
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 353–364
December 6-10, 2023 ©2023 Association for Computational Linguistics

SynJax: Structured Probability Distributions for JAX

Miloš Stanojević
Google DeepMind

stanojevic@google.com

Laurent Sartran
Google DeepMind

lsartran@google.com

Abstract
The development of deep learning software li-
braries enabled significant progress in the field
by allowing users to focus on modeling, while
letting the library to take care of the tedious and
time-consuming task of optimizing execution
for modern hardware accelerators. However,
this has benefited only particular types of deep
learning models, such as Transformers, whose
primitives map easily to the vectorized compu-
tation. The models that explicitly account for
structured objects, such as trees and segmen-
tations, did not benefit equally because they
require custom algorithms that are difficult to
implement in a vectorized form.

SynJax directly addresses this problem by
providing an efficient vectorized implemen-
tation of inference algorithms for structured
distributions covering alignment, tagging,
segmentation, constituency trees and span-
ning trees. This is done by exploiting the
connection between algorithms for automatic
differentiation and probabilistic inference.
With SynJax we can build large-scale dif-
ferentiable models that explicitly model
structure in the data. The code is available at
https://github.com/google-deepmind/synjax.

1 Introduction

In many domains, data can be seen as having some
structure explaining how its parts fit into a larger
whole. This structure is often latent, and it varies
depending on the task. For examples of discrete
structures in natural language consider Figure 1.
The words together form a sequence. Each word in
a sequence is assigned a part-of-speech tag. These
tags are dependent on each other, forming a linear-
chain marked in red. The words in the sentence can
be grouped together into small disjoint contiguous
groups by sentence segmentation, shown with bub-
bles. A deeper analysis of language would show
that the groupings can be done recursively and
thereby produce a syntactic tree structure. Struc-
tures can also relate two languages. For instance,

S

NP

D
The

N
dog

VP

V
chases

NP

D
a

N
cat

追いかけている猫を犬が

Figure 1: Examples of natural language structures.

in the same figure, a Japanese translation can be
mapped to an English source by an alignment.

These structures are not specific to language.
Similar structures appear in biology as well. Nu-
cleotides of any two RNA sequences are matched
with monotone alignment (Needleman and Wunsch,
1970; Wang and Xu, 2011), genomic data is seg-
mented into contiguous groups (Day et al., 2007)
and tree-based models of RNA capture the hierar-
chical nature of the protein folding process (Sakak-
ibara et al., 1994; Hockenmaier et al., 2007; Huang
et al., 2019).

Most contemporary deep learning models at-
tempt to predict output variables directly from the
input without any explicit modeling of the interme-
diate structure. Modeling structure explicitly could
improve these models in multiple ways. First, it
could allow for better generalization trough the
right inductive biases (Dyer et al., 2016; Sartran
et al., 2022). This would improve not only sam-
ple efficiency but also downstream performance
(Bastings et al., 2017; Nădejde et al., 2017; Bisk
and Tran, 2018). Explicit modeling of structure
can also enable incorporation of problem specific
algorithms (e.g. finding shortest paths; Pogančić
et al., 2020; Niepert et al., 2021) or constraints
(e.g. enforcing alignment Mena et al., 2018 or en-
forcing compositional calculation Havrylov et al.,
2019). Discrete structure also allows for better in-
terpretability of the model’s decisions (Bastings

353

https://github.com/google-deepmind/synjax

et al., 2019). Finally, sometimes structure is the
end goal of learning itself – for example we may
know that there is a hidden structure of a particular
form explaining the data, but its specifics are not
known and need to be discovered (Kim et al., 2019;
Paulus et al., 2020).

Auto-regressive models are the main approach
used for modeling sequences. Non-sequential struc-
tures are sometimes linearized and approximated
with a sequential structure (Choe and Charniak,
2016). These models are powerful as they do not
make any independence assumptions and can be
trained on large amounts of data. While sampling
from auto-regressive models is typically tractable,
other common inference problems like finding the
optimal structure or marginalizing over hidden vari-
ables are not tractable. Approximately solving
these tasks with auto-regressive models requires
using biased or high-variance approximations that
are often computationally expensive, making them
difficult to deploy in large-scale models.

Alternative to auto-regressive models are models
over factor graphs that factorize in the same way as
the target structure. These models can efficiently
compute all inference problems of interest exactly
by using specialized algorithms. Despite the fact
that each structure needs a different algorithm, we
do not need a specialized algorithm for each infer-
ence task (argmax, sampling, marginals, entropy
etc.). As we will show later, SynJax uses automatic
differentiation to derive many quantities from just
a single function per structure type.

Large-scale deep learning has been enabled by
easy to use libraries that run on hardware accel-
erators. Research into structured distributions for
deep learning has been held back by the lack of
ergonomic libraries that would provide accelerator-
friendly implementations of structure components –
especially since these components depend on algo-
rithms that often do not map directly onto available
deep learning primitives, unlike Transformer mod-
els. This is the problem that SynJax addresses by
providing easy to use structure primitives that com-
pose within JAX machine learning framework.

To see how easy it is to use SynJax consider
example in Figure 2. This code implements a pol-
icy gradient loss that requires computing multi-
ple quantities – sampling, argmax, entropy, log-
probability – each requiring a different algorithm.
In this concrete code snippet, the structure is a non-
projective directed spanning tree with a single root

@typed
def policy_gradient_loss(

log_potentials: Float[jax.Array , "*batch␣n␣n"],
key: jax.random.KeyArray) -> Float[jax.Array , ""]:

dist = synjax.SpanningTreeCRF(log_potentials ,
directed=True , projective=False , single_root_edge=True)

Sample from policy
sample = dist.sample(key)
Get reward
reward = reward_fn(sample)
Compute log -prob
log_prob = dist.log_prob(sample)
Self -critical baseline
baseline = reward_fn(dist.argmax ())
REINFORCE
objective = stop_gradient(reward -baseline) * log_prob
Entropy regularization
return -jnp.mean(objective + 0.5* dist.entropy ())

Figure 2: Example of implementing policy gradient
with self-critical baseline and entropy regularization for
spanning trees.

edge constraint. Because of that SynJax will:

• compute argmax with Tarjan’s (1977) maxi-
mum spanning tree algorithm adapted for sin-
gle root edge trees (Stanojević and Cohen,
2021),

• sample with Wilson’s (1996) sampling algo-
rithm for single root trees (Stanojević, 2022),

• compute entropy with Matrix-Tree Theorem
(Tutte, 1984) adapted for single root edge trees
(Koo et al., 2007; Zmigrod et al., 2021).

