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Abstract

Chemical reactions, as a core entity in the realm
of chemistry, hold crucial implications in di-
verse areas ranging from hands-on laboratory
research to advanced computational drug de-
sign. Despite a burgeoning interest in employ-
ing NLP techniques to extract these reactions,
aligning this task with the real-world require-
ments of chemistry practitioners remains an
ongoing challenge. In this paper, we present
REACTION MINER, a system specifically de-
signed to interact with raw scientific literature,
delivering precise and more informative chem-
ical reactions. Going beyond mere extraction,
REACTION MINER integrates a holistic work-
flow: it accepts PDF files as input, bypassing
the need for pre-processing and bolstering user
accessibility. Subsequently, a text segmentation
module ensures that the refined text encapsu-
lates complete chemical reactions, augmenting
the accuracy of extraction. Moreover, REAC-
TION MINER broadens the scope of existing
pre-defined reaction roles, including vital at-
tributes previously neglected, thereby offering
a more comprehensive depiction of chemical
reactions. Evaluations conducted by chemistry
domain users highlight the efficacy of each
module in our system, demonstrating REAC-
TION MINER as a powerful tool in this field1.

1 Introduction

Chemical reactions lie at the heart of chemistry,
representing the transformative processes that give
birth to new substances. The structured format of
these reactions paves the way for diverse applica-
tions, including synthesis planning (Segler et al.,
2018; Genheden et al., 2020), reaction prediction
(Schwaller et al., 2018; Coley et al., 2019), and re-
action condition recommendation (Gao et al., 2018;

1Code, data, and models can be found at: https://
github.com/maszhongming/ReactionMiner. The link to
the video that introduces our system is at: https://youtu.
be/q7P6NWDKcxw
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Figure 1: Example from REACTION MINER. High-
lighted reaction roles denote the attributes that the pre-
vious systems are incapable of extracting.

Maser et al., 2021). In recent years, the combi-
nation of chemistry and NLP has emerged as a
dynamic research area (Chithrananda et al., 2020;
Edwards et al., 2022; Bran et al., 2023), fueled by
the prospect of automating the extraction of chemi-
cal reactions from vast corpora of scientific papers
(Guo et al., 2022; Zhong et al., 2023). By leverag-
ing NLP techniques, researchers can derive crucial
insights more rapidly than traditional manual meth-
ods (Goodman, 2009), thereby catalyzing progress
in myriad chemistry-related domains.

Figure 1 illustrates the goal of this task, which is
to mine and extract structured chemical reactions
from the extensive chemical literature. Representa-
tively, systems such as OPSIN, CHEMRXNBERT,
and REACTIE have emerged to automate the pro-
cess of chemical reaction extraction, each employ-
ing distinct NLP approaches. OPSIN (Lowe, 2012)
serves as an early exemplar, utilizing a heuristic-
based method that underscores the potential bene-
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fits of applying NLP to the realm of chemical data
extraction. Subsequently, CHEMRXNBERT (Guo
et al., 2022) harnesses the power of pre-training
on chemistry literature to foster a deeper under-
standing of chemical context. REACTIE (Zhong
et al., 2023) further refines the Information Extrac-
tion (IE) process by reformulating it as a Question
Answering (QA) task, facilitating the creation of
synthetic data and reducing annotation needs. De-
spite these significant strides, certain issues persist
when these systems are deployed in the hands of
real-world chemistry practitioners:

(1) Input Format Misalignment: Existing sys-
tems are designed to accept plain text as input.
However, chemistry practitioners typically engage
with literature in PDF format rather than processed
text. This disconnect between the format of read-
ily accessible resources and the input requirements
introduces a considerable hurdle for practical use.

(2) Limited Input Granularity: The typical in-
put for existing systems is confined to a sentence
or a fixed-size context window for the extraction.
This often leads to a trade-off between over- and
under-inclusion of data, with systems either cap-
turing incomplete information about the chemical
reaction or introducing irrelevant content.

(3) Restriction on Extracted Roles: The cur-
rent systems focus on extracting pre-defined reac-
tion roles, such as the reactant, product, catalyst,
time, temperature, yield, etc. Yet, there are addi-
tional attributes that are of considerable interest to
practitioners, such as the experimental procedure
and more nuanced reaction conditions, which are
commonly overlooked by these systems.

(4) Output Format Inconsistency: Lastly, there
exists a discrepancy between the output format pro-
vided by current systems and what is required by
real-world users. Frequently, these systems output
incomplete chemical names or incorrect symbols
and units, which further complicates the interpreta-
tion and application of the extracted information.

To address the outlined challenges, we present
REACTION MINER, an integrated system designed
to bridge these gaps and cater more closely to the
needs of real-world chemistry practitioners. In con-
trast to existing systems, REACTION MINER incor-
porates a series of new features:

(1) PDF-to-Text: Recognizing that the inher-
ent diversity of templates in chemistry journals
presents a formidable challenge for existing tools,
we develop a PDF-to-text module specifically tai-

lored for the biochemistry field. It features built-in
dynamic similarity calculation functionality based
on Sentence-BERT (Reimers and Gurevych, 2019)
to alleviate the frequent coherence issues that arise
during conversion.

(2) Text Segmentation: To ensure the input con-
text includes all necessary details without irrelevant
information about chemical reactions, we initially
perform text segmentation on the processed text.
This involves identifying the central sentence asso-
ciated with the chemical reaction and subsequently
expanding the boundaries of the input text using
unsupervised topic segmentation (Choi, 2000).

