
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 311–317
December 6-10, 2023 ©2023 Association for Computational Linguistics

MiniChain: A Small Library for Coding with Large Language Models

Alexander M. Rush
srush.research@gmail.com

Hugging Face
Cornell Tech

Abstract
Programming augmented by large language
models (LLMs) opens up many new application
areas, but also requires care. LLMs are accurate
enough, on average, to replace core functional-
ity, yet make basic mistakes that demonstrate a
lack of robustness. An ecosystem of prompting
tools, from intelligent agents to new program-
ming languages, has emerged with different
solutions for patching LLMs with other tools.
In this work, we introduce MiniChain, an opin-
ionated tool for LLM augmented programming,
with the design goals of ease-of-use of prototyp-
ing, transparency through automatic visualiza-
tion, and a minimalistic approach to advanced
features. The MiniChain library provides core
primitives for coding LLM calls, separating
out prompt templates, and capturing program
structure. The library includes demo imple-
mentations of the main applications papers in
the area, including chat-bots, code generation,
retrieval-based question answering, and com-
plex information extraction. The library is
open-source and available at https://github.
com/srush/MiniChain, with code demos
available at https://srush-minichain.hf.
space/, and video demo at https://www.
youtube.com/watch?v=VszZ1VnO7sk.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020) are a transformative technology that make it
possible to develop novel AI applications. Out of
the box they perform extremely well across many
different domains including code generation, ques-
tion answering and decomposition, fact retrieval,
information extraction, and dialogue to name a few,
as well as entirely novel task domains. However,
while demonstrating these novel behaviors, they
also struggle in basic areas such as mathematical
reasoning (Hendrycks et al., 2021), code execu-
tion (Liu, 2022), specific document lookup (Guu
et al., 2020), and handling long contexts (Shaham
et al., 2022).

The gap between the novel general-purpose abil-
ities and low-level deficiencies in known areas, has
motivated significant research into multi-stage sys-
tems, colloquially chains, that combine the use of
LLMs with more basic computation blocks and
calls to other classical tools. This intermediary
software ecosystem describes compositional struc-
ture for how the LLM interacts with the scaffolding
around it.

Despite the agreed upon problem, there are many
different approaches being pursued simultaneously
in the open-source community. Systems like Auto-
GPT (AutoGPT) utilize a fully autonomous agent
to direct the choice of supplementary tooling. Other
systems like LMQL (Beurer-Kellner et al., 2023)
propose a new query language that is able to fully
guide and constrict the LLM. In between, the pop-
ular LangChain (Chase, 2022) software provides
a full-service toolkit for working with many of
the different paradigms, from agents to vector-
databases to chat bots with memory. The diver-
sity of these systems indicates a broad and open
challenge in designing tools that best facilitate pro-
grammer interaction with LLMs.

In this white paper, we propose a system with a
different goal along this design space. MiniChain,
is an implementation of the prompt chaining
paradigm that can support widely used chaining
patterns while remaining significantly simpler than
comparable libraries. MiniChain is designed with
three goals: a) ease-of-use, it should be indistin-
guishable from standard python code, b) trans-
parency, it should be trivial for the user to introspect
and follow all AI calls, c) minimal, it should not
implement features that can be done easily with
code.

The library itself and the underlying visualiza-
tion tool are written in python and follow standard
coding conventions. The library aims to be under-
standable by researchers and is contained in one
file. However, it is also meant to be complete, and

311

https://github.com/srush/MiniChain
https://github.com/srush/MiniChain
https://srush-minichain.hf.space/
https://srush-minichain.hf.space/
https://www.youtube.com/watch?v=VszZ1VnO7sk
https://www.youtube.com/watch?v=VszZ1VnO7sk

be possible to implement contemporary research
on the topic. To demonstrate this, the whitepaper
comes with an implementation of recent prompt-
ing research at https://srush-minichain.hf.
space/. In addition there is a video demo describ-
ing its use at https://www.youtube.com/watch?
v=VszZ1VnO7sk.

2 Related Work

Programming with interleaved LLM calls is a very
recent phenomenon, and so there are relatively com-
parable systems. Of the related systems, many ex-
ist as open-source libraries or as demo code, and
it is difficult to categorize their evolving features.
Roughly, prompt chaining systems can be divided
into five groups:

Toolkits for calling LLMs and managing state.
Of these the most representative and important is
LangChain (Chase, 2022), a Python library for
building LLM applications supporting multiple
paradigms including explicit chaining, agent-based
modeling, and vector lookups. Dust (Dust) pro-
poses a different toolkit approach using Rust as a
backend.

