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Abstract

Retrieval-augmented large language models
(R-LLMs) combine pre-trained large language
models (LLMs) with information retrieval
systems to improve the accuracy of factual
question-answering. However, current libraries
for building R-LLMs provide high-level ab-
stractions without sufficient transparency for
evaluating and optimizing prompts within spe-
cific inference processes such as retrieval
and generation. To address this gap, we
present RALLE, an open-source framework de-
signed to facilitate the development, evaluation,
and optimization of R-LLMs for knowledge-
intensive tasks. With RALLE, developers can
easily develop and evaluate R-LLMs, improv-
ing hand-crafted prompts, assessing individ-
ual inference processes, and objectively mea-
suring overall system performance quantita-
tively. By leveraging these features, developers
can enhance the performance and accuracy of
their R-LLMs in knowledge-intensive genera-
tion tasks. We open-source our code at https:
//github.com/yhoshi3/RaLLe.

1 Introduction

Large language models (LLMs) have shown great
potential for natural language understanding and
generation tasks (Brown et al., 2020; Chowdh-
ery et al., 2022; OpenAI, 2023). However, they
face challenges when answering factual questions
due to hallucinations (or confabulations) (Bang
et al., 2023; Borji, 2023), outdated parametric
knowledge (Liska et al., 2022), and memory effi-
ciency of parametric knowledge (e.g., Heinzerling
and Inui, 2021). To address these limitations, re-
searchers have turned to the retrieval-augmented
approach used in open-domain question answering
(QA) (Chen et al., 2017), hereinafter referred to as
retrieval-augmented LLMs or R-LLMs.

In comparison to closed-book settings where lan-
guage models generate answers without retrieval,

∗ These authors contributed equally to this work.

R-LLMs (open-book settings) enable the retrieval
of relevant information from external databases
or corpora (Mialon et al., 2023; Ng et al., 2023),
which has led to improved accuracy in open-
domain QA (Shi et al., 2023). Additionally, R-
LLMs can acquire extended features even without
additional training, such as explicit references, re-
lief from fact hallucination (Nakano et al., 2021),
and easy updates to the knowledge source (e.g.,
Guu et al., 2020; Ng et al., 2023).

Retrieval-augmented generation needs further
research and development to reach its full poten-
tial. For example, even though the retriever-reader
system has been trained on the Natural Questions
(NQ) dataset (Kwiatkowski et al., 2019), its F1
score on the short answer task is 68.3 and still lags
behind the oracle F1 score of 75.7 (Asai and Choi,
2021). This implies that further improvements can
be made to the retrieval-augmented generation ap-
proach. Additionally, users would be probably
aware that the outputs generated by R-LLMs may
contain factual errors, particularly when applied
to knowledge-intensive tasks. However, there is
currently a lack of accessible evaluation framework
to assess their output quality. This makes it difficult
to identify areas for improvement.

Furthermore, having effective tools for develop-
ing R-LLMs is crucial. These tools should enable
the design of inference steps such as retrieve-then-
generate, selecting the combination of retrievers
and LLMs, evaluating the performance of the en-
tire system, and testing the prompts used in each
inference step. Currently available tools, such as
the ChatGPT Retrieval Plugin1, Guidance2, and
LangChain3 (Chase, 2023), offer a high degree
of abstraction, making it challenging to verify the
functionality of individual inference steps or opti-

1https://github.com/openai/
chatgpt-retrieval-plugin

2https://github.com/microsoft/guidance
3Note: Our code does not use either of these.
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Figure 1: Overview of RALLE, our proposed development and evaluation framework for R-LLMs. Any number of
actions can be defined for an R-LLM. Each action can be executed individually to test the corresponding prompts.
Experimental setup and evaluation results can be tracked using MLflow. Additionally, a simple chat interface can be
built to test out the best practices from the development and evaluation stages in a practical setting.

mize prompts within each step. This lack of trans-
parency might hinder the optimization of R-LLMs.

In this paper, we propose RALLE, an accessible
framework for Retrieval-Augmented Large Lan-
guage model development and Evaluation. We
also present evaluation results of several R-LLMs
that we have constructed by using open-source re-
trievers and LLMs. To the best of our knowledge,
RALLE is the first framework that empowers R-
LLM developers and open-domain QA researchers
to efficiently develop, evaluate, and improve R-
LLMs using objective metrics.