(3) Role Enrichment: To bypass the restrictions
imposed by pre-defined label space, we integrate an
automatic event mining approach (Jiao et al., 2022)
to enrich extracted reaction roles. Furthermore, to
enhance our system’s ability to accurately extract
newly discovered attributes, we generate synthetic
data corresponding to each role based on GPT-4
(OpenAI, 2023) for the training process.

(4) Unified Reaction Extraction: Striving to
align our system’s output more closely with the re-
quirements of users, we unify the format of existing
data and adjust the annotation guideline based on
feedback from chemistry practitioners. Concretely,
we re-collect (Zhong et al., 2023), re-organize2, and
re-annotate (Guo et al., 2022) present data, leading
to a unified system that caters to the needs of the
chemistry community more effectively.

Regarding evaluation, we invite chemistry Ph.D.
students to undertake tests and contrast REACTION

MINER with current systems. Human evaluation
indicates that our system is better aligned with the
needs of the chemistry community. Remarkably,
even though the architecture of REACTION MINER

is built upon LLaMA-7B (Touvron et al., 2023) and
LoRA (Hu et al., 2022), it consistently matches or
surpasses the performance of large language mod-
els across all subtasks. Thus, REACTION MINER

represents a step forward in chemical reaction ex-
traction, providing an accessible, high-performing
open-source tool to expedite advancements at the
intersection of NLP and chemistry.

2 Method

In this section, we start with the task formulation to
provide an overarching perspective of REACTION

MINER, subsequently delving into each module.

2Data from https://docs.open-reaction-database.
org/en/latest.
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Figure 2: Overall framework for REACTION MINER.

2.1 Task Formulation
Given any PDF file that contains chemical context,
the PDF-to-text module initially converts it into pro-
cessed text, represented as T . This is followed by
the segmentation model identifying and segment-
ing T into k relevant passages P = {P1, · · · , Pk}
associated with the chemical reaction to serve as
inputs for reaction extraction. For each passage P ,
the objective is to extract all the structured chemical
reactions C present within P , where every reaction
C ∈ C comprises n role-argument pairs {(r1, a1),
· · · , (rn, an)}. Here, the term “role” r refers to a
crucial attribute of a chemical reaction, such as the
product, reactant, catalyst, solvent, time, temper-
ature, yield, etc., while the corresponding “argu-
ment” a is the extracted span of the corresponding
reaction role in the input P .

2.2 PDF-to-Text
The common format in which practitioners access
literature is PDF rather than processed text, making
it a more appropriate input for an extraction sys-
tem. However, the inherent diversity in templates
used by various chemical journals presents a signif-
icant challenge for the development of reliable PDF
conversion tools. Current popular methods, such
as Gorbid 3, which is used in S2ORC (Lo et al.,
2020), and SymbolScrapper4, either overlook short
paragraphs or pose incoherence problems (such as
intermixing header, footer, or caption information
with the body text). These issues can ultimately
impact the performance of subsequent extraction.

To address these challenges, we devise our own
PDF-to-Text parser. It operates in three stages: 1)

3https://github.com/kermitt2/grobid
4https://github.com/zanibbi/SymbolScraper

converting the given PDF files into XML format via
SymbolScraper, 2) parsing the XML file into con-
tent paragraphs while excluding figures, tables, and
captions from the body text through regular expres-
sions, and 3) filtering out incoherent and irrelevant
information (e.g., headers, footers, and references).
This last step leverages the representative power
of a pre-trained language model: we dynamically
maintain a set of paragraphs representing the main
content of the preceding paragraph and use the av-
erage embedding obtained from Sentence-BERT
(Reimers and Gurevych, 2019) as the current an-
chor embedding. Subsequent paragraphs are fil-
tered out if their cosine similarity to the anchor
embedding falls below a certain threshold.

2.3 Text Segmentation
Text segmentation aims to segment out the reaction-
related context from an entire paper. Segmenting
the text into more manageable units enables the pre-
cise and efficient identification of reaction compo-
nents. Its process is comprised of two main steps:

Keyword-based central sentence localization.
The first step in the process involves leveraging
the fundamental definition of chemical reactions,
with the underlying hypothesis that all chemical
reactions involve specific products (Muller, 1994).
Human readers often intuitively identify products
within textual information through linguistic cues,
such as specific keywords. Consider the sentence,

“Removal of the TBS moiety of 17 was carried out
with TBAF/AcOH in MeCN at 60 °C to give diol
20 in 86% yield.” From the presence of the word

“yield”, one can deduce that the product is “diol 20”.
Building on this insight, we curate a set of 35 key-
words that are demonstrative of products in chem-
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ical reactions. When scanning through the text,
sentences containing these keywords are identified
as central to understanding the reaction context.

Topic-aided boundary detection. Once the cen-
tral sentence is identified, the subsequent step in-
volves detecting the contextual boundary related
to the specific chemical reaction. Research has
shown that the integration of semantic information
through topic models substantially enhances the ef-
fectiveness of segmentation algorithms (Riedl and
Biemann, 2012; Alemi and Ginsparg, 2015). Moti-
vated by these findings, we employ semantic topi-
cal information within the texts to more accurately
discern different context blocks associated with var-
ious chemical reactions. Specifically, C99 (Choi,
2000), a widely-recognized method for topical de-
tection is used. It annotates sentences with match-
ing tags if they pertain to the same topical group.
Any topical group containing the identified cen-
tral sentence is considered as a segmented context,
relevant to particular chemical reactions.