Programming languages and domain specific
languages (DSLs) to support programming with
prompts. These include LMQL (Beurer-Kellner
et al., 2023) a DSL for constraining model out-
put, Microsoft’s Semantic Kernel (Microsoft, a),
a heavy-weight toolkit supporting many differ-
ent prompting paradigm across languages, and
Demonstrate-Search-Predict (Khattab et al., 2022)
a DSL describing systems that integrate retrieval
and LLM decision making.

Collections of tools designed for LLM usage.
Llama-index (Liu, 2022) is a collection of data re-
sources and software meant to help LLMs respond
to targeted queries. Other approaches focus on
collecting additional models to consult, e.g. Hug-
gingGPT/JARVIS (Shen et al., 2023), or open APIs
to utilize as in Taskmatrix (Liang et al., 2023).

LLM toolkits designed to provide prompts for
specific tasks. These libraries, such as Promp-
tify (Pal, 2022), collect good versions of prompts
that help solve specific zero-shot or few-shot tasks.
These toolkits are less about the chaining compo-
nent, but provide clear and usable prompt templates
for the individual prompts. Many of the other li-
braries also provide clear prompts as part of their
system.

Autonomous agents with prompt-supported tools.

The goal of these systems is less to be integrated
into software, and more to propose a different,
(and more chaotic) way to solve specific prob-
lems through repeated prompting to determine and
solve subtasks with external tools. AutoGPT and
BabyAGI (AutoGPT; Nakajima) are the most well-
known systems in this category.

Of these systems, MiniChain can be seen as fit-
ting between the first and second category. It is
an embedded domain specific language in Python
with a minimal toolkit supporting common prompt-
chaining paradigms.

3 Programming with LLMs

Let us begin by considering a practical example of
chaining language models. Large language models
have trouble with computing mathematical equa-
tions due to the limitations of fixed depth trans-
former models. For example, at the time of this
writing asking Google Bard 1 to “sum the numbers
10 through 15” yields a confident assertion that the
answer is 60.

However, researchers have noted that they are
extremely good at code generation, and can map
natural language descriptions of math problems
into usable code, e.g. (Gao et al., 2023). This code
can then be run to produce an answer. This mo-
tivates the base case for chaining. Given a word
problem, we a) describe to the LLM what we want
to do and have it convert it to code, and then b)
run the code in an interpreter to produce the result.
We will think of both of these steps as “prompt-
ing”, i.e. first prompt the LLM and then prompt
the interpreter.

The MiniChain API has the user describe both
of these steps using simple functions. First we
describe how to ask to map the problem to code.

@prompt(OpenAI(),
template_file="math.pmpt.tpl")

def math_prompt(model, query):
"Call GPT with a Jinja template"
return model(dict(question=query))

The function takes two arguments, a special
model argument representing the LLM and a user
argument for the query to convert to code. The
key additional component is the @prompt decora-
tor which tells us which model to use (in this case
the default OpenAI model), as well as a template
file with the details of the prompt to use.

1https://bard.google.com/u/2/

312

https://srush-minichain.hf.space/
https://srush-minichain.hf.space/
https://www.youtube.com/watch?v=VszZ1VnO7sk
https://www.youtube.com/watch?v=VszZ1VnO7sk
https://bard.google.com/u/2/

Now let’s look at the prompt itself stored as a
Jinja Template 2. The prompt is a few-shot descrip-
tion of the task itself. It contains several examples
of questions and code outputs, as well as a template
“hole” question to fill in with the user question be-
fore generating. (This format is inspired by the
PromptSource system (Bach et al., 2022))

Question:
A robe takes 2 bolts of blue fiber
and half that much white fiber.
How many bolts in total does it take?
Code:
2 + 2/2
Question:
{{question}}
Code:

Next we describe the code for running this output
in a Python interpreter. We treat all external models
in the same manner, so the interface to the python
interpreter behaves the same as an LLM. Instead
of defining the prompt in its own file, we use the
option to write the Jinja code into the decorator.

@prompt(Python(),
template="import math\n{{code}}")

def python(model, code):
"Call Python interpreter"
code = "\n".join(

code.strip().split("\n")[1:-1])
return model(dict(code=code))

Given these two prompt construction functions,
in the last step we can apply the chaining to produce
our output. The API takes a question and then
produces an answer by running the two together.

def math_demo(query):
"Chain them together"
return python(math_prompt(query))

However, while this last step looks natural, the
semantics are a bit more complex. The MiniChain
library uses lazy streams throughout, so this last
step does not call the LLMs, but produces a com-
pound Prompt object. This object has access to
the entire graph of prompt operations constructed
in this chain, roughly analogous to the backprop
graph in autodifferentiation libraries.