RALLE offers several key benefits:

1. Easy development and testing: users can eas-
ily select, combine, and test various retrievers
and LLMs, especially open-source models,
within a graphical interface.

2. Objective evaluation of R-LLMs: RALLE pro-
vides reproducible experiments with objec-
tive benchmarks/metrics, enabling objective
assessments of R-LLM performance.

3. Transparent prompt engineering: all inputs
(prompts) and outputs of each action are vis-
ible to developers, allowing for easy explo-
ration and optimization of the prompts.

2 RALLE Usage

Figure 1 presents an overview of the key features
of the proposed framework4. The primary develop-
ment process involves three stages: (1) embedding
and indexing the knowledge source documents, (2)
designing an inference chain consisting of an R-
LLM with customized prompt templates for each
action, and (3) benchmarking the developed R-
LLM.

2.1 Document Embedding and Indexing

To begin, the knowledge source documents can be
encoded using an arbitrary encoder model, such
as a sparse or dense retriever. For efficient in-
dexing of dense embeddings, several methods
are available by default, including Faiss (Johnson
et al., 2019), HNSW (Malkov and Yashunin, 2020),
and DiskANN (Jayaram Subramanya et al., 2019).
By default, an HNSW index is constructed with
ef_construction = 128 (the size of the dynamic
list for the nearest neighbors) and m = 32 (the
number of links created for every new element dur-
ing graph construction).

2.2 Chain Construction

Once the document embedding and indexing are
completed, the retrievers (and the correspond-
ing indices) and LLMs can be loaded via the

4Please also review the demonstration screencast.
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Gradio5-based GUI (Abid et al., 2019) to es-
tablish an inference chain that comprises an
R-LLM. This chain of actions enables users
to design a pipeline for multi-step inference,
such as [retrieve]-[generate], or more intricate
workflows such as [rewrite query]-[retrieve]-
[generate] proposed in Ma et al. (2023). The ver-
satility of this feature is especially beneficial in
creating the chains tailored to specific use cases.

A single-action chain can function as either a
simple retriever that returns the retrieved docu-
ments, or a closed-book QA that leverages the para-
metric knowledge of an LLM to provide answers
without retrieval. In contrast, a chain with multi-
ple actions that include retrieval enables retrieval-
augmented generation or open-book QA, allowing
an LLM to access external documents relevant to a
question. Our default setup for R-LLMs consists
of two actions: retrieve and generate.

2.3 Prompt Engineering

The RALLE framework allows developers to in-
teractively craft customized prompt templates for
LLMs and even for search queries on a per-chain
basis. Each action can be executed independently,
enabling precise control over LLM responses, such
as specifying the desired output format or suppress-
ing undesirable hallucinations. To enhance the ver-
satility of prompt development, RALLE integrates
support for f-strings and eval() function in Python.

2.4 Experiment Tracking

We utilize MLflow (LF Projects, 2023) to track the
experiments, along with their associated configura-
tion files and prompt templates. This allows us to
compare the performance of different experiment
runs objectively, which enables us to develop even
better R-LLMs.

2.5 Chat AI

RALLE also provides support for building a sim-
ple chat interface. This enables users to test out
best practices from the development and evaluation
stages in a practical setting.

3 Experimental Settings

In this section, we evaluate the performance of R-
LLMs constructed with several combinations of
open-source retrievers and LLMs on knowledge-
intensive tasks.

5https://www.gradio.app/

3.1 Tasks and Datasets
We employ KILT (Knowledge Intensive Language
Tasks) benchmark (Petroni et al., 2021), an ex-
tensive benchmark that encompasses 11 datasets
across five knowledge-intensive natural language
processing tasks: fact checking, entity linking, slot
filling, open-domain question answering, and dia-
logue (for further details of KILT, see Petroni et al.
(2021)). We use the training sets for developing
prompts and the development set for evaluation.