If the user wants only to change slightly the
the tree requirements to follow the projectivity
constraint they only need to change one flag and
SynJax will in the background use completely dif-
ferent algorithms that are appropriate for that struc-
ture: it will use Kuhlmann’s algorithm (2011) for
argmax and variations of Eisner’s (1996) algorithm
for other quantities. The user does not need to im-
plement any of those algorithms or even be aware
of their specifics, and can focus on the modeling
side of the problem.

2 Structured Distributions

Distributions over most structures can be expressed
with factor graphs – bipartite graphs that have ran-
dom variables and factors between them. We as-
sociate to each factor a non-negative scalar, called
potential, for each possible assignment of the ran-
dom variables that are in its neighbourhood. The
potential of the structure is a product of its factors:

ϕ(t) =
∏

e∈t
ϕ(e) (1)

where t is a structure, e is a factor/part, and ϕ(·) is
the potential function. The probability of a struc-

354

ture can be found by normalizing its potential:

p(t) =

∏
e∈t ϕ(e)∑

t′∈T
∏

e′∈t′ ϕ(e
′)

=
ϕ(t)

Z
(2)

where T is the set of all possible structures and
Z is a normalization often called partition func-
tion. This equation can be thought of as a softmax
equivalent over an extremely large set of structured
outputs that share sub-structures (Sutton and Mc-
Callum, 2007; Mihaylova et al., 2020).

3 Computing Probability of a Structure
and Partition Function

Equation 2 shows the definition of the probability
of a structure in a factor graph. Computing the
numerator is often trivial. However, computing the
denominator, the partition function, is the compli-
cated and computationally demanding part because
the set of valid structures T is usually exponen-
tially large and require specialized algorithms for
each type of structure. As we will see later, the
algorithm for implementing the partition function
accounts for the majority of the code needed to add
support for a structured distribution, as most of the
other properties can be derived from it. Here we
document the algorithms for each structure.

3.1 Sequence Tagging
Sequence tagging can be modelled with Linear-
Chain CRF (Lafferty et al., 2001). The partition
function for linear-chain models is computed with
the forward algorithm (Rabiner, 1990). The compu-
tational complexity is O(m2n) for m tags and se-
quence of length n. Särkkä and García-Fernández
(2021) have proposed a parallel version of this al-
gorithm that has parallel computational complexity
O(m3 log n) which is efficient for m≪n. Rush
(2020) reports a speedup using this parallel method
for Torch-Struct, however in our case the original
forward algorithm gave better performance both in
terms of speed and memory.

The SynJax implementation of Linear-Chain
CRF supports having a different transition ma-
trix for each time step which gives greater
flexibility needed for implementing models like
LSTM-CNN-CRF (Ma and Hovy, 2016) and Neu-
ral Hidden Markov Model (Tran et al., 2016).

3.2 Segmentation with Semi-Markov CRF
Joint segmentation and tagging can be done with a
generalization of linear-chain called Semi-Markov

CRF (Sarawagi and Cohen, 2004; Abdel-Hamid
et al., 2013; Lu et al., 2016). It has a similar
parametrization with transition matrices except that
here transitions can jump over multiple tokens. The
partition function is computed with an adjusted ver-
sion of the forward algorithm that runs in O(sm2n)
where s is the maximal size of a segment.

3.3 Alignment Distributions
Alignment distributions are used in time series anal-
ysis (Cuturi and Blondel, 2017), RNA sequence
alignment (Wang and Xu, 2011), semantic parsing
(Lyu and Titov, 2018) and many other areas.

3.3.1 Monotone Alignment
Monotone alignment between two sequences of
lengths n and m allows for a tractable partition
function that can be computed in O(nm) time us-
ing the Needleman-Wunsch (1970) algorithm.

3.3.2 CTC
Connectionist Temporal Classification (CTC,
Graves et al., 2006; Hannun, 2017) is a monotone
alignment model widely used for speech recogni-
tion and non-auto-regressive machine translation
models. It is distinct from the standard monotone
alignment because it requires special treatment of
the blank symbol that provides jumps in the align-
ment table. It is implemented with an adjusted
version of Needleman-Wunsch algorithm.

3.3.3 Non-Monotone 1-on-1 Alignment
This is a bijective alignment that directly maps ele-
ments between two sets given their matching score.
Computing partition function for this distribution
is intractable (Valiant, 1979), but we can compute
some other useful quantities (see Section 5).

3.4 Constituency Trees
3.4.1 Tree-CRF
Today’s most popular constituency parser by Ki-
taev et al. (2019) uses a global model with factors
defined over labelled spans. Stern et al. (2017)
have shown that inference in this model can be
done efficiently with a custom version of the CKY
algorithm in O(mn2 + n3) where m is number of
non-terminals and n is the sentence length.

3.4.2 PCFG
Probabilistic Context-Free Grammars (PCFG) are
a generative model over constituency trees where
each grammar rule is associated with a locally nor-
malized probability. These rules serve as a template

355

which, when it gets expanded, generates jointly a
constituency tree together with words as leaves.

SynJax computes the partition function using a
vectorized form of the CKY algorithm that runs in
cubic time. Computing a probability of a tree is in
principle simple: just enumerate the rules of the
tree, look up their probability in the grammar and
multiply the found probabilities. However, extract-
ing rules from the set of labelled spans requires
many sparse operations that are non-trivial to vec-
torize. We use an alternative approach where we
use sticky span log-potentials to serve as a mask
for each constituent: constituents that are part of
the tree have sticky log-potentials 0 while those
that are not are −∞. With sticky log-potentials
set in this way computing log-partition provides a
log-probability of a tree of interest.

3.4.3 TD-PCFG
Tensor-Decomposition PCFG (TD-PCFG, Cohen
et al., 2013; Yang et al., 2022) uses a lower rank
tensor approximation of PCFG that makes infer-
ence with much larger number of non-terminals
feasible.

3.5 Spanning Trees
Spanning trees appear in the literature in many
different forms and definitions. We take a spanning
tree to be any subgraph that connects all nodes and
does not have cycles. We divide spanning tree CRF
distributions by the following three properties:

directed or undirected Undirected spanning
trees are defined over symmetric weighted
adjacency matrices i.e. over undirected
graphs. Directed spanning trees are defined
over directed graphs with special root node.

projective or non-projective Projectivity is a
constraint that appears often in NLP. It
constrains the spanning tree over words not to
have crossing edges. Non-projective spanning
tree is just a regular spanning tree – i.e. it
may not satisfy the projectivity constraint.

single root edge or multi root edges NLP appli-
cations usually require that there can be only
one edge coming out of the root (Zmigrod
et al., 2020). Single root edge spanning trees
satisfy that constraint.