To compute the final output for a user query we
need to instantiate and run the chain.

2https://jinja.palletsprojects.com/en/3.0.x/

math_demo("""What is the sum of the
powers of 3 (3^i) that
are smaller than 100?

""").run()

4 Visualizing the LLM Interactions

Since the system uses lazily instantiated chain of
prompts with explicit prompt templates, it has full
transparency into each step of the prompting pro-
cess. This design makes it easy to extract and con-
trol the intermediate states of the system before and
during runtime.

One particular benefit of this transparency is that
it facilitates automatic interactive visualization and
debugging. MiniChain includes a full visualization
library built in based on the Gradio visualization
library 3. The visualization does not require any
additional code, beyond what was shown in the
previous section, and can be launched with the
following command.

show(math_demo,
examples=[...],
subprompts=[math_prompt, python],
out_type="markdown")

This command creates an automatic interactive
visualization UI, which is shown in Figure 1. Start-
ing from a text input, it kicks off and runs each step
of the lazy chain showing the intermediate steps
and output from the system.

The visualization shows each of the prompts,
responses, model uses and the chain structure. Ex-
panding the ‘. . . ‘ will show additional low level
information like the raw template, variables used,
and the commands for calling the underlying LLM
model.

The visualization mode of the library also sup-
ports additional modalities. Minichain supports the
ability to utilize models that are non-text based,
such as images, video, and audio. In Figure 2, we
have the model first write a story and then chain
that with a Stable Diffusion model that draws the
output into an image.

In addition to being lazy, the graph used in
MiniChain is by default streaming. This means
that the visualization can display partial outputs
from a call to an LLM in real-time. For a slow
model like GPT-4, showing intermediate results as

3https://www.gradio.app/

313

https://jinja.palletsprojects.com/en/3.0.x/
https://www.gradio.app/

Figure 1: Automatic interactive visualization of the
Math prompt showing input and outputs.

they are generating presents a much improved user
experience. Practically this is configured through
a customization of the prompt call. For example,
in one of the examples we extract a table from a
document as a CSV file. This code will convert
the output to a well-formatted HTML table in real-
time.

def to_html(out):
return "..."

@prompt(OpenAI(),
template_file="table.pmpt.txt",
gradio_conf=GradioConf(
block_output=gr.HTML,
postprocess_output = to_html)

)
def extract(model, passage):

return model(dict(passage=passage))

5 Use-Cases

MiniChain is an opinionated library, and one of the
goals is to not build additional features that are not
related to chaining into the library. We argue for
this minimality, by showing how popular prompt
paradigms can be implemented without custom

Figure 2: Visualization of a tool-use prompt-chain with
image generation.

support.

5.1 Retrieval Augmentation
The process of chaining becomes more interesting
if we want to allow intermediate processing and
computation in addition to prompted calls to large
language models. One popular use-case is to store
dense embeddings in a vector database in order
to support retrieval augmented question answering
using large language models. In this section we
consider the example of a question answering about
the Olympics based 4. The chain will a) compute
the embedding of a passage, b) use it to lookup a
corresponding Wikipedia article, c) use this article
to answer the question.

We begin with a similar prompt as before, using
an embedding template to process the question into
a vector embedding with an LLM.

@prompt(HuggingFaceEmbed(),
prompt="emb.pmpt.tpl")

def embed(model, query):
return model(dict(question=query))

Next we need to look up this embedding in our
vector database. Oftentimes it is overkill to have
a full vector database, so we can simply use a lo-
cal in-memory matrix to do this lookup. Here we
use HuggingFace Datasets (Lhoest et al., 2021) to
create our “vector database” by adding a FAISS
index (Johnson et al., 2017).

d = datasets.load_from_disk("oly.data")
d.add_faiss_index("embeddings")

To use this vector lookup in the chain, we need to
inject Python code into our LLM chain. We do this

4Used as an example in https://github.com/openai/
openai-cookbook/blob/main/examples/fine-tuned_
qa/olympics-2-create-qa.ipynb

314

https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb
https://github.com/openai/openai-cookbook/blob/main/examples/fine-tuned_qa/olympics-2-create-qa.ipynb

with the transform() annotation, which allows us
to lift a non-prompt to a function in the LLM chain.
This function returns the k nearest neighbors.

@transform()
def neighbors(inp, k):

return d.get_nearest_examples(
"embeddings", np.array(inp), k)

Finally we introduce a prompt that uses the near-
est neighbors and the original question to answer
and construct the chain itself.