As the knowledge source, we utilize the pre-
processed Wikipedia passages provided by KILT.
The passages are derived from English Wikipedia
articles based on the 2019/08/01 Wikipedia dump
data, consisting of a total of 5.9 million articles
and 22.2 million 100-word passages. For both
dense and sparse retrievers, we use the set of 100-
word passages after additional pre-processing that
prepends the title of the article to each passage.

Note that RALLE is dataset-agnostic, allowing
developers to use their own QA datasets and cor-
pora for development and evaluation. See Ap-
pendix A.10 for more information.

3.2 Models
This subsection details the retrievers and LLMs
employed to build R-LLMs in our experiments.
RALLE allows practitioners and researchers to eas-
ily experiment with the most recent models avail-
able in open-source repositories. With the excep-
tion of BM25, all models are available from Hug-
ging Face (Wolf et al., 2020) (see Appendix A.9
for the summary).

3.2.1 LLMs
The LLM used within the R-LLM must compre-
hend instructions provided in a prompt and gener-
ate appropriate responses based on the given infor-
mation. To achieve this, we use instruction-tuned
LLMs with a temperature parameter set to zero for
optimal performance and reproducibility.

Llama-2-chat is tuned with supervised fine-
tuning and reinforcement learning with human
feedback (RLHF) (Christiano et al., 2017; Stiennon
et al., 2020) to align to human preferences for help-
fulness and safety (Touvron et al., 2023b). In our
experiments, we utilize both 13-billion (Llama2-
13B) and 70-billion (Llama2-70B) models.

WizardVicunaLM-13B6 (W-Vicuna-13B)
(Lee, 2023) is formed by combining the concepts

6https://huggingface.co/junelee/
wizard-vicuna-13b
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Model dim. max len. MTEB Retrieval

BM25 - - 42.3♠

m-e5 1,024 514 51.43
e5 1,024 512 50.56

Table 1: Summary of the retrievers used in our eval-
uation. Dimensions of a dense embedding vector are
shown in dim., while the maximum token length of an
input sequence is max len.. The evaluation metric for
MTEB Retrieval is nDCG@10. ♠: Results from Ram
et al. (2022). Results on MTEB Retrieval except BM25
are copied from MTEB leaderboard7.

of WizardLM (Xu et al., 2023) (refining the
initial instructions with Evol-Instruct method (Xu
et al., 2023)) and Vicuna (Chiang et al., 2023) (a
fine-tuned LLaMA model (Touvron et al., 2023a)
with multi-round conversation data from chatbots).

3.2.2 Retrievers
We experiment with both sparse and dense retriev-
ers for document retrieval. Specifically, we select
dense retrievers that have achieved high accuracy
on the retrieval task of Massive Text Embedding
Benchmark (MTEB) (Muennighoff et al., 2023)
leaderboard7 as of July 2023. A list of the retriev-
ers used in our study can be found in Table 1. In
the open-book experiments, the top-5 most relevant
documents are retrieved.

As the metrics of retrieval performance, we fol-
low Petroni et al. (2021) and use the page-level
R-precision (Craswell, 2016) and recall@5. The
page-level R-precision is the percentage of R gold
pages inside each provenance set among the top-R
retrieved pages. Typically, R-Precision is equiva-
lent to Precision@1 except FEVER and HotPotQA
(multi-hop datasets).

BM25 (Robertson and Zaragoza, 2009) is a
bag-of-words retrieval function based on the term-
matching. We use the Pyserini (Lin et al., 2021)
implementation of unigram BM25 with the default
parameters of k1 = 0.9 (term frequency scaling)
and b = 0.4 (document length normalization). The
documents for BM25 retrieval is the same 100-
word passages as the dense retrievers.

e5-large-v28 (e5) (Wang et al., 2022) is a super-
vised bi-encoder model with a query encoder and a

7https://huggingface.co/spaces/mteb/
leaderboard

8https://huggingface.co/intfloat/
e5-large-v2

document encoder. multilingual-e5-large9 (m-e5)
is a multilingual fine-tuned e5 model.

3.3 Prompts

We utilize custom-designed prompt templates that
are specifically crafted for each dataset in KILT.
RALLE accepts templates with non-natural lan-
guage formats, such as f-strings and eval() func-
tions in Python. This allows developers to care-
fully craft their prompt templates for optimal per-
formance. The prompt templates used in our exper-
iments are shown in Appendix A.11.