Each of these choices has direct consequences
on which algorithm should be used for probabilistic
inference. SynJax abstracts away this from the user
and offers a unified interface where the user only

needs to provide the weighted adjacency matrix
and set the three mentioned boolean values. Given
the three booleans SynJax can pick the correct and
most optimal algorithm. In total, these parameters
define distributions over 8 different types of span-
ning tree structures all unified in the same interface.
We are not aware of any other library providing this
set of unified features for spanning trees.

We reduce undirected case to the rooted directed
case due to bijection. For projective rooted di-
rected spanning trees we use Eisner’s algorithm
for computation of the partition function (Eisner,
1996). The partition function of Non-Projective
spanning trees is computed using Matrix-Tree The-
orem (Tutte, 1984; Koo et al., 2007; Smith and
Smith, 2007).

4 Computing Marginals

In many cases we would like to know the prob-
ability of a particular part of structure appearing,
regardless of the structure that contains it. In other
words, we want to marginalize (i.e. sum) the prob-
ability of all the structures that contain that part:

p(e) =
∑

t∈T
1[e ∈ t] p(t) =

∑

t′∈Te

p(t′) (3)

where 1[·] is the indicator function, T is the set of
all structures and Te is the set of structures that
contain factor/part e.

Computing these factors was usually done using
specialized algorithms such as Inside-Outside or
Forward-Backward. However, those solutions do
not work on distributions that cannot use belief
propagation like Non-Projective Spanning Trees.
A more general solution is to use an identity that
relates gradients of factor’s potentials with respect
to the log-partition function:

p(e) =
∂ logZ

∂ϕ(e)
(4)

This means that we can use any differentiable
implementation of log-partition function as a for-
ward pass and apply backpropagation to compute
the marginal probability (Darwiche, 2003). Eis-
ner (2016) has made an explicit connection that
“Inside-Outside and Forward-Backward algorithms
are just backprop”. This approach also works for
Non-Projective Spanning Trees that do not fit belief
propagation framework (Zmigrod et al., 2021).

For template models like PCFG, we use again
the sticky log-potentials because usually we are

356

not interested in marginal probability of the rules
but in the marginal probability of the instantiated
constituents. The derivative of log-partition with
respect to the constituent’s sticky log-potential will
give us marginal probability of that constituent.

5 Computing Most Probable Structure

For finding the score of the highest scoring struc-
ture we can just run the same belief propagation
algorithm for log-partition, but with the max-plus
semiring instead of the log-plus semiring (Good-
man, 1999). To get the most probable structure,
and not just its potential, we can compute the gra-
dient of part potentials with respect to the viterbi
structure potential (Rush, 2020).

The only exceptions to this process are non-
monotone alignments and spanning trees because
they do fit easily in belief propagation framework.
For the highest scoring non-monotone alignment,
we use the Jonker–Volgenant algorithm as imple-
mented in SciPy (Crouse, 2016; Virtanen et al.,
2020). Maximal projective spanning tree can be
found by combining Eisner’s algorithm with max-
plus semiring, but we have found Kuhlmann’s
tabulated arc-hybrid algorithm to be much faster
(Kuhlmann et al., 2011) (see Figure 4 in the ap-
pendix). This algorithm cannot be used for any
inference task other than argmax because it al-
lows for spurious derivations. To enforce single-
root constraint with Kuhlmann’s algorithm we use
the Reweighting trick from Stanojević and Cohen
(2021). For non-projective spanning trees SynJax
uses a combination of Reweighting+Tarjan algo-
rithm as proposed in Stanojević and Cohen (2021).

6 Sampling a Structure

Strictly speaking, there is no proper sampling
semiring because semirings cannot have non-
deterministic output. However, we can still use the
semiring framework and make some aspect of them
non-deterministic. Aziz (2015) and Rush (2020)
use a semiring that in the forward pass behaves like
a log-semiring, but in the backward pass instead of
computing the gradient it does sampling. This is in
line of how forward-filtering backward-sampling
algorithm works (Murphy, 2012, §17.4.5).

Non-Projective Spanning Trees do not support
the semiring framework so we use custom algo-
rithms for them described in Stanojević (2022). It
contains Colbourn’s algorithm that has a fixed run-
time of O(n3) but is prone to numerical issues be-

cause it requires matrix-inversion (Colbourn et al.,
1996), and Wilson’s algorithm that is more numer-
ically stable but has a runtime that depends on
concrete values of log-potentials (Wilson, 1996).
SynJax also supports vectorized sampling without
replacement (SWOR) from Stanojević (2022).

7 Differentiable Sampling

The mentioned sampling algorithms provide unbi-
ased samples of structures useful for many infer-
ence tasks, but they are not differentiable because
the gradient of sampling from discrete distribu-
tions is zero almost everywhere. This problem can
be addressed with log-derivative trick from REIN-
FORCE algorithm (Williams, 1992), but that pro-
vides high variance estimates of gradients. To ad-
dress this problem there have been different propos-
als for differentiable sampling algorithms that are
biased but can provide low-variance estimates of
gradients. SynJax implements majority of the main
approaches in the literature including structured
attention (Kim et al., 2017), relaxed dynamic pro-
gramming (Mensch and Blondel, 2018), Perturb-
and-MAP (Corro and Titov, 2019), Gumbel-CRF
(Fu et al., 2020), Stochastic Softmax-Tricks (Paulus
et al., 2020), and Implicit Maximum-Likelihood
estimation (Niepert et al., 2021). It also include
different noise distributions for perturbations mod-
els, including Sum-of-Gamma noise (Niepert et al.,
2021) that is particularly suited for structured dis-
tributions.

8 Entropy and KL Divergence

To compute the cross-entropy and KL divergence,
we will assume that the two distributions factorize
in exactly the same way. Like some other proper-
ties, cross-entropy can also be computed with the
appropriate semirings (Hwa, 2000; Eisner, 2002;
Cortes et al., 2008; Chang et al., 2023), but those ap-
proaches would not work on Non-Projective Span-
ning Tree distributions. There is a surprisingly
simple solution that works across all distributions
that factorize in the same way and has appeared in
a couple of works in the past (Li and Eisner, 2009;
Martins et al., 2010; Zmigrod et al., 2021). Here

357

we give a full derivation for cross-entropy:

H(p, q) = −
∑

t∈T
p(t) log q(t)

= logZq −
∑

t∈T
p(t)

∑

e∈t
log ϕq(e)

= logZq −
∑

t∈T
p(t)

∑

e∈E
1[e∈ t] log ϕq(e)

= logZq −
∑

e∈E
p(e) log ϕq(e) (5)

This reduces the computation of cross-entropy to
finding marginal probabilities of one distribution,
and finding log-partition of the other – both of
which can be computed efficiently for all distribu-
tions in SynJax. Given the method for computing
cross-entropy, finding entropy is trivial:

H(p) = H(p, p) (6)

KL divergence is easy to compute too:

DKL(p||q) = H(p, q)−H(p) (7)

9 Library Design

Each distribution has different complex shape con-
straints which makes it complicated to document
and implement all the checks that verify that
the user has provided the right arguments. The
jaxtyping library1 was very valuable in making
SynJax code concise, documented and automati-
cally checked.