2.4 Role Enrichment

Typically, prevalent systems can extract 9 reaction
roles, namely product, reactant, catalyst, solvent,
workup reagent, reaction type, time, temperature,
and yield. However, this coverage is insufficient for
capturing all vital properties of a chemical reaction.
To address this, we apply an event mining approach
(Jiao et al., 2022) to the chemistry literature. It is
grounded in the identification of all entities within
a text, and then allowing T5 (Raffel et al., 2020) to
generate the corresponding entity type to discover
frequent new reaction roles. Upon manual review
and filtering by chemistry practitioners, we inte-
grate an additional 10 new reaction roles, with the
complete list available in the Appendix C.

Simultaneously, an obstacle arises with the
enrichment of reaction roles due to the current
scarcity of suitable training data. To tackle this
issue, we annotate descriptions of the newly added
reaction roles and provide three demonstrations.
This enables in-context learning, allowing GPT-4
to generate chemical text, alongside the correspond-
ing extracted chemical reactions. We then institute
a filtering process where we: 1) eliminate samples
where the generated argument does not exist in the
original text, 2) remove the generated roles does
not appear in the label space, and 3) in tandem with
REACTIE (Zhong et al., 2023), remove samples
where the generated products exhibit low proba-

bilities of extraction in REACTIE. As a result, we
manage to enrich the spectrum of new roles that
need extraction for the chemical reaction extraction
task, coupled with the associated training data.

2.5 Reaction Extraction

Despite the existence of datasets for the chemical
reaction extraction task, they vary in terms of re-
action roles, output formats, and annotation guide-
lines. This underscores the need for a standardized
and unified data format, which stands as a critical
prerequisite for the development of a universally
applicable system. Accordingly, we establish this
requisite uniformity by re-collecting, re-organizing,
and re-annotating the existing data as follows.

Re-collecting Negative Samples. While a
keyword-based approach in the segmentation
module currently serves to locate chemical
reactions, this method is high in recall but low
in precision. That is, passages containing the
designated keywords do not necessarily describe
chemical reactions. Thus, we incorporate negative
samples — instances where the input text does
not contain chemical reactions — into the reaction
extraction training. For these samples, models
should output “No complete chemical reaction”.
We achieve this by running our segmentation
model on the chemistry literature and re-collecting
the filtered segments as negative samples.

Re-organizing Open Reaction Database. The
Open Reaction Database5, a publicly available
repository of chemical reactions, primarily con-
tains data from patent literature, with ground truths
extracted via the rule-based system OPSIN (Lowe,
2012, 2018). We re-organize the data format within
this database, filtering out samples with semanti-
cally repetitive content in the input text. Addition-
ally, our sampling procedure prioritizes scientific
papers and examples containing multiple chemical
reactions, forming part of our final training data.

Re-annotating Reaction Corpus. Although the
Reaction Corpus (Guo et al., 2022) is a manually
annotated dataset, its annotation guideline prompts
the output chemical to be represented as a unique
token of compound rather than the full name, reduc-
ing user readability. Moreover, its output format
occasionally contains incorrect symbols and units
due to tokenization errors. Thus, we re-annotate the

5https://docs.open-reaction-database.org
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Figure 3: Human evaluation for PDF-to-Text.

training set to eliminate such minor inconsistencies,
thereby achieving a unified data format.

Utilizing the above data, we train the LLaMA-
7b (Touvron et al., 2023) in a parameter-efficient
manner using the LoRA method (Hu et al., 2022),
enabling it to function as a chemical reaction ex-
tractor within our REACTION MINER framework.
More details can be found in the Appendix D.

3 Experiments

In this section, we evaluate the performance of RE-
ACTION MINER by testing its three core modules.

3.1 PDF-to-Text

Experimental Setup. To evaluate the quality and
generalization of our PDF-to-Text parser, we ran-
domly sample 56 papers from the top 10 most in-
fluential chemical journals across various scholarly
publishers (i.e., The Royal Society of Chemistry
and American Chemistry Society). For each sam-
ple, we manually compare the resulting text with
the original PDF using a four-level rating system:
perfect, minor issue, significant error, and unac-
ceptable. Here, “minor issue” indicates a few in-
coherent lines, whereas “significant error” refers
to an omission or mixture of several paragraphs,
significantly impacting readability.

Results. The results of the human evaluation are
shown in Figure 3. S2ORC (Lo et al., 2020) is a
vast corpus of 81.1M English-language academic
papers, thus its PDF-to-Text tool is widely em-
ployed. However, given the wide variety of journal
templates in the chemical literature, it achieves a
“perfect” rating in 20 instances, implying it only
completely preserves 35.7% of the original text
from the PDFs. Moreover, it frequently overlooks
paragraphs or includes unrelated content. Con-
versely, the PDF-to-Text component in REACTION

MINER flawlessly processes the text in 85.7% of
the instances, underscoring the effectiveness of our

Random Even GPT-4 Reaction Miner

0.3
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0.5

M
et
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Pk WindowDiff

Figure 4: Evaluation results for text segmentation.
Lower values indicate better performance.

proposed dynamic similarity computation compo-
nent in resolving the incoherence issue.