@prompt(OpenAI(),
template_file="qa.pmpt.tpl")

def answer(model, query, neighbors):
return model(dict(question=query,

docs=neighbors))

def qa(query):
n = neighbors(embed(query), 3)
return answer(query, n)

5.2 Agents and Tool Use
There has been significant excitement over the de-
velopment of Agent based systems for LLMs that
have the ability to process a confirmation and make
use of various tools, such as AutoGPT (AutoGPT).
While MiniChain does not have agent based behav-
ior built in, it does have API features that make
these systems possible to construct. A “tool” in
MiniChain is just represented as having multiple
models that can be called in a prompt. Prompts
can be setup so that they can dynamically select
which tool they should call next. This enables trans-
parency in the visualization, while also maintaining
each of use.

More tangibly, if we have a set of tools from
some repository such as TaskMatrix (Liang et al.,
2023), then we can have the model decide using
plain python which to utilize.

tools = {tool1, tool2, ... }
@prompt(tools)
def tool_use(model, selector, command):

return model(command,
tool_num=tools[selector])

To build an Agent-based system all that is re-
quired is to combine this with a prompt and parsing
command to determine which tool should be used.
Here’s an example of the prompt instructions given
to the model and a parsing function.

Thought: Do I need to use a tool? Yes
Action: the action to take, should be
one of
[{% for tool in tools.keys()%}
{{tool[0]}},
{% endfor %}]
Action Input: the input to the action

@transform()
def tool_parse(out):

lines = out.split("\n")
if lines[0].endswith("Yes"):

return lines[1], line[2]
else:

return Break()

Where Break() is a command to stop the chain
from processing.

5.3 Chatbots and Memory
Given the fixed-length memory of LLMs, it is im-
portant to utilize available model context for higher-
level tasks such as chat-like behavior. As such,
libraries for chaining have devoted significant over-
head to abstractions of memory to maintain previ-
ous contextual information.

MiniChain does not directly handle this problem,
and instead relies on Python. Since chains are lazy
and immutable, they do not provide any mechanism
to maintain explicit state. To simulate mutability,
the user needs to update and maintain their own his-
tory. Python support for easy immutable containers
makes this relatively straightforward.

As an example, let us consider a chat example
with a model that needs to remember the last N
responses it has made to the user. We store this in
a state data structure.

@dataclass(frozen=True)
class State:

memory: List[Tuple[str, str]]
human_input: str = ""
...

We can then use this memory with a chain where
at each step we update the state.

@prompt(OpenAI(), template_file="...")
def chat_response(model, state):

return model(state)

@transform()

315

def update(state, outp):
return state.push(outp.split()[-1])

To construct the chain the main loop is just a for-
loop passing the new state back to the next iteration
of the chat_response.

6 Experimental Features

6.1 Auto-Prompts from Types

Utilizing LLMs in code requires having some cer-
tainty as to the intermediate types of the variables
being produced. In practice even powerful mod-
els like GPT-4 have trouble consistently producing
outputs of the expected form. MiniChain imple-
ments methods for notating and describing types.
Specifically it includes a type_to_prompt method
that allows users to specify specific types that they
want the system to extract. It then uses this type
specification to describe to the model the format.

@dataclass
class Player:

player: str
stats: List[Stat]

@prompt(OpenAI(), template_file="...")
def stats(model, passage):

return model(dict(passage=passage,
typ=type_to_prompt(Player)))

@transform()
def to_data(s:str):

return [Player(**j)
for j in json.loads(s)]

A similar approach was recently implemented
in TypeChat (Microsoft, b), a system that uses
Javascript type annotations to automatically pro-
duce prompts and ensure adherence.

6.2 Back-tracking

LLMs in code is inherently a non-deterministic
process. Even at temperature 0, many LLMs do
not return deterministic results 5. This behavior in-
creases the importance of error checking within the
chain itself. The lazy nature of Minichain makes it
feasible to support handling errors through an ex-
plicit failure mechanism, and even allow the chain
to back-up and retry its search again. Previous

5https://twitter.com/BorisMPower/status/
1608522707372740609

nodes in the chain will be able check the cause
of the future failure and even update their prompt.
This mechanism can be used to implement error
correction by pointing out the failures of the output
and revising based on failed output.

7 Conclusion

We describe MiniChain, a software toolkit for
prompt chaining. The library focuses on creat-
ing an explicit chain of prompts each of which are
simple Python functions. Each prompt separates
out the descriptive language from the actual chain
logic, and transformation logic can be specified
with standard Python code. The system is trans-
parent, which allows automatic interactive visual-
ization with different modalities, streaming, and
detailed debugging. The core language is minimal,
but powerful enough to implement core prompt
paradigms, such as retrieval, chat-bots, and tool-
use. We hope this work demonstrates some of the
possibilities of prompt programming, and encour-
ages others to think about the APIs of these systems
and how LLMs will integrate into software.