Structured algorithms require complex broad-
casting, reshaping operations and application of
semirings. To make this code simple, we took the
einsum implementation from the core JAX code
and modified it to support arbitrary semirings. This
made the code shorter and easier to read.

Most inference algorithms apply a large number
of elementwise and reshaping operations that are
in general fast but create a large number of interme-
diate tensors that occupy memory. To speed this up
we use checkpointing (Griewank, 1992) to avoid
memorization of tensors that can be recomputed
quickly. That has improved memory usage and
speed, especially on TPUs.

All functions that could be vectorized are writ-
ten in pure JAX. Those that cannot, like Wilson
sampling (1996) and Tarjan’s algorithm (1977), are
implemented with Numba (Lam et al., 2015).

1https://github.com/google/jaxtyping

Torch-Struct SynJax Speedup
Distribution LoC LoC (relative %)
Linear-Chain-CRF 32 15 (46%) 13×
Semi-Markov CRF 54 15 (27%) 84×
Tree-CRF 21 14 (66%) 5×
PCFG 51 36 (70%) 1×
Projective CRF 70 54 (77%) 3×
Non-Projective CRF 60 8 (16%) 71×

Table 1: Comparison against Torch-Struct with respect
to lines of code for log-partition and relative speedup in
the computation of marginal probabilities.

All SynJax distributions inherit from Equinox
modules (Kidger and Garcia, 2021) which makes
them simultaneously PyTrees and dataclasses.
Thereby all SynJax distributions can be trans-
formed with jax.vmap and are compatible with
any JAX neural framework, e.g. Haiku and Flax.

10 Comparison to alternative libraries

JAX has a couple of libraries for probabilistic
modeling. Distrax (Babuschkin et al., 2020) and
Tensorflow-Probability JAX substrate (Dillon et al.,
2017) provide continuous distributions. NumPyro
(Phan et al., 2019) and Oryx provide probabilis-
tic programming. DynaMax (Chang et al., 2022)
brings state space models to JAX and includes an
implementation of HMMs.

PGMax (Zhou et al., 2023) is a JAX library
that supports inference over arbitrary factor graphs
by using loopy belief propagation. After the user
builds the desired factor graph, PGMax can do auto-
matic inference over it. For many structured distri-
butions building a factor graph is the difficult part
of implementation because it may require a cus-
tom algorithm (e.g. CKY or Needleman–Wunsch).
SynJax implements those custom algorithms for
each of the supported structures. With SynJax the
user only needs to provide the parameters of the
distribution and SynJax will handle both building
of the factor graph and inference over it. For all the
included distributions, SynJax also provides some
features not covered by PGMax, such as unbiased
sampling, computation of entropy, cross-entropy
and KL divergence.

Optax (Babuschkin et al., 2020) provides CTC
loss implementation for JAX but without support
for computation of optimal alignment, marginals
over alignment links, sampling alignments etc.

All the mentioned JAX libraries focus on con-
tinuous or categorical distributions and, with the
exception of HMMs and CTC loss, do not con-
tain distributions provided by SynJax. SynJax fills

358

https://github.com/google/jaxtyping

this gap in the JAX ecosystem and enables easier
construction of structured probability models.

The most comparable library in terms of features
is Torch-Struct (Rush, 2020) that targets PyTorch
as its underlying framework. Torch-Struct, just like
SynJax, uses automatic differentiation for efficient
inference. We will point out here only the main
differences that would be of relevance to users.
SynJax supports larger number of distributions and
inference algorithms and provides a unified inter-
face to all of them. It also provides reproduca-
ble sampling trough controlled randomness seeds.
SynJax has a more general approach to computa-
tion of entropy that does not depend on semirings
and therefore applies to all distributions. SynJax
is fully implemented in Python and compiled with
jax.jit and numba.jit while Torch-Struct does
not use any compiler optimizations except a custom
CUDA kernel for semiring matrix multiplication.
If we compare lines of code and speed (Table 1)
we can see that SynJax is much more concise and
faster than Torch-Struct (see Appendix A for de-
tails).

SynJax also provides the fastest and most feature
rich implementation of spanning tree algorithms.
So far the most competitive libraries for spanning
trees were by Zmigrod et al. and Stanojević and Co-
hen. SynJax builds on Stanojević and Cohen code
and annotates it with Numba instructions which
makes it many times faster than any other alterna-
tive (see Figure 3 in the appendix).

11 Conclusion

One of the main challenges in creating deep neural
models over structured distributions is the difficulty
of their implementation on modern hardware accel-
erators. SynJax addresses this problem and makes
large scale training of structured models feasible
and easy in JAX. We hope that this will encourage
research into finding alternatives to auto-regressive
modeling of structured data.

Limitations

SynJax is quite fast, but there are still some areas
where the improvements could be made. One of
the main speed and memory bottlenecks is usage of
big temporary tensors in the dynamic programming
algorithms needed for computation of log-partition
function. This could be optimized with custom ker-
nels written in Pallas.2 There are some speed gains

2https://jax.readthedocs.io/en/latest/pallas

that would conceptually be simple but they depend
on having a specialized hardware. For instance, ma-
trix multiplication with semirings currently does
not use hardware acceleration for matrix multipli-
cation, such as TensorCore on GPU, but instead
does calculation with regular CUDA cores. We
have tried to address this with log-einsum-exp trick
(Peharz et al., 2020) but the resulting computation
was less numerically precise than using a regular
log-semiring with broadcasting. Maximum span-
ning tree algorithm would be much faster if it could
be vectorized – currently it’s executing as an opti-
mized Numba CPU code.

Acknowledgements

We are grateful to Chris Dyer, Aida Nematzadeh
and other members of language team in Google
DeepMind for early comments on the draft of this
work. We appreciate Patrick Kidger’s work on
Equinox and Jaxtyping that made development of
SynJax much easier. We also appreciate that Sasha
Rush open-sourced Torch-Struct, a library that in-
fluenced many aspects of SynJax.

References
Ossama Abdel-Hamid, Li Deng, Dong Yu, and Hui

Jiang. 2013. Deep segmental neural networks for
speech recognition. In Interspeech, volume 36.