For entity linking task of KILT (AY2, WnWi,
and WnCw), we employ a REWRITE-EL template
by default for search queries. This template ex-
tracts the specific entity mentions being questioned
as a query, as employing an entire span of a ques-
tion is unlikely to find relevant documents (we will
discuss in Section 4.3). After retrieving the rele-
vant documents, the top-1 Wikipedia title is output
as an answer. As a result, the downstream accuracy
in entity linking task is not affected by the number
of retrieved documents (if one or more).

4 KILT Benchmark Results

This section provides the downstream and retrieval
performance of the R-LLMs developed and evalu-
ated using RALLE.

4.1 Baseline

We compare our results with those of the BART-
large model (Lewis et al., 2020a) for the closed-
book setting and the RAG model (Lewis et al.,
2020b) for the open-book setting, which presented
in Petroni et al. (2021). Notably, these baseline
models were specifically fine-tuned on the KILT
benchmark, whereas our chosen LLMs and con-
structed R-LLMs were not. See also Appendix A.5
for additional information of the baselines.

4.2 Downstream Performance

We summarize the downstream performance10 in
Table 2. RALLE also includes has_answer per-
centage for short answers, a proxy metric to mea-
sure the proportion of questions that contain gold
answers within the final output generated by an
R-LLM (see Appendix A.3 for more details).

9https://huggingface.co/intfloat/
multilingual-e5-large

10See also Table 6 in Appendix A.6 for additional results in
a closed-book setting.
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Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Dataset FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

Model / Metric Accuracy Exact Match RL F1

BART-large♢ (closed-book) 80.7 86.6 47.9 48.0 43.8 3.0 26.2 16.9 32.5 22.7 13.8
Llama2-70B (closed-book) 33.6 (74.9) 39.8 (54.5) 42.8 (53.8) 39.2 (55.7) 28.5 (40.5) 11.3 (13.6) 19.6 (37.4) 13.9 (25.1) 67.4 (80.8) 23.0 13.3

RAG♢ 87.7 77.4 49.0 46.7 61.5 47.4 48.8 27.7 61.7 16.1 13.3
e5 + W-Vicuna-13B 10.6 (42.4) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 31.6 (46.1) 23.0 (29.3) 18.7 (38.0) 19.7 (28.3) 43.1 (67.7) 21.4 12.3
e5 + Llama2-13B 66.3 (73.5) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 17.2 (42.3) 31.7 (41.1) 36.1 (43.3) 14.3 (25.5) 56.3 (76.2) 20.9 12.3
BM25 + Llama2-70B 46.2 (86.3) 18.0 (35.9) 19.1 (32.2) 14.2 (30.9) 25.9 (43.0) 31.4 (37.8) 25.3 (34.3) 25.9 (33.4) 65.8 (80.0) 21.3 12.2

e5 + Llama2-70B 49.9 (88.6) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 28.9 (49.2) 35.0 (43.2) 36.4 (48.8) 28.1 (35.8) 71.1 (83.9) 21.5 13.2
e5 (DiskANN) 49.9 (87.9) 44.3 (50.5) 45.3 (48.1) 43.0 (48.8) 25.3 (43.9) 32.1 (37.9) 36.1 (48.4) 26.7 (34.3) 70.4 (83.2) 21.5 13.1
top-2 49.3 (88.1) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 23.5 (44.9) 34.7 (43.0) 33.7 (46.2) 23.8 (34.2) 71.3 (82.9) 21.6 13.3
top-10 50.2 (88.0) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 31.1 (49.3) 35.4 (42.5) 35.2 (48.1) 24.9 (35.7) 59.3 (82.8) 21.5 13.2