3.2 Text Segmentation

Experimental Setup. We randomly collect 50
samples from chemical literature and employ 3
graduate students with chemical backgrounds to
annotate the reaction-related context from the text.
The average length of samples is 328.26, resem-
bling a short article, and the average number of
segments is 2.34 per sample. Three segmentation
baselines are used for comparison: 1) Random: seg-
ment boundaries are randomly assigned; 2) Even:
segment boundaries are evenly placed every k sen-
tences; 3) GPT-4: employ GPT-4 to identify sen-
tences related to chemical reactions. Two common
measures for text segmentation, Pk (Beeferman
et al., 1999) and WindowDiff (Pevzner and Hearst,
2002) are leveraged as evaluation metrics, with
lower values indicating better performance. During
experiments, we set the size of the sliding window
in WindowDiff k = 2, equaling k in Even baseline.

Results. Figure 4 presents a comprehensive sum-
mary of the text segmentation results obtained us-
ing the constructed test set. The analysis reveals
that our proposed method substantially surpasses
all the existing baseline methods with respect to
both Pk and WindowDiff metrics, underlining its
ability to accurately identify segment boundaries.
A particular highlight of our findings is the superi-
ority of our approach, REACTION MINER, over the
strongest proprietary model, GPT-4, by improve-
ments of 16.2% (0.37 ⇒ 0.31) and 9.1% (0.33 ⇒
0.30) for Pk and WindowDiff, respectively. This
not only establishes the efficacy of our method but
also provides critical insights into the existing lim-
itations of GPT-4, one of the most sophisticated
language models to date, in the realm of text seg-
mentation. Interestingly, GPT-4’s performance is
found to be comparable to the Even method, point-
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Input Text: It is worth mentioning that when the reaction of 2-cyano-N,N-dimethylethanethioamide (1s) with 3-
phenylpropiolaldehyde (2a) was carried out at room temperature under nitrogen for 5 h, an aldol condensation 
product 5a was isolated in 73% yield, which can be further converted to 2-aminothienyl ether 3sa in 85% yield 
under the optimized reaction conditions.

ReactIE (Significant Error)
Reaction 1:
Product: 5a
Reactants: (1s), (2a), …
Reaction type: aldol condensation
Catalyst: nitrogen
Temperature: room
Time: 5 h
Yield: 73%

Reaction 2:
Product: 3sa
Reactants: (1s), (2a), …
Yield: 85%

GPT-4 (Minor Issue)
Reaction 1
Product: aldol condensation product 5a
Reactant: 2-cyano-… (1s)
Reactant: 3-… (2a)
Atmosphere: nitrogen
Temperature: room temperature
Time: 5 h
Yield: 73% (aldol condensation product 5a)

Reaction 2
Product: 2-aminothienyl ether 3sa
Reaction type: optimized reaction
Yield: 85% (2-aminothienyl ether 3sa)

Reaction Miner (Perfect)
Reaction 1
Product: 5a
Reactant: 2-cyano-… (1s), 3-… (2a)
Atmosphere: nitrogen
Reaction type: aldol condensation
Temperature: room temperature
Time: 5 h
Yield: 73% (5a)

Reaction 2
Product: 2-aminothienyl ether 3sa
Reactant: 5a
Yield: 85% (2-aminothienyl ether 3sa)

Figure 5: Case study for the different reaction extraction systems. The blue text indicates the results of the human
evaluation, and the red text represents the parts of the model output that are problematic. In addition, the output of
GPT-4 misses a few reaction roles, such as the “Reactant” in Reaction 2.
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Figure 6: Human evaluation for reaction extraction.

ing to specific areas where even such a powerful
model may exhibit weaknesses. Details of model
outputs and implementation are in Appendix B.

3.3 Reaction Extraction
Experimental Setup. To exclusively assess the
performance of the reaction extraction module, we
curate a test set by manually annotating 100 sam-
ples that encompass the complete segment. We
evaluate and contrast four distinct systems: 1)
ReactIE (Zhong et al., 2023), which stands as the
state-of-the-art chemical reaction extraction sys-
tem, built upon Flan-T5 (Chung et al., 2022); 2)
ChatGPT, a proprietary model for conversational
scenarios based on InstructGPT (Ouyang et al.,
2022); 3) GPT-4 (OpenAI, 2023): the most ad-
vanced proprietary model accessible at present, and
4) Reaction extraction module in our REACTION

MINER that utilizes LLaMA-7b as the backbone.
Evaluation details are provided in Appendix D.

Results. The evaluation results are detailed in
Figure 6. Despite being the previous best extrac-

tion system, ReactIE only perfectly matches the
user’s needs in 18% of the cases, with frequent
minor issues and significant errors. Such short-
comings can be attributed to frequent formatting
inconsistencies and the omission of certain reaction
roles inherent in its prior data format. Contrast-
ingly, the performance of REACTION MINER align
more closely with ChatGPT and GPT-4, yielding a
satisfactory outcome (“perfect” and “minor issue”)
in approximately 75% of cases. A salient point
to highlight is that although having a considerably
smaller parameter set than its proprietary counter-
parts and being open-source, REACTION MINER

offers a performance that is on par. This positions
it as a remarkably efficient open-source tool in this
field. Figure 5 provides a more granular view of
the outputs from different systems. In the given ex-
emplar, ReactIE inaccurately identifies reactants
and catalysts, resulting in it being categorized un-
der “significant error”. GPT-4, on the other hand,
encounters a few formatting challenges, and misses
reactants in the second reaction. In contrast, RE-
ACTION MINER adeptly extracts all the pertinent
reaction roles, facilitating a comprehensive under-
standing of the given chemical reaction.