Wilker Aziz. 2015. Grasp: Randomised Semiring Pars-
ing. Prague Bulletin of Mathematical Linguistics,
104:51–62.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhu-
patiraju, Jake Bruce, Peter Buchlovsky, David Bud-
den, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine
Dedieu, Claudio Fantacci, Jonathan Godwin, Chris
Jones, Ross Hemsley, Tom Hennigan, Matteo Hes-
sel, Shaobo Hou, Steven Kapturowski, Thomas Keck,
Iurii Kemaev, Michael King, Markus Kunesch, Lena
Martens, Hamza Merzic, Vladimir Mikulik, Tamara
Norman, George Papamakarios, John Quan, Ro-
man Ring, Francisco Ruiz, Alvaro Sanchez, Laurent
Sartran, Rosalia Schneider, Eren Sezener, Stephen
Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wo-
jciech Stokowiec, Luyu Wang, Guangyao Zhou, and
Fabio Viola. 2020. The DeepMind JAX Ecosystem.

Jasmijn Bastings, Wilker Aziz, and Ivan Titov. 2019.
Interpretable neural predictions with differentiable
binary variables. In Proceedings of the 57th Annual
Meeting of the Association for Computational Lin-
guistics, pages 2963–2977, Florence, Italy. Associa-
tion for Computational Linguistics.

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego
Marcheggiani, and Khalil Sima’an. 2017. Graph con-
volutional encoders for syntax-aware neural machine

359

https://jax.readthedocs.io/en/latest/pallas
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/SegmentalNN.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/SegmentalNN.pdf
http://ufal.mff.cuni.cz/pbml/104/art-aziz.pdf
http://ufal.mff.cuni.cz/pbml/104/art-aziz.pdf
http://github.com/deepmind
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/P19-1284
https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/D17-1209

translation. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1957–1967, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Yonatan Bisk and Ke Tran. 2018. Inducing grammars
with and for neural machine translation. In Proceed-
ings of the 2nd Workshop on Neural Machine Transla-
tion and Generation, pages 25–35, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Oscar Chang, Dongseong Hwang, and Olivier Siohan.
2023. Revisiting the Entropy Semiring for Neural
Speech Recognition. In The Eleventh International
Conference on Learning Representations.

Peter Chang, Giles Harper-Donnelly, Aleyna Kara, Xin-
glong Li, Scott Linderman, and Kevin Murphy. 2022.
Dynamax.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Shay B. Cohen, Giorgio Satta, and Michael Collins.
2013. Approximate PCFG parsing using tensor de-
composition. In Proceedings of the 2013 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 487–496, Atlanta, Georgia. As-
sociation for Computational Linguistics.

Charles J. Colbourn, Wendy J. Myrvold, and Eugene
Neufeld. 1996. Two Algorithms for Unranking Ar-
borescences. Journal of Algorithms, 20(2):268–281.

Caio Corro and Ivan Titov. 2019. Differentiable Perturb-
and-Parse: Semi-Supervised Parsing with a Struc-
tured Variational Autoencoder. In International Con-
ference on Learning Representations.

Corinna Cortes, Mehryar Mohri, Ashish Rastogi, and
Michael Riley. 2008. On the computation of the
relative entropy of probabilistic automata. Interna-
tional Journal of Foundations of Computer Science,
19(01):219–242.

David F Crouse. 2016. On implementing 2D rectan-
gular assignment algorithms. IEEE Transactions on
Aerospace and Electronic Systems, 52(4):1679–1696.

Marco Cuturi and Mathieu Blondel. 2017. Soft-DTW:
A Differentiable Loss Function for Time-Series. In
Proceedings of the 34th International Conference
on Machine Learning - Volume 70, ICML’17, page
894–903. JMLR.org.

Adnan Darwiche. 2003. A Differential Approach
to Inference in Bayesian Networks. J. ACM,
50(3):280–305.

Nathan Day, Andrew Hemmaplardh, Robert E. Thur-
man, John A. Stamatoyannopoulos, and William S.

Noble. 2007. Unsupervised segmentation of contin-
uous genomic data. Bioinformatics, 23(11):1424–
1426.

Joshua V. Dillon, Ian Langmore, Dustin Tran, Eugene
Brevdo, Srinivas Vasudevan, Dave Moore, Brian Pat-
ton, Alex Alemi, Matt Hoffman, and Rif A. Saurous.
2017. TensorFlow Distributions.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent neural network
grammars. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 199–209, San Diego, California.
Association for Computational Linguistics.

Jason Eisner. 1996. Three new probabilistic models for
dependency parsing: An exploration. In COLING
1996 Volume 1: The 16th International Conference
on Computational Linguistics.

Jason Eisner. 2002. Parameter estimation for probabilis-
tic finite-state transducers. In Proceedings of the 40th
Annual Meeting of the Association for Computational
Linguistics, pages 1–8, Philadelphia, Pennsylvania,
USA. Association for Computational Linguistics.

Jason Eisner. 2016. Inside-Outside and Forward-
Backward Algorithms Are Just Backprop (tutorial
paper). In Proceedings of the Workshop on Struc-
tured Prediction for NLP, pages 1–17, Austin, TX.
Association for Computational Linguistics.

Yao Fu, Chuanqi Tan, Bin Bi, Mosha Chen, Yansong
Feng, and Alexander M. Rush. 2020. Latent template
induction with gumbel-crfs. In Proceedings of the
34th International Conference on Neural Information
Processing Systems, NIPS’20, Red Hook, NY, USA.
Curran Associates Inc.

Joshua Goodman. 1999. Semiring Parsing. Computa-
tional Linguistics, 25(4):573–606.

Alex Graves, Santiago Fernández, Faustino Gomez, and
Jürgen Schmidhuber. 2006. Connectionist Tempo-
ral Classification: Labelling Unsegmented Sequence
Data with Recurrent Neural Networks. In Proceed-
ings of the 23rd International Conference on Machine
Learning, pages 369–376.

Andreas Griewank. 1992. Achieving logarithmic
growth of temporal and spatial complexity in reverse
automatic differentiation. Optimization Methods and
Software, 1(1):35–54.

Awni Hannun. 2017. Sequence Modeling with CTC.
Distill. https://distill.pub/2017/ctc.

Serhii Havrylov, Germán Kruszewski, and Armand
Joulin. 2019. Cooperative learning of disjoint syntax
and semantics. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1118–1128, Minneapolis, Minnesota.
Association for Computational Linguistics.