Model / Metric KILT-Accuracy KILT-EM KILT-RL KILT-F1

RAG♢ 55.5 77.4 49.0 46.7 25.4 42.6 36.3 3.1 36.1 2.7 7.5
e5 + W-Vicuna-13B 8.4 (33.5) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 19.0 (28.0) 22.2 (28.1) 14.4 (27.8) 8.6 (11.9) 26.6 (40.3) 2.7 7.3
e5 + Llama2-13B 53.1 (58.7) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 11.5 (25.7) 29.8 (38.5) 27.5 (32.5) 5.6 (10.6) 34.7 (46.1) 2.7 7.4
BM25 + Llama2-70B 21.9 (44.4) 17.6 (17.6) 18.9 (18.9) 13.9 (13.9) 14.5 (22.5) 24.9 (29.6) 9.3 (12.4) 4.5 (5.9) 23.6 (27.9) 1.5 4.0

e5 + Llama2-70B 40.2 (71.2) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 19.2 (29.7) 32.8 (40.4) 27.7 (36.3) 11.3 (14.5) 42.8 (49.7) 2.7 8.1
e5 (DiskANN) 38.3 (68.5) 44.3 (44.3) 45.3 (45.3) 42.8 (42.8) 19.3 (24.2) 30.2 (35.5) 27.3 (35.9) 9.3 (12.1) 42.1 (49.0) 2.7 8.0
top-2 39.6 (70.7) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 15.6 (28.0) 32.9 (40.6) 25.7 (35.2) 7.6 (13.1) 43.1 (49.3) 2.7 8.3
top-10 40.4 (70.7) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 20.5 (29.9) 33.2 (39.8) 27.1 (36.1) 9.9 (14.3) 36.1 (48.9) 2.7 8.1

Table 2: Downstream performance on KILT dev set. Following Petroni et al. (2021), we report the results of typical
metrics for each dataset, with bold indicating the best result and underlined indicating the second. The metrics with
the prefix KILT- award output performance only when R-Prec = 1 (retrieval success). The figures in parentheses
represent has_answer percentage, which corresponds to the proportion of questions with gold answers included in
the final output. The figures shown in gray are copied from the column above because they do not change based
on the given setting (we use the Identity function of RALLE for the tasks, rather than an LLM). ♢: Results from
Petroni et al. (2021).

Our constructed R-LLM (e5 + Llama2-70B)
surpasses the performance of the RAG model on
both HoPo and TQA, despite not being fine-tuned
with KILT like RAG. Moreover, our constructed
R-LLMs demonstrate acceptable accuracy levels
on other datasets as well, without any significant
drawbacks. The results indicate that the LLMs used
in this study exhibit certain ability to comprehend
the retrieved documents.

Furthermore, our analysis reveals several fac-
tors that could contribute to improvement of down-
stream performance, including retrieval augmen-
tation (except ELI5), increased model scale (ex-
cept FEV and T-REx), and referring to more docu-
ments during generation (except NQ, HoPo, TQA
and WoW). However, some datasets exhibits excep-
tions to these tendencies or had lower performance
compared to their corresponding has_answer per-
centage (such as FEV, T-REx, NQ, and TQA). To
address this issue, developers can improve the R-
LLM with RALLE by refining the inference chain
and the prompt templates. In Section A.4, we pro-
vide our initial attempts at developing inference

chains with three actions on several datasets.
Overall, the downstream evaluation results pro-

vide valuable insights into how well the constructed
R-LLMs perform on knowledge-intensive tasks,
enabling developers to identify areas for improve-
ment.

4.3 Retrieval Performance

Table 3 shows retrieval performance of the cho-
sen retrievers on KILT development set (see also
Table 8 in Appendix for the results of recall@5).
According to Table 3, e5 (with Faiss Flat index)
achieves the highest retrieval performance on aver-
age, though m-e5 is better on MTEB Retrieval task
(Table 1). Despite the superior retrieval accuracy
of e5 compared to RAG on KILT, the downstream
performance of the R-LLM which employs e5 falls
short of that of RAG (Table 2). This indicates that
there is potential room for improvement through
further optimized prompts to enhance the perfor-
mance on a target dataset.

