programmatically, uti-
lizing the Python programming language, or via a
command-line prompt. Appendix D demonstrates
an example of the toolkit usage through command-
line interface and code. Moreover, some adver-
sarial examples generated by different attack algo-
rithms are depicted in Appendix E.

6 Experiments

Utilizing RobustQA, we have evaluated the per-
formance of six different adversarial attack algo-
rithms on the large uncased Bidirectional Encoder
Representations from Transformer (BERT) model
(Devlin et al., 2019) using the SQuAD dataset, ex-
plained in Appendix C. Moreover, we have aug-
mented the training set of SQuAD with an addi-
tional 10% adversarial examples generated through
the BertAttack algorithm to evaluate the robustness
of a given victim model trained by the adversar-
ial training technique. In these experiments, we
have considered multiple metrics to evaluate the
quality of generated adversarial examples. The re-
sults of our experiments with RobustQA and our
system setup are presented in Appendices F and G,
respectively.

7 Conclusion

In this article, we showed the effect of various
textual adversarial attack algorithms in character,
word, and sentence levels on QA systems. We
also developed an open-source framework, named
RobustQA, for the field of textual adversarial at-
tack on QA systems, which consists of seven pri-
mary modules. This new framework offers dif-
ferent features that are easily customizable for
applying existing or designing new algorithms,
along with efficient analysis of attack scenarios.
As our future work, this framework can be fur-
ther extended to include other attack algorithms.
We can also provide more functions and tools
for further research in the context of attacks and
defense within QA systems. The source code
and documentation of RobustQA are available at
https://github.com/mirbostani/RobustQA.
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Limitations

Although RobustQA is reliable for implementing
and evaluating textual adversarial attacks on QA
models, a limitation may arise in certain attack al-
gorithms due to their high resource requirements.
Specifically, in some cases, the execution of the
attack algorithms requires a high level of GPU
resources and CPU iterations. Like many other
deep learning algorithms, adversarial text genera-
tion and adversarial training heavily rely on GPU
resources. As the augmented training set grows, the
mentioned procedures demand a substantial share
of GPU power. This requirement imposed some
constraint on the extent of our experiments.

Due to the intricacies of the QA domain and the
diverse nature of attacks in this domain, it was not
feasible for us to seamlessly integrate all of them.
Some algorithms could perfectly align with spe-
cific QA architectures, while others might require
some customizations. Although the required tools
for implementing any adversarial attack algorithm
can be embedded within the RobustQA framework,
the challenge of adapting all the attack algorithms
hindered the variety of our experiments conducted
in this study.

Ethics Statement

The primary focus of this study has been on en-
hancing the robustness of NLP models to make
these models less vulnerable to potential misusage.
We foresee no ethical issues arising from the algo-
rithms and techniques introduced in this study. All
the datasets, tools, and libraries employed in this
study are open-source and publicly accessible.
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A Architecture

RobustQA is the first open-source framework for
textual adversarial attack analysis in QA systems.
As shown in Figure A.1, it consists of seven mod-
ules: Tokenizer, Victim Model, Goals, Metrics,
Attacker, Attack Selector, and Evaluator. Currently,
six different adversarial attack algorithms have
been implemented in this framework.

B Evaluation Metrics

For the evaluation purpose, we have employed EM
and F1 score criteria, which are regarded as the
standard metrics for evaluating QA systems (Ra-
jpurkar et al., 2016). The F1 measure represents
the average overlap between the ground truth and
the predicted answers. On the other hand, the EM
measure demonstrates the percentage of those re-
sponses that exactly match the ground truth answer.
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MODEL="bert-large-uncased-whole-word-masking\
-finetuned-squad"
python qa.py \

--use_cuda \
--victim_model_or_path "$MODEL" \
--victim_tokenizer_or_path "$MODEL" \
--dataset "squad" \
--dataset_split "validation[0:1000]" \
--attack_recipe "textfooler" \
--batch_size 8 \
--language "english" \
--use_metric_f1_score \
--use_metric_exact_match \
--use_metric_edit_distance \
--use_metric_fluency \
--use_metric_grammatical_errors \
--use_metric_modification_rate \
--use_metric_semantic_similarity \
--use_metric_jaccard_char_similarity \
--use_metric_jaccard_word_similarity

Figure D.1: Executing the TextFooler attack on
BERTLARGE via command-line interface.

C Datasets

The SQuAD v1.1, introduced in 2016 by (Ra-
jpurkar et al., 2016), is a reading comprehension
dataset containing 107,785 question-answer pairs
derived from 536 Wikipedia documents. In this
version of SQuAD, the answer to each question
is a span of the text extracted from the associated
paragraph in the document. The training and vali-
dation datasets contain 87,599 and 10,570 question-
answer pairs, respectively.

D Usage Examples

Figure D.1 is an example demonstrating the usage
of the RobustQA framework through the command-
line interface. The TextFooler attack algorithm
is executed on the BERTLARGE model employing
the first 1000 validation examples of the SQuAD
dataset.

The results of the TextFooler attack on the
BERTLARGE model along with all the computed
metric values are summarized in Figure D.2.

The same attack scenario can be executed by
code using the Python programming language
demonstrated in Figure D.3.

E Adversarial Examples

In this section, the generated adversarial examples
of three attack algorithms are presented. The orig-
inal and adversary questions are depicted in Ta-
ble E.1. Other fields of the generated adversarial

Figure D.2: The results of the TextFooler attack on
BERTLARGE.

examples, such as "context" and "answers", are
the same as the original instance from the SQuAD
dataset.