360

https://doi.org/10.18653/v1/D17-1209
https://doi.org/10.18653/v1/W18-2704
https://doi.org/10.18653/v1/W18-2704
https://openreview.net/pdf?id=SNgLnzFQeiD
https://openreview.net/pdf?id=SNgLnzFQeiD
https://github.com/probml/dynamax
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
https://aclanthology.org/N13-1052
https://aclanthology.org/N13-1052
https://doi.org/https://doi.org/10.1006/jagm.1996.0014
https://doi.org/https://doi.org/10.1006/jagm.1996.0014
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://openreview.net/forum?id=BJlgNh0qKQ
https://cs.nyu.edu/~mohri/pub/nkl.pdf
https://cs.nyu.edu/~mohri/pub/nkl.pdf
http://proceedings.mlr.press/v70/cuturi17a/cuturi17a.pdf
http://proceedings.mlr.press/v70/cuturi17a/cuturi17a.pdf
https://doi.org/10.1145/765568.765570
https://doi.org/10.1145/765568.765570
https://doi.org/10.1093/bioinformatics/btm096
https://doi.org/10.1093/bioinformatics/btm096
http://arxiv.org/abs/1711.10604
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024
https://www.aclweb.org/anthology/C96-1058
https://www.aclweb.org/anthology/C96-1058
https://doi.org/10.3115/1073083.1073085
https://doi.org/10.3115/1073083.1073085
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://doi.org/10.18653/v1/W16-5901
https://aclanthology.org/J99-4004
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://dl.acm.org/doi/abs/10.1145/1143844.1143891
https://doi.org/10.1080/10556789208805505
https://doi.org/10.1080/10556789208805505
https://doi.org/10.1080/10556789208805505
https://doi.org/10.23915/distill.00008
https://doi.org/10.18653/v1/N19-1115
https://doi.org/10.18653/v1/N19-1115

Julia Hockenmaier, Aravind K Joshi, and Ken A Dill.
2007. Routes are trees: the parsing perspective on
protein folding. Proteins: Structure, Function, and
Bioinformatics, 66(1):1–15.

Liang Huang, He Zhang, Dezhong Deng, Kai Zhao,
Kaibo Liu, David A Hendrix, and David H Mathews.
2019. LinearFold: linear-time approximate RNA
folding by 5’-to-3’ dynamic programming and beam
search. Bioinformatics, 35(14):i295–i304.

Rebecca Hwa. 2000. Sample selection for statistical
grammar induction. In 2000 Joint SIGDAT Confer-
ence on Empirical Methods in Natural Language
Processing and Very Large Corpora, pages 45–52,
Hong Kong, China. Association for Computational
Linguistics.

Patrick Kidger and Cristian Garcia. 2021. Equinox:
neural networks in JAX via callable PyTrees and
filtered transformations.

Yoon Kim, Carl Denton, Luong Hoang, and Alexan-
der M. Rush. 2017. Structured attention networks.
In International Conference on Learning Representa-
tions.

Yoon Kim, Chris Dyer, and Alexander Rush. 2019.
Compound probabilistic context-free grammars for
grammar induction. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 2369–2385, Florence, Italy. Asso-
ciation for Computational Linguistics.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured Prediction Mod-
els via the Matrix-Tree Theorem. In Proceedings
of the 2007 Joint Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages
141–150, Prague, Czech Republic. Association for
Computational Linguistics.

Marco Kuhlmann, Carlos Gómez-Rodríguez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Proceed-
ings of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 673–682, Portland, Oregon, USA.
Association for Computational Linguistics.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling
Sequence Data. In Proceedings of the Eighteenth In-
ternational Conference on Machine Learning, ICML
’01, page 282–289, San Francisco, CA, USA. Morgan
Kaufmann Publishers Inc.

Siu Kwan Lam, Antoine Pitrou, and Stanley Seibert.
2015. Numba: A llvm-based python jit compiler. In
Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, LLVM ’15, New
York, NY, USA. Association for Computing Machin-
ery.

Zhifei Li and Jason Eisner. 2009. First- and second-
order expectation semirings with applications to
minimum-risk training on translation forests. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing, pages 40–51,
Singapore. Association for Computational Linguis-
tics.

Liang Lu, Lingpeng Kong, Chris Dyer, Noah A Smith,
and Steve Renals. 2016. Segmental recurrent neu-
ral networks for end-to-end speech recognition. In
Proceedings of the 17th Annual Conference of the In-
ternational Speech Communication Association (IN-
TERSPEECH 2016).

Chunchuan Lyu and Ivan Titov. 2018. AMR parsing as
graph prediction with latent alignment. In Proceed-
ings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 397–407, Melbourne, Australia. Association
for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional LSTM-CNNs-CRF.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany.
Association for Computational Linguistics.

André Martins, Noah Smith, Eric Xing, Pedro Aguiar,
and Mário Figueiredo. 2010. Turbo parsers: Depen-
dency parsing by approximate variational inference.
In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, pages 34–
44, Cambridge, MA. Association for Computational
Linguistics.

Gonzalo Mena, David Belanger, Scott Linderman, and
Jasper Snoek. 2018. Learning Latent Permutations
with Gumbel-Sinkhorn Networks. In International
Conference on Learning Representations.

Arthur Mensch and Mathieu Blondel. 2018. Differen-
tiable dynamic programming for structured predic-
tion and attention. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages
3462–3471. PMLR.

Tsvetomila Mihaylova, Vlad Niculae, and André F. T.
Martins. 2020. Understanding the Mechanics of
SPIGOT: Surrogate Gradients for Latent Structure
Learning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 2186–2202, Online. Association for
Computational Linguistics.

361

https://onlinelibrary.wiley.com/doi/full/10.1002/prot.21195
https://onlinelibrary.wiley.com/doi/full/10.1002/prot.21195
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.1093/bioinformatics/btz375
https://doi.org/10.3115/1117794.1117800
https://doi.org/10.3115/1117794.1117800
http://arxiv.org/abs/2111.00254
http://arxiv.org/abs/2111.00254
http://arxiv.org/abs/2111.00254
https://openreview.net/forum?id=HkE0Nvqlg
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1228
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
https://aclanthology.org/P11-1068
https://aclanthology.org/P11-1068
https://dl.acm.org/doi/10.5555/645530.655813
https://dl.acm.org/doi/10.5555/645530.655813
https://dl.acm.org/doi/10.5555/645530.655813
https://doi.org/10.1145/2833157.2833162
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://aclanthology.org/D09-1005
https://www.isca-speech.org/archive_v0/Interspeech_2016/pdfs/0040.PDF
https://www.isca-speech.org/archive_v0/Interspeech_2016/pdfs/0040.PDF
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P18-1037
https://doi.org/10.18653/v1/P16-1101
https://doi.org/10.18653/v1/P16-1101
https://aclanthology.org/D10-1004
https://aclanthology.org/D10-1004
https://openreview.net/forum?id=Byt3oJ-0W
https://openreview.net/forum?id=Byt3oJ-0W
https://proceedings.mlr.press/v80/mensch18a.html
https://proceedings.mlr.press/v80/mensch18a.html
https://proceedings.mlr.press/v80/mensch18a.html
https://doi.org/10.18653/v1/2020.emnlp-main.171
https://doi.org/10.18653/v1/2020.emnlp-main.171
https://doi.org/10.18653/v1/2020.emnlp-main.171

Kevin P. Murphy. 2012. Machine Learning: A Proba-
bilistic Perspective. Adaptive Computation and Ma-
chine Learning Series. The MIT Press.