As described in Section 3.3, REWRITE-EL
serves as the default template for search queries
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Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Dataset FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

Model R-Precision

RAG♢ 63.5 77.4 49.0 46.7 29.3 65.4 60.3 30.8 49.3 16.4 46.7 48.6
BM25 52.1 17.7 20.6 15.3 34.0 57.7 26.3 41.3 31.7 6.8 28.8 30.2
− REWRITE-EL 52.1 3.0 (−14.7) 0.1 (−20.5) 2.8* (−12.5) 34.0 57.7 26.3 41.3 31.7 6.8 28.8 25.9 (−4.3)

m-e5 (Flat) 81.7 41.8 45.8 41.6 47.1 81.4 63.0 54.0 56.1 11.9 57.9 52.9
− REWRITE-EL 81.7 3.2 (−38.6) 0.1 (−45.7) 3.1 (−38.5) 47.1 81.4 63.0 54.0 56.1 11.9 57.9 41.8 (−11.1)

e5 (Flat) 82.0 51.6 51.6 49.2 45.3 81.9 65.2 54.3 56.1 12.9 56.8 55.2
− REWRITE-EL 82.0 3.4 (−48.2) 0.0 (−51.6) 2.6 (−46.6) 45.3 81.9 65.2 54.3 56.1 12.9 56.8 41.9 (−13.3)

e5 (HNSW) 67.9 38.9 42.3 40.5 23.1 53.0 60.3 34.9 50.4 10.2 54.5 43.3
− REWRITE-EL 67.9 2.9 (−36.0) 0.0 (−42.3) 1.6 (−38.9) 23.1 53.0 60.3 34.9 50.4 10.2 54.5 32.6 (−10.7)

e5 (DiskANN) 78.8 44.7 47.8 46.0 37.1 74.5 64.9 49.1 55.4 12.9 56.6 51.6
− REWRITE-EL 78.8 3.2 (−41.5) 0.1 (−47.7) 1.8 (−44.2) 37.1 74.5 64.9 49.1 55.4 12.9 56.6 39.4 (−12.2)

Table 3: Retrieval performances on KILT dev set. We report page-level R-Precision on KILT development set. Avg.
refers to macro-average of the retrieval scores in each dataset. Bold indicates the best result. ♢: Results from Petroni
et al. (2021). *: BM25 (without REWRITE-EL) failed with long queries (45 out of 5,599 questions) in WnCw.

Retrieval

Model Avg. R-Prec Memory sec/Q
BM25 30.2 - 0.121
e5 (Flat) 55.2 84.8 GB 0.169
e5 (HNSW) 43.3 90.4 GB 0.008
e5 (DiskANN) 51.6 10.9 GB 0.022

Completion in the Closed-Book Setting sec/Q

Llama-70B 6.727

Retrieval + Generation sec/Q

BM25 + Llama2-70B 3.637
e5 + Llama2-70B 3.793
e5 (DiskANN) + Llama2-70B 3.628

Table 4: Execution latency in seconds per question
(sec/Q). Memory in Retrieval indicates the maximum
(DRAM) memory footprints.

related to entity linking task (AY2, WnWi, and
WnCw). As shown in Table 3, employing the
REWRITE-EL template leads to higher retrieval
accuracy when compared to using the full question
text as a search query (− REWRITE-EL setting).
This indicates that omitting unnecessary informa-
tion from the search queries is helpful especially
for entity linking task.

4.4 Speed Analysis

RALLE allows users to optimize the trade-off be-
tween latency (in seconds per question) and ac-
curacy by comparing various configurations. As
demonstrated in Table 4, employing approximate
nearest neighbor search (ANNS) algorithms such
as HNSW and DiskANN can significantly reduce

retrieval latency at the cost of decreased accuracy.
Note that, the optimal balance between speed and
accuracy depends on the specific requirements of
the application, and RALLE enables users to easily
experiment with diverse ANNS settings to deter-
mine their impact on both factors.

Notably, DiskANN achieves an accuracy that
is only slightly lower than Faiss flat index while
significantly improving search speeds, despite re-
quiring less memory footprints than both flat and
HNSW indices. Though the reduction in R-
LLM execution time achieved through ANNS may
appear relatively minor, the significantly lower
DRAM requirements of DiskANN could make it a
more practical solution for scenarios where DRAM
capacity is limited and the flat index exceeds avail-
able DRAM capacity. For further details regarding
latency, refer to Table 9 in Appendix A.8.