F Results

In this section, we present the evaluation results of
six different adversarial attack algorithms imple-
mented with the RobustQA framework. The exper-
iments have been performed on the BERTLARGE
victim model employing the first 1000 validation
examples from SQuAD dataset. The original F1
score and EM measure of the victim model, calcu-
lated before carrying out the attack algorithms, are
72.3% and 57.1%, respectively. The victim model’s
performance results are summarized in Table F.1.

Furthermore, we have expanded the training
dataset of SQuAD by combining an additional
10% of adversarial examples generated through the
BertAttack algorithm using the RobustQA frame-
work. The augmented training dataset is used in
training the BERTLARGE model. Finally, to demon-
strate the effect of adversarial training on QA mod-
els, we have evaluated this model on six differ-
ent adversarial attack algorithms using RobustQA.
The results of the evaluation on 1000 validation
examples of from the SQuAD dataset is shown in
Table F.2.

G Experiment Setup

The computational experiments in this study were
conducted on a system with an Intel Core i7-8700K
CPU 3.70GHz 6-Core, a GeForce GTX 1080 8GB
vRAM, and 64GB of RAM.
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from qa.victim.question_answering.transformers import TransformersQuestionAnswering
from qa.attackers.textfooler import TextFoolerAttacker
from qa.metric import QAScore, EditDistance
from qa.attack_eval import AttackEval
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
from datasets import load_dataset

model_name = "bert-large-uncased-whole-word-masking-finetuned-squad"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
victim = TransformersQuestionAnswering(
model=model,
tokenizer=tokenizer,
embedding_layer=model.bert.embeddings.word_embeddings,
device="cuda",
max_length=512,
truncation=True,
padding=True,
batch_size=8,
lang="english"

)
dataset = load_dataset("squad", split="validation[0:1000]")
attacker = TextFoolerAttacker(tokenizer=victim.tokenizer, max_length=512)
metrics = [
QAScore(victim, "f1", "orig"),
QAScore(victim, "f1", "adv"),
QAScore(victim, "em", "orig"),
QAScore(victim, "em", "adv"),
EditDistance()

]
evaluator = AttackEval(attacker, victim, metrics=metrics)
evaluator.eval(dataset, visualize=True, progress_bar=True)

Figure D.3: Executing the TextFooler attack on BERTLARGE via Python code.

Question
Original What part of Luther’s career was one of his most productive?
TextFooler what portion of luther’s calling was one of his most productive?

Original What high maintenance part did Tesla’s AC motor not require?
Sememe PSO what in maintenance percentage did tesla’s ac motor not call?
Original Who was the main performer at this year’s halftime show?
PWWS who was the principal performer at this year’s halftime show?

Table E.1: Adversarial examples of three attack algorithms are showcased. The TextFooler, Sememe PSO, and
PWWS algorithms are executed on the original question of the given instances from the validation set of the SQuAD
dataset. The modified segments influenced by each attack are highlighted using bold text.
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TextFooler PWWS Genetic Sememe
PSO BertAttack DeepWordBug

Successful Instances 230 377 710 639 794 484
Attack Success Rate 0.23 0.37 0.71 0.63 0.79 0.48
Running Time 0.30 0.04 6.78 0.38 0.38 0.02
Victim Model Queries 85.81 61.33 1714.90 106.26 91.18 15.16
Exact Match (Original) 57.1 57.1 57.1 57.1 57.1 57.1
Exact Match (Adversary) 46.2 39.4 17.7 23.5 12.5 31.6
F1 Score (Original) 72.3 72.3 72.3 72.3 72.3 72.3
F1 Score (Adversary) 59.1 50.8 23.2 30.3 17.2 40.7
Levenshtein Edit Distance 1.66 1.93 2.37 1.98 2.19 4.09
Fluency 1765.1 2101.3 2250.3 1719.6 941.7 1274.6
Word Modification Rate 0.15 0.16 0.22 0.19 0.32 0.37
Semantic Similarity 0.84 0.79 0.76 0.79 0.83 0.55
Jaccard Char Similarity 0.91 0.90 0.89 0.89 0.89 0.80
Jaccard Word Similarity 0.46 0.43 0.41 0.43 0.44 0.34

Table F.1: QA adversarial attacks evaluation on BERTLARGE using RobustQA.

TextFooler PWWS Genetic Sememe
PSO BertAttack DeepWordBug

Successful Instances 263 394 667 620 746 566
Attack Success Rate 0.26 0.39 0.66 0.62 0.74 0.56
Running Time 0.29 0.04 7.51 0.37 0.39 0.02
Victim Model Queries 83.56 61.19 1845.8 104.49 94.56 15.24
Exact Match (Original) 47.8 47.8 47.8 47.8 47.8 47.8
Exact Match (Adversary) 38.7 34.8 17.0 21.9 13.5 24.0
F1 Score (Original) 64.2 64.2 64.2 64.2 64.2 64.2
F1 Score (Adversary) 52.0 47.1 23.7 29.9 19.7 31.9
Levenshtein Edit Distance 1.54 1.85 2.37 1.90 2.08 4.62
Fluency 1130.7 1879.5 1642.2 1445.1 1001.3 1174.8
Word Modification Rate 0.15 0.15 0.23 0.19 0.31 0.42
Semantic Similarity 0.86 0.80 0.77 0.80 0.83 0.54
Jaccard Char Similarity 0.92 0.91 0.89 0.90 0.90 0.79
Jaccard Word Similarity 0.46 0.45 0.42 0.44 0.45 0.31

Table F.2: QA adversarial training evaluation on BERTLARGE trained on SQuAD and 10% of adversarial examples
generated by the BertAttack algorithm in RobustQA.
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