4 Conclusion

In our exploration, we present REACTION MINER,
an integrated system adept at extracting chemical
reactions directly from raw scientific PDFs. Be-
yond mere extraction, it offers enhanced accuracy
by broadening the scope of reaction roles and elimi-
nating prior gaps. Feedback from chemistry experts
marks it as a powerful tool for the field.
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A Details for PDF-to-Text

Implementation Details. To filter out incoher-
ent information, we dynamically maintain a set
of anchor paragraphs. To avoid anchoring in the
reference section, of which the embedding is to-
tally different from other sections of a paper, we
deliberately select the longest paragraph in the first
one-third of the paper as the first anchor paragraph.
To obtain embedding for each paragraph, we adopt
a pre-trained sentence-transformer all-mpnet-base-
v26. Then we iterate through each paragraph, com-
puting an average cosine similarity score between
the paragraph embedding and each anchor para-
graph. If the cosine similarity score falls below a
threshold 0.12, we drop the content, otherwise, we
add the current paragraph into anchor paragraphs.
If the number of anchor paragraphs is more than 5,
we pop the front-must anchor paragraph.

Evaluation Details. Papers used in evaluation
are sampled from the following journals: Jour-
nal of American Chemistry Society, Angewandte
Chemie International Edition, Chemical Communi-
cation, Chemical Society Reviews, Organic Letters,
ACS Catalysis, The Journal of Organic Chemistry,
Chemical Science, Organic & Biomolecular Chem-
istry, and Accounts of Chemical Research.

B Details for Text Segmentation

In this section, we provide supplementary informa-
tion on the text segmentation module.

Keywords curation. All the following words are
used as keywords when locating central sentences:
{ ’yields’, ’yielded’, ’yield’, ’yielding’, ’afforded’,
’afford’, ’affording’, ’affords’, ’produce’, ’pro-
duces’, ’produced’, ’producing’, ’obtained’, ’ob-
tain’, ’obtaining’, ’obtains’, ’transformed’, ’trans-
form’, ’transforms’, ’transforming’, ’convert’, ’con-
version’, ’converted’, ’converts’, ’converting’, ’syn-
thesize’, ’synthesized’, ’synthesis’, ’desired’, ’desir-
ing’} Note that different words could have different
forms of the same meaning.

Case Study. Figure 7 demonstrates the segmen-
tation results from different models for one specific
example in the test set. We can see that boundary
relations predicted by GPT-4 are relatively sim-
ple compared to REACTION MINER, revealing its

6https://huggingface.co/sentence-transformers/
all-mpnet-base-v2

shortcomings in identifying contexts that are re-
lated to chemical reactions. REACTION MINER, on
the other hand, provides a much similar boundary
detection compared with the ground truth annota-
tions.

C Details for Role Enrichment

Reaction Role Definitions. Here we provide a
complete set of 19 reaction roles as well as their
definitions, including 9 roles prevalent in existing
systems and another 10 roles enriched.

The following are the 9 reaction roles that are
used in most existing systems:

(1) Product: Chemical substance that is the final
outcome (major product) of the reaction.

(2) Reactant: Chemical substances that con-
tribute heavy atoms to the product.

(3) Catalyst: Chemical substances that partici-
pate in the reaction but do not contribute heavy
atoms (e.g., acid, base, metal complexes).

(4) Workup reagents: Chemical substances that
are used after the reactions to terminate the
reactions or obtain the products (e.g., quench-
ing reagents, extraction solvent, neutralizing
acids/bases).

(5) Solvent: Chemical substances that are used
to dissolve/mix other chemicals, typically quan-
tified by volume and used in superstoichiometric
amounts (e.g., water, toluene, THF).

(6) Time: Duration of the reaction performed.
(7) Yield: Yield of the product.
(8) Reaction type: Descriptions about the type

of chemical reaction.
(9) Temperature: Temperature at which the reac-

tion occurs.
To capture sufficient information on chemical re-

actions and ensure coverage, we enrich the existing
roles and obtain another 10 reaction roles mined
from the chemistry literature. The definitions of
enriched 10 reaction roles are listed below:

(1) Atmosphere: The type of gas present during
the reaction can be crucial, especially for reactions
sensitive to oxygen or moisture (e.g., reactions car-
ried out under nitrogen or argon atmosphere).

(2) Inhibitor: Chemical substances introduced
into the reaction environment to slow down, or com-
pletely halt, the reaction (e.g., a radical inhibitor
like butylated hydroxytoluene (BHT) in polymer-
ization reactions, a catalyst poison like sulfur in
Haber process).
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Ground Truth