Maria Nădejde, Siva Reddy, Rico Sennrich, Tomasz
Dwojak, Marcin Junczys-Dowmunt, Philipp Koehn,
and Alexandra Birch. 2017. Predicting target lan-
guage CCG supertags improves neural machine trans-
lation. In Proceedings of the Second Conference
on Machine Translation, pages 68–79, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

S. B. Needleman and C. D. Wunsch. 1970. A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal of
Molecular Biology, 48:443–453.

Mathias Niepert, Pasquale Minervini, and Luca
Franceschi. 2021. Implicit mle: backpropagating
through discrete exponential family distributions. Ad-
vances in Neural Information Processing Systems,
34:14567–14579.

Max Paulus, Dami Choi, Daniel Tarlow, Andreas
Krause, and Chris J Maddison. 2020. Gradient esti-
mation with stochastic softmax tricks. In Advances in
Neural Information Processing Systems, volume 33,
pages 5691–5704. Curran Associates, Inc.

Robert Peharz, Steven Lang, Antonio Vergari, Karl
Stelzner, Alejandro Molina, Martin Trapp, Guy Van
Den Broeck, Kristian Kersting, and Zoubin Ghahra-
mani. 2020. Einsum Networks: Fast and Scalable
Learning of Tractable Probabilistic Circuits. In Pro-
ceedings of the 37th International Conference on
Machine Learning, ICML’20. JMLR.org.

Du Phan, Neeraj Pradhan, and Martin Jankowiak. 2019.
Composable Effects for Flexible and Accelerated
Probabilistic Programming in NumPyro. In Program
Transformations for ML Workshop at NeurIPS 2019.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil,
Georg Martius, and Michal Rolinek. 2020. Differen-
tiation of Blackbox Combinatorial Solvers. In Inter-
national Conference on Learning Representations.

Lawrence R. Rabiner. 1990. A tutorial on hidden
markov models and selected applications in speech
recognition. In Readings in Speech Recognition,
pages 267–296. Elsevier.

Alexander Rush. 2020. Torch-Struct: Deep Structured
Prediction Library. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics: System Demonstrations, pages 335–342,
Online. Association for Computational Linguistics.

Sakakibara, Underwood, Mian, and Haussler. 1994.
Stochastic Context-Free Grammars for Modeling
RNA. In 1994 Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences,
volume 5, pages 284–293. IEEE.

Sunita Sarawagi and William W Cohen. 2004. Semi-
markov conditional random fields for information
extraction. In Advances in Neural Information Pro-
cessing Systems, volume 17. MIT Press.

Laurent Sartran, Samuel Barrett, Adhiguna Kuncoro,
Miloš Stanojević, Phil Blunsom, and Chris Dyer.
2022. Transformer Grammars: Augmenting Trans-
former Language Models with Syntactic Inductive
Biases at Scale. Transactions of the Association for
Computational Linguistics, 10:1423–1439.

David A. Smith and Noah A. Smith. 2007. Probabilistic
Models of Nonprojective Dependency Trees. In Pro-
ceedings of the 2007 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning (EMNLP-
CoNLL), pages 132–140, Prague, Czech Republic.
Association for Computational Linguistics.

Miloš Stanojević. 2022. Unbiased and efficient sam-
pling of dependency trees. In Proceedings of the
2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1691–1706, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Miloš Stanojević and Shay B. Cohen. 2021. A Root
of a Problem: Optimizing Single-Root Dependency
Parsing. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Process-
ing, pages 10540–10557, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A minimal span-based neural constituency parser.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Charles Sutton and Andrew McCallum. 2007. An Intro-
duction to Conditional Random Fields for Relational
Learning. Introduction to statistical relational learn-
ing, page 93.

Simo Särkkä and Ángel F. García-Fernández. 2021.
Temporal Parallelization of Bayesian Smoothers.
IEEE Transactions on Automatic Control, 66(1):299–
306.

R. E. Tarjan. 1977. Finding optimum branchings. Net-
works, 7(1):25–35.

Ke M. Tran, Yonatan Bisk, Ashish Vaswani, Daniel
Marcu, and Kevin Knight. 2016. Unsupervised neu-
ral hidden Markov models. In Proceedings of the
Workshop on Structured Prediction for NLP, pages
63–71, Austin, TX. Association for Computational
Linguistics.

W. T. Tutte. 1984. Graph Theory, volume 21 of Encyclo-
pedia of Mathematics and Its Applications. Addison-
Wesley, Menlo Park, CA.

362

https://mitpress.mit.edu/books/machine-learning-1
https://mitpress.mit.edu/books/machine-learning-1
https://doi.org/10.18653/v1/W17-4707
https://doi.org/10.18653/v1/W17-4707
https://doi.org/10.18653/v1/W17-4707
https://pubmed.ncbi.nlm.nih.gov/5420325/
https://pubmed.ncbi.nlm.nih.gov/5420325/
https://pubmed.ncbi.nlm.nih.gov/5420325/
https://proceedings.neurips.cc/paper/2020/file/3df80af53dce8435cf9ad6c3e7a403fd-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/3df80af53dce8435cf9ad6c3e7a403fd-Paper.pdf
http://proceedings.mlr.press/v119/peharz20a/peharz20a.pdf
http://proceedings.mlr.press/v119/peharz20a/peharz20a.pdf
https://openreview.net/forum?id=H1g1niFhIB
https://openreview.net/forum?id=H1g1niFhIB
https://openreview.net/forum?id=BkevoJSYPB
https://openreview.net/forum?id=BkevoJSYPB
https://doi.org/10.1016/b978-0-08-051584-7.50027-9
https://doi.org/10.1016/b978-0-08-051584-7.50027-9
https://doi.org/10.1016/b978-0-08-051584-7.50027-9
https://doi.org/10.18653/v1/2020.acl-demos.38
https://doi.org/10.18653/v1/2020.acl-demos.38
http://www0.cs.ucl.ac.uk/staff/s.mian/pubs/SakBro94.pdf
http://www0.cs.ucl.ac.uk/staff/s.mian/pubs/SakBro94.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/eb06b9db06012a7a4179b8f3cb5384d3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/eb06b9db06012a7a4179b8f3cb5384d3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/eb06b9db06012a7a4179b8f3cb5384d3-Paper.pdf
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://doi.org/10.1162/tacl_a_00526
https://aclanthology.org/D07-1014
https://aclanthology.org/D07-1014
https://aclanthology.org/2022.emnlp-main.110
https://aclanthology.org/2022.emnlp-main.110
https://aclanthology.org/2021.emnlp-main.823
https://aclanthology.org/2021.emnlp-main.823
https://aclanthology.org/2021.emnlp-main.823
https://doi.org/10.18653/v1/P17-1076
https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
https://people.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf
https://doi.org/10.1109/TAC.2020.2976316
https://doi.org/https://doi.org/10.1002/net.3230070103
https://doi.org/10.18653/v1/W16-5907
https://doi.org/10.18653/v1/W16-5907
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230160110