References
AutoGPT. Auto-GPT: An experimental open-source

attempt to make GPT-4 fully autonomous.

Stephen H Bach, Victor Sanh, Zheng-Xin Yong, Al-
bert Webson, Colin Raffel, Nihal V Nayak, Abheesht
Sharma, Taewoon Kim, M Saiful Bari, Thibault
Fevry, Zaid Alyafeai, Manan Dey, Andrea Santilli,
Zhiqing Sun, Srulik Ben-David, Canwen Xu, Gunjan
Chhablani, Han Wang, Jason Alan Fries, Maged S Al-
shaibani, Shanya Sharma, Urmish Thakker, Khalid
Almubarak, Xiangru Tang, Dragomir Radev, Mike
Tian-Jian Jiang, and Alexander M Rush. 2022.
PromptSource: An integrated development environ-
ment and repository for natural language prompts.

Luca Beurer-Kellner, Marc Fischer, and Martin Vechev.
2023. Prompting is programming: A query language
for large language models. Proc. ACM Program.
Lang., 7(PLDI):1946–1969.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are Few-Shot learners.

316

https://twitter.com/BorisMPower/status/1608522707372740609
https://twitter.com/BorisMPower/status/1608522707372740609
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2202.01279
http://arxiv.org/abs/2005.14165

Harrison Chase. 2022. LangChain.

Dust. dust: Design and deploy large language model
apps.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. PAL: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pages
10764–10799. PMLR.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat,
and Mingwei Chang. 2020. Retrieval augmented
language model Pre-Training. In Proceedings of the
37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning
Research, pages 3929–3938. PMLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2017.
Billion-scale similarity search with GPUs.

Omar Khattab, Keshav Santhanam, Xiang Lisa Li,
David Hall, Percy Liang, Christopher Potts, and
Matei Zaharia. 2022. Demonstrate-Search-Predict:
Composing retrieval and language models for
knowledge-intensive NLP.

Quentin Lhoest, Albert Villanova del Moral, Yacine
Jernite, Abhishek Thakur, Patrick von Platen, Suraj
Patil, Julien Chaumond, Mariama Drame, Julien Plu,
Lewis Tunstall, Joe Davison, Mario Šaško, Gun-
jan Chhablani, Bhavitvya Malik, Simon Brandeis,
Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas
Patry, Angelina McMillan-Major, Philipp Schmid,
Sylvain Gugger, Clément Delangue, Théo Matus-
sière, Lysandre Debut, Stas Bekman, Pierric Cistac,
Thibault Goehringer, Victor Mustar, François Lagu-
nas, Alexander M Rush, and Thomas Wolf. 2021.
Datasets: A community library for natural language
processing.

Yaobo Liang, Chenfei Wu, Ting Song, Wenshan Wu,
Yan Xia, Yu Liu, Yang Ou, Shuai Lu, Lei Ji,
Shaoguang Mao, Yun Wang, Linjun Shou, Ming
Gong, and Nan Duan. 2023. TaskMatrix.AI: Com-
pleting tasks by connecting foundation models with
millions of APIs.

Jerry Liu. 2022. LlamaIndex.

Microsoft. a. semantic-kernel: Integrate cutting-edge
LLM technology quickly and easily into your apps.

Microsoft. b. TypeChat: TypeChat is a library that
makes it easy to build natural language interfaces
using types.

Yohei Nakajima. babyagi.

Ankit Pal. 2022. Promptify: Structured output
from LLMs. https://github.com/promptslab/
Promptify.

Uri Shaham, Elad Segal, Maor Ivgi, Avia Efrat, Ori
Yoran, Adi Haviv, Ankit Gupta, Wenhan Xiong,
Mor Geva, Jonathan Berant, and Omer Levy. 2022.
SCROLLS: Standardized CompaRison over long lan-
guage sequences.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li,
Weiming Lu, and Yueting Zhuang. 2023. Hugging-
GPT: Solving AI tasks with ChatGPT and its friends
in hugging face.

317

http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/2103.03874
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/2212.14024
http://arxiv.org/abs/2212.14024
http://arxiv.org/abs/2212.14024
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2109.02846
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2303.16434
http://arxiv.org/abs/2303.16434
https://github.com/promptslab/Promptify
https://github.com/promptslab/Promptify
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2201.03533
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580
http://arxiv.org/abs/2303.17580