GPT-4 Segmentation

Reaction Miner

When 0.5 equiv of Na2S2O8 was combined with 2 equiv of Selectfluor and 20 mol % AgNO3, the reaction time decreased from 2 h to 15 min for all 
substrates, forming alkyl fluorides in excellent yields. The significant acceleration of rate in the decarboxylative fluorination has led to a more efficient 
process, suggesting that this approach may be useful for 18F labeling. In the seminal work of Li, a Ag(II) fluoride is proposed as the active fluorine atom 
source in the reaction as opposed to Selectfluor. To support this supposition, Li and co-workers heated the combination of tert-butyl-2-ethyltetradecanepe-
rox-oate and Selectfluor in a sealed tube to 120 \u00b0C for 2 h. When the reaction was run in acetone, a 22% yield of 3-fluoropentadecane was obtained, 
whereas when the reaction was run in 50:50 acetone/water, only a 4% of fluorinated product was obtained. On the basis of these findings, Li proposed that 
fluorine atom transfer from Selectfluor to alkyl radicals is unlikely to be involved in the Ag-catalyzed process. Selectfluor is reported to be unstable in water 
at high temperature, forming HF through reaction of the reagent and water. To examine this, we heated Selectfluor in acetone-d6/D2O to 120 \u00b0C in a 
sealed tube for 2 h. After cooling to room temperature, a sample was removed and examined by 1H NMR, showing that 80% of the reagent decomposed to
the defluorinated chloromethyl derivative (see experiment were likely not conducive to testing whether radicals can abstract a fluorine atom from 
Selectfluor. In addition, if a Ag(II)-F intermediate was formed during the reaction, it can be present only in a catalytic amount (at most). During its 
formation, radicals are also generated in a catalytic amount, so the likelihood of a small amount of radical being fluorinated by a small amount of Ag(II)-F in 
the presence of excess Selectfluor is unlikely. Finally, there is a large body of evidence showing that Selectfluor and similar electrophilic fluorinating 
reagents react with radicals to form C-F bonds.

When 0.5 equiv of Na2S2O8 was combined with 2 equiv of Selectfluor and 20 mol % AgNO3, the reaction time decreased from 2 h to 15 min for all 
substrates, forming alkyl fluorides in excellent yields. The significant acceleration of rate in the decarboxylative fluorination has led to a more efficient 
process, suggesting that this approach may be useful for 18F labeling. In the seminal work of Li, a Ag(II) fluoride is proposed as the active fluorine atom 
source in the reaction as opposed to Selectfluor. To support this supposition, Li and co-workers heated the combination of tert-butyl-2-ethyltetradecanepe-
rox-oate and Selectfluor in a sealed tube to 120 \u00b0C for 2 h. When the reaction was run in acetone, a 22% yield of 3-fluoropentadecane was obtained, 
whereas when the reaction was run in 50:50 acetone/water, only a 4% of fluorinated product was obtained. On the basis of these findings, Li proposed that 
fluorine atom transfer from Selectfluor to alkyl radicals is unlikely to be involved in the Ag-catalyzed process. Selectfluor is reported to be unstable in water 
at high temperature, forming HF through reaction of the reagent and water. To examine this, we heated Selectfluor in acetone-d6/D2O to 120 \u00b0C in a 
sealed tube for 2 h. After cooling to room temperature, a sample was removed and examined by 1H NMR, showing that 80% of the reagent decomposed to 
the defluorinated chloromethyl derivative (see experiment were likely not conducive to testing whether radicals can abstract a fluorine atom from 
Selectfluor. In addition, if a Ag(II)-F intermediate was formed during the reaction, it can be present only in a catalytic amount (at most). During its 
formation, radicals are also generated in a catalytic amount, so the likelihood of a small amount of radical being fluorinated by a small amount of Ag(II)-F in 
the presence of excess Selectfluor is unlikely. Finally, there is a large body of evidence showing that Selectfluor and similar electrophilic fluorinating 
reagents react with radicals to form C-F bonds.

When 0.5 equiv of Na2S2O8 was combined with 2 equiv of Selectfluor and 20 mol % AgNO3, the reaction time decreased from 2 h to 15 min for all 
substrates, forming alkyl fluorides in excellent yields. The significant acceleration of rate in the decarboxylative fluorination has led to a more efficient 
process, suggesting that this approach may be useful for 18F labeling. In the seminal work of Li, a Ag(II) fluoride is proposed as the active fluorine atom 
source in the reaction as opposed to Selectfluor. To support this supposition, Li and co-workers heated the combination of tert-butyl-2-ethyltetradecanepe-
rox-oate and Selectfluor in a sealed tube to 120 \u00b0C for 2 h. When the reaction was run in acetone, a 22% yield of 3-fluoropentadecane was obtained, 
whereas when the reaction was run in 50:50 acetone/water, only a 4% of fluorinated product was obtained. On the basis of these findings, Li proposed that 
fluorine atom transfer from Selectfluor to alkyl radicals is unlikely to be involved in the Ag-catalyzed process. Selectfluor is reported to be unstable in water 
at high temperature, forming HF through reaction of the reagent and water. To examine this, we heated Selectfluor in acetone-d6/D2O to 120 \u00b0C in a 
sealed tube for 2 h. After cooling to room temperature, a sample was removed and examined by 1H NMR, showing that 80% of the reagent decomposed to
the defluorinated chloromethyl derivative (see experiment were likely not conducive to testing whether radicals can abstract a fluorine atom from 
Selectfluor. In addition, if a Ag(II)-F intermediate was formed during the reaction, it can be present only in a catalytic amount (at most). During its 
formation, radicals are also generated in a catalytic amount, so the likelihood of a small amount of radical being fluorinated by a small amount of Ag(II)-F in 
the presence of excess Selectfluor is unlikely. Finally, there is a large body of evidence showing that Selectfluor and similar electrophilic fluorinating 
reagents react with radicals to form C-F bonds.

Figure 7: Case study for text segmentation conducted by the two most superior models. Note that the gray highlights
are the boundary sentences.

(3) Pressure: The pressure at which the reaction
is carried out, which may be above or below atmo-
spheric pressure, depending on the requirements of
the reaction.