L.G. Valiant. 1979. The complexity of computing the
permanent. Theoretical Computer Science, 8(2):189–
201.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Ev-
geni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay
Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A.
Quintero, Charles R. Harris, Anne M. Archibald, An-
tônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0:
Fundamental Algorithms for Scientific Computing in
Python. Nature Methods, 17:261–272.

Zhiyong Wang and Jinbo Xu. 2011. A conditional
random fields method for RNA sequence–structure
relationship modeling and conformation sampling.
Bioinformatics, 27(13):i102–i110.

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Mach. Learn., 8(3–4):229–256.

David Bruce Wilson. 1996. Generating Random Span-
ning Trees More Quickly than the Cover Time. In
Proceedings of the Twenty-Eighth Annual ACM Sym-
posium on Theory of Computing, STOC ’96, page
296–303, New York, NY, USA. Association for Com-
puting Machinery.

Songlin Yang, Wei Liu, and Kewei Tu. 2022. Dynamic
programming in rank space: Scaling structured in-
ference with low-rank HMMs and PCFGs. In Pro-
ceedings of the 2022 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
4797–4809, Seattle, United States. Association for
Computational Linguistics.

Guangyao Zhou, Antoine Dedieu, Nishanth Kumar,
Wolfgang Lehrach, Miguel Lázaro-Gredilla, Shrinu
Kushagra, and Dileep George. 2023. Pgmax: Fac-
tor graphs for discrete probabilistic graphical models
and loopy belief propagation in jax.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Please Mind the Root: Decoding Arborescences for
Dependency Parsing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4809–4819, On-
line. Association for Computational Linguistics.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2021. Ef-
ficient Computation of Expectations under Spanning
Tree Distributions. 9:675–690.

Distribution parameters
CTC b= 64, n=124, l=512
Alignment CRF b= 16, n=256, m=256
Semi-Markov CRF b= 1, n= 64, nt= 32, k=8
Tree CRF b= 128, n=128, nt=128
Linear-Chain CRF b= 128, n=256, nt= 32
PCFG b= 1, n= 48, nt= 64, pt=96
HMM b= 1, n=128, nt= 32
Non-Projective CRF b=1024, n=128
Projective CRF b= 128, n=128

Table 2: Sizes of tested distributions.

A Empirical comparisons

A.1 Comparison with Torch-Struct
We compared against the most recent Torch-Struct3

commit from 30 Jan 2022. To make Torch-Struct
run faster we have also installed its specialized ker-
nel for semiring matrix multiplication genbmm4

from its most recent commit from 11 Oct 2021.
While Torch-Struct supports some of the same
distributions as SynJax we did not manage to do
speed comparison over all of them. For exam-
ple, AlignmentCRF of Torch-Struct was crashing
due to mismatch of PyTorch, Torch-Struct and
genbmm changes about in-place updates. We com-
pile SynJax with jax.jit and during benchmark-
ing do not count the time that is taken for compila-
tion because it needs to be done only once. We also
tried to compile Torch-Struct using TorchScript
by tracing but that did not work out of the box.
Comparisons are done on A100 GPU on Colab
Pro+. The results are shown in Table 1 in the main
text. Table 2 shows sizes of the distributions being
tested.

A.2 Comparison with Zmigrod et al.
Non-Projective spanning trees present a particular
challenge because they cannot be vectorized eas-
ily due to dynamic structures that are involved in
the algorithm. The main algorithms and libraries
for parsing this type of trees are from Zmigrod
et al. (2020)5 and Stanojević and Cohen (2021)6.
The first one is expressed as a recursive algorithm,
while the second one operates over arrays of fixed
size in iterative way. This makes Stanojević and
Cohen algorithm much more amendable to Numba
optimization. We took that code and just annotated

3https://github.com/harvardnlp/pytorch-struct
4https://github.com/harvardnlp/genbmm
5https://github.com/rycolab/spanningtrees
6https://github.com/stanojevic/

Fast-MST-Algorithm

363

https://doi.org/https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1093/bioinformatics/btr232
https://doi.org/10.1093/bioinformatics/btr232
https://doi.org/10.1093/bioinformatics/btr232
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880
https://aclanthology.org/2022.naacl-main.353
https://aclanthology.org/2022.naacl-main.353
https://aclanthology.org/2022.naacl-main.353
http://arxiv.org/abs/2202.04110
http://arxiv.org/abs/2202.04110
http://arxiv.org/abs/2202.04110
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00391/102843/Efficient-Computation-of-Expectations-under
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00391/102843/Efficient-Computation-of-Expectations-under
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00391/102843/Efficient-Computation-of-Expectations-under
https://github.com/harvardnlp/pytorch-struct
https://github.com/harvardnlp/genbmm
https://github.com/rycolab/spanningtrees
https://github.com/stanojevic/Fast-MST-Algorithm
https://github.com/stanojevic/Fast-MST-Algorithm

it with Numba primitives. This made the algorithm
significantly faster, especially for big graphs, as
can be seen from Figure 3.

25 50 75 100
nodes in the graph

0

0.005

0.010

tim
e

library
Stanojevi -Cohen
Zmigrod-et-al
SynJax

Figure 3: Speed comparison of Non-Projective Span-
ning Tree libraries.

A.3 Comparison of Maximum Projective
Spanning Tree Algorithms

Eisner’s algorithm is virtually the only projective
parsing algorithm actively used, if we do not count
the transition based parsers. We have found that
replacing Eisner’s algorithm with Kuhlmann et al.
(2011) tabulation of arc-hybrid algorithm can pro-
vide large speed gains both on CPU and GPU. See
Figure 4. In this implementation graph size does
not make a big difference because it is implemented
in a vectorized way so most operations are paral-
lelized.

25 50 75
nodes in the graph

0

0.02

0.04

0.06

0.08

tim
e

library
CPU SynJax Eisner
CPU SynJax Kuhlmann
GPU SynJax Eisner
GPU SynJax Kuhlmann

Figure 4: Speed comparison of Projective Maximum
Spanning Tree algorithms.

364