5 Conclusion

This paper introduces RALLE, an accessible frame-
work for developing and evaluating R-LLMs. We
also report evaluation results of several R-LLMs
built using open-source retrievers and LLMs on
knowledge-intensive tasks. Overall, RALLE offers
a significant advancement in retrieval-augmented
generation research, enabling efficient develop-
ment, evaluation, and improvement of R-LLMs.
We hope that RALLE will contribute to the devel-
opment of best practices for R-LLMs.

Limitations

All KILT evaluations presented in this paper were
conducted using a development set to maintain fair-
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ness and consistency across evaluations, as the an-
swers of the test set remain confidential11.

While R-LLMs exhibit high validity, it falls be-
hind the smaller yet specialized model, RAG, on
the KILT downstream task (refer to Table 2). This
disparity can be attributed to various factors, includ-
ing prompt maturity and the ability of LLMs to gen-
erate responses. Although the employed prompts
were carefully developed, it is likely that more opti-
mal prompts exist (discussed in Section 4.3). More-
over, fine-tuning LLMs with retrieval-augmented
generation tasks might enhance their performance
on downstream tasks. Therefore, the evaluation
accuracy reported herein would represent a conser-
vative estimate.

Prompt engineering is a crucial aspect of the
retrieval-augmented generation process, as the gen-
erated outputs can differ significantly between mod-
els, even when provided with the same prompt.
RALLE offers an advantage in this regard, allow-
ing users to effortlessly experiment with diverse
prompts for varying behaviors, datasets, and intri-
cate chain of actions.

In the realm of prompt development, techniques
like Automatic Prompt Engineer (APE) (Zhou
et al., 2023) automate the creation of prompts from
input-output pairs and sampling to identify the most
effective prompts. However, the input-output pairs
in retrieval-augmented generation are distinctly dif-
ferent from those of the simple instruction induc-
tion tasks. Because the input text for retrieval-
augmented generation can often be lengthy and
complex, it is difficult to automatically induce the
effective prompts from the input-output pairs.

This tool enables developers to construct an in-
ference chain with predefined actions, while recent
advances have also introduced methods allowing
LLMs to determine the actions (Yao et al., 2023).
One approach entails retrieving documents using
a query rewritten by an LLM and then summariz-
ing them until the desired information is obtained.
However, in our initial experiments (not described
in this paper), we observed instances where rela-
tively small LLMs (typically less than 100 billion
parameters) became trapped in cycles of repeated
retrieval and summarization, hindering their ability
to reach the final answer generation. Our tool ad-
dresses this issue by intentionally building explicit
inference chains to avoid unintended operations.

11https://eval.ai/web/challenges/
challenge-page/689/overview
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A Appendix

A.1 Computational Resources
The evaluation experiments are conducted on an
Ubuntu 20.04.6 server equipped with Intel(R)
Xeon(R) Gold 6326 CPU at 2.90 GHz CPU cores,
and one node with 4×NVIDIA A100 Tensor Core
GPU with 40 GB memory, and a RAID-5 array
with a Dell(R) PERC H745 Front controller and
KIOXIA(R) PM6-R SAS SSDs for storage. The
CUDA version is 12.2, the Python version is 3.9.16,
the PyTorch version is 2.0.1, and the Transformers
version is 4.29.2.
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Figure 2: A screenshot of the Development chain tab of RALLE. Developers can create tailored action chains
comprising multiple actions of inference. For each action, developers can specify a prompt template, confirm the
results of applying the template, and execute the action using the newly defined prompt, individually. Moreover,
RALLE can highlight the gold answers within the retrieved documents or the output of the LLM, as well as highlight
the Wikipedia IDs of successfully retrieved provenance.
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A.2 Development Screen of RALLE

Figure 2 shows the chain development screen12.
Developers can create an inference chain for an R-
LLM on this Develop chain tab. One can choose a
dataset and specify the desired chain length, which
represents the total number of actions. By default,
there are two actions: retrieving with a retriever
and generating with an LLM.

Prompt templates for each action can be defined
using f-strings or eval functions in Python. The
results of applying the template can be confirmed
without executing retrieval and generation. The
execution result can be viewed by clicking the In-
terpret prompt and execute this action button.