(4) PH: If the reaction is carried out in an aque-
ous solution, the pH of the solution could be an
important factor.

(5) Speed: Some reactions require specific stir-
ring or mixing speeds, which can significantly im-
pact the outcome of the reaction.

(6) Vacuum condition: Some reactions or post-
reaction procedures (like solvent evaporation) re-
quire specific vacuum conditions to proceed effec-
tively.

(7) Light condition: Certain reactions (photo-
chemical reactions) require specific light conditions

- wavelengths, intensity, or duration - to proceed.

(8) Cooling/Heating Condition: The specific
conditions under which a reaction mixture is heated
or cooled, including the temperature range, the rate
of temperature change, and the duration at each
temperature.

(9) Spectroscopic data: Information collected
about the product using various spectroscopic meth-
ods such as NMR, IR, MS, which can help confirm
its structure and composition.

(10) Procedure: The specific steps followed in
conducting the reaction, including the order of ad-
dition of reactants, the sequence of reactions in
multi-step syntheses, etc.
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Source # Texts # Reactions

Open Reaction Database 200,000 201,666
GPT-4 35,173 48,305
Chemistry Literature 25,000 0
Reaction Corpus 385 491

Total 260,558 250,462

Table 1: Data statistics for reaction extraction. A text
can contain more than one chemical reaction. “Chem-
istry Literature” is used as negative samples, i.e. the
input text does not contain a chemical reaction.

Training Data Generation. To pair the newly
enriched reaction roles with corresponding train-
ing data, we leverage GPT-4 with in-context learn-
ing technique for data generation. The detailed
prompts are shown in Figure 8.

D Details for Reaction Extraction

Implementation Details. By re-collecting nega-
tive samples, re-organizing open reaction database,
and re-annotating the reaction corpus, we gather
the data statistics as presented in Table 1.

For the model training, we adopt the parameter-
efficient approach LoRA to train the LLaMA-7b
model as it is more computationally efficient and
yields similar performance to full finetuning. The
training is divided into two phases: we first con-
duct a two-epoch training on the reorganized open
reaction database data and 22,000 negative samples
from chemistry literature, expecting that the model
can learn the preliminary chemistry knowledge in
the first phase. Then, we perform the second stage
of finetuning for a total of 20 epochs on the GPT-4
generated data, re-annotated reaction corpus, and
3,000 negative samples, aiming to allow the model
to further learn to extract enriched reaction roles.
For both phases of training, the batch size is set
to 128, as well as the learning rate is 3e-4 with a
warm-up ratio of 0.03.

Evaluation Details. For models belonging to the
GPT class, we precede the input text with a compre-
hensive task definition and three exemplar demon-
strations. Two Ph.D. students majoring in chem-
istry are invited to participate in manually evaluat-
ing the outputs of each model. The evaluation stan-
dards are consistently categorized into four tiers:
perfect, minor issue, significant error, and irrele-
vant or invalid. The evaluation criteria continue
to be divided into four levels: “perfect”, “minor
issue”, “significant error” and “unacceptable”.

The human evaluation system is built on an open-
source annotation tool, doccano7. The evaluators
coordinate the standards for the rating system be-
fore starting annotation and then each of them rate
all the instances independently. They are presented
with the input text and the model outputs. Model
responses are listed in random order, with all the
model information anonymized. Figure 9 provides
a screenshot of the annotation interface. The re-
ported performance in this paper is based on the
results from all evaluators.

7https://github.com/doccano/doccano
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Input Text: It is worth mentioning that when the reaction of 2-cyano-N,N-dimethylethanethioamide (1s) with 3-
phenylpropiolaldehyde (2a) was carried out at room temperature under nitrogen for 5 h, an aldol condensation product 5a
was isolated in 73% yield, which can be further converted to 2-aminothienyl ether 3sa in 85% yield under the optimized
reaction conditions.

ReactIE (Significant Error)
Reaction 1:
Product: 5a
Reactants: (1s), (2a), 2-cyano-N,N-dimethylethanethioamide, 3-phenylpropiolaldehyde
Reaction type: aldol condensation
Catalyst: nitrogen
Temperature: room
Time: 5 h
Yield: 73%

Reaction 2:
Product: 3sa
Reactants: (1s), (2a), 2-cyano-N,N-dimethylethanethioamide, 3-phenylpropiolaldehyde
Yield: 85%

GPT-4 (Minor Issue)
Reaction 1
Product: aldol condensation product 5a
Reactant: 2-cyano-N,N-dimethylethanethioamide (1s)
Reactant: 3-phenylpropiolaldehyde (2a)
Atmosphere: nitrogen
Temperature: room temperature
Time: 5 h
Yield: 73% (aldol condensation product 5a)

Reaction 2
Product: 2-aminothienyl ether 3sa
Reaction type: optimized reaction conditions
Yield: 85% (2-aminothienyl ether 3sa)

REACTION MINER (Perfect)
Reaction 1
Product: 5a
Reactant: 2-cyano-N,N-dimethylethanethioamide (1s), 3-phenylpropiolaldehyde (2a)
Atmosphere: nitrogen
Reaction type: aldol condensation
Temperature: room temperature
Time: 5 h
Yield: 73% (aldol condensation product 5a)

Reaction 2
Product: 2-aminothienyl ether 3sa
Reactant: 5a
Yield: 85% (2-aminothienyl ether 3sa)

Table 2: Full text of case study in Figure 5. The blue text indicates the results of the human evaluation, and the red
text represents the parts of the model output that are problematic. In addition, the output of GPT-4 misses a few
reaction roles, such as the “Reactant” in Reaction 2.
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Please help me with a chemistry-related task which is divided into two steps: First, generate a paragraph in a scientific paper, which introduces one or 
multiple specific chemical reactions. Second, extract the information of all chemical reactions one by one from the generated paragraph. Completing 
these two steps generates an instance with paragraphs and a corresponding action list. Now please help me generate 5 instances.
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n

Specifically, each reaction should include several roles and their corresponding arguments. The roles are predefined attributes involved in the reaction 
while the arguments are the specific spans extracted from the paragraph that are corresponding to their roles. Here, we list all the reaction roles as 
below: 

(1) Product: [def]            (2) Reactant: [def] (3) Catalyst: [def]                             (4) Workup reagents: [def] (5) Solvent: [def] 
(6) Atmosphere: [def]       (7) Inhibitor: [def] (8) Reaction type: [def] (9) Temperature: [def] (10) Time: [def] 
(11) Pressure: [def] (12) PH: [def]                 (13) Speed: [def] (14) Vacuum condition: [def] (15) Light condition: [def] 
(16) Cooling/Heating Condition: [def] (17) Spectroscopic data: [def]        (18) Yield: [def]     (19) Procedure: [def]
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To clearly explain these tasks, we provide the following examples:

Instance 1
Paragraph:
Reactions of Zr derivatives such as 8 with [Ph3C][B(C6F5)4] in C6D5Br (at -20 and 20 °C, in absence and presence of d8-THF) were also performed. 
Although complicated mixtures were similarly produced, the generation of significant amounts of Ph3CCH2Ph were nonetheless observed (CH2 singlet 
appears at 4.04 ppm in C6D5Br [and 4.03 ppm in C6D5Br containing 3 drops of d8-THF]), suggestive of benzyl abstraction and benzyl cation 
formation (rather than trityl attack at the C(σ-aryl) atom) like that reported for the Zr-[O,N,C(σ-naphthyl)] analogue.

Reaction List:
Reaction 1
Product: Ph3CCH2Ph
Reactant: Zr derivatives such as 8, [Ph3C][B(C6F5)4]
Solvent: C6D5Br containing 3 drops of d8-THF
Reaction type: benzyl abstraction, benzyl cation formation
Temperature: -20 and 20 °C
Yield: significant amounts (Ph3CCH2Ph)

Instance 2
Paragraph:
Treatment of CyPBn-Cy with NiCl2(DME) in THF afforded (CyPBn-Cy)NiCl2, which is obtained as the dichloromethane solvate upon workup (68%) 
on the basis of elemental analysis, NMR spectroscopic, and X-ray crystallographic data. This material in turn was converted into (CyPBn-Cy)Ni(o-
tol)Cl upon treatment with (o-tol)MgCl in THF and subsequently isolated as an analytically pure solid (95%).

Reaction List:
Reaction 1
Product: (CyPBn-Cy)NiCl2
Reactant: CyPBn-Cy, NiCl2(DME)
Solvent: THF
Yield: 68% ((CyPBn-Cy)NiCl2)

Instance 3
Paragraph:
1.44 ml (12.5 mmols) of benzoyl chloride, 1.88 ml (12.5 mmols) of N-benzyldimethylamine and 0.0281 g (0.125 mmol) of palladium acetate are added 
to 25 ml of toluene in a pressure apparatus constructed of glass. The apparatus is flushed with ethylene in order to remove the air. Ethylene is then 
injected at 10 bar and the mixture is stirred for 4 hours at 120° C. 55% of styrene and 9% of trans-stilbene are formed.

Reaction List:
Reaction 1
Product: styrene, trans-stilbene
Reactant: benzoyl chloride, N-benzyldimethylamine
Catalyst: palladium acetate
Solvent: toluene
Temperature: 120 °C
Time: 4 hour
Pressure: 10 bar
Yield: 55% (styrene), 9% (trans-stilbene)

For each instance, the output of our tasks should be in this format:
Paragraph:
[the generated text describing chemical reactions]

Reaction List:
Reaction 1
[the role-argument pairs of the first reaction. Note that the yield should be the its value followed by the corresponding product.]
...
Reaction n
[the role-argument pairs of the n-th reaction (if any)]
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Reaction 2
Product: (CyPBn-Cy)Ni(o-tol)Cl
Reactant: (CyPBn-Cy)NiCl2, (o-tol)MgCl
Solvent: THF
Yield: 95% ((CyPBn-Cy)Ni(o-tol)Cl)
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Following the above examples, please help me with this task, i.e. generate 5 instances containing paragraph and reaction list. Remember to strictly 
follow the output format. Ensure that all arguments of reactions are the real spans extracted from the paragraph and should be faithful to the original 
text. At least 1 of the 5 generated instances should contain multiple chemical reactions.T

ri
gg

er

Figure 8: Prompt used for role enrichment. Specifically in “Role Definitions”, [def] is the placeholder of definitions
for all the reaction roles. For a complete list of definitions, please refer to Appendix C.
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Figure 9: Annotation interface for human evaluation. The predictions from different models present in random order
and the model information being anonymized. Our expert evaluators are required to read the input text, and then
select the rating for the model’s outputs from fours options for the extracted results.
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