The available action operators are LLM, Re-
triever, and Identity. LLM generates text based
on the given prompt. Retriever retrieves the top k
most relevant documents related to the input query.
And Identity simply outputs the original prompt
without employing a retriever or an LLM.

To execute the entire chain, click the Execute
entire chain button. At the bottom of this tab, the
selected question and its corresponding answer can
be reviewed. Also, RALLE enables to highlight
the gold answers within the retrieved documents
or the output of the LLM, as well as highlight the
Wikipedia ID of successfully retrieved provenance.

A.3 Additional Metric: has_answer

RALLE also includes has_answer percentage (e.g.,
Karpukhin et al., 2020) for short answers, a proxy
metric to measure the proportion of questions that
contain gold answers within the final output gen-
erated by an R-LLM. By tracking this metric, de-
velopers can identify situations where the model
generates responses that include gold answers but
may be overlooked due to evaluation biases such as
exact matching. This information can help refine
prompts to improve overall performance.

A.4 Attempts to Build 3-action Chain

According to Section 4.2, retrieval augmentation
has a significant impact on performance in fact
checking, open-domain QA for short answers, and
slot filling tasks when comparing the closed-book
and open-book settings of Llama2-70B. In entity
linking task (AY2, WnWi, and WnCw), however,
our approach described in Section 3.3 (retrieve,
then output the top-1 retrieved Wikipedia title) may
not be effective.

12Please also review the demonstration screencast.

To improve the performance, we construct a 3-
action chain for AY2 dataset: (1) retrieve top-5
relevant documents, (2) explain the entity mention
being questioned, and (3) predict the Wikipedia
title based on the explanation and top-5 retrieved
titles. Additionally, we explore developing 3-action
chains for T-REx and NQ datasets, which involves
(1) retrieval, (2) question rewriting, and (3) answer
generation. Table 12 shows the prompts used in
3-action chains.

Table 5 shows the downstream performances
with the 3-action chains on AY2, NQ, and T-
REx datasets. While the 3-action chain outper-
forms the 2-action (retrieve-then-generate) chain
on NQ dataset, it underperforms the 2-action accu-
racies on AY2 and T-REx datasets. This suggests
that the 3-action chains constructed specifically
for these two datasets require further optimization.
However, the has_answer value for AY2 (70.0%)
is higher than that of the 2-action chain (47.8%),
indicating that incorporating post-processing steps
into the 3-action chain (thus to be 4-action chain)
could potentially boost accuracy, particularly for
AY2.

One of the benefits of our tool is that it allows for
easy definition of such additional inference actions.
This means that developers can customize the chain
to perform specific tasks beyond the default setting,
giving them greater flexibility and control over their
development.

A.5 Details of Baseline Model in Open-Book
Setting

As a baseline in open-book setting, we present
the results of the Retrieval-Augmented Genera-
tion (RAG) model (Lewis et al., 2020b) shown in
Petroni et al. (2021), which achieved strong perfor-
mance in the KILT benchmark. The RAG model
comprises a bi-encoder retriever and a sequence-
to-sequence generator (BART model (Lewis et al.,
2020a)), both of which are trained end-to-end. The
total number of trainable parameters in the RAG
model is approximately 626 million. It is important
to note that the RAG model was trained specifi-
cally for the KILT benchmark, whereas our chosen
LLMs and constructed R-LLMs were not.

A.6 KILT Downstream Performances in
Closed-Book Setting

Table 6 summarizes the KILT downstream results
in a closed-book setting. The baseline (BART-
large) model has been fine-tuned on the KILT
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Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Dataset FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

Model / Metric Accuracy Exact Match RL F1

Llama2-70B (closed-book) 33.6 (74.9) 39.8 (54.5) 42.8 (53.8) 39.2 (55.7) 28.5 (40.5) 11.3 (13.6) 19.6 (37.4) 13.9 (25.1) 67.4 (80.8) 23.0 13.3

RAG♢ 87.7 77.4 49.0 46.7 61.5 47.4 48.8 27.7 61.7 16.1 13.3
e5 + Llama2-70B 49.9 (88.6) 51.2 (57.9) 48.6 (51.4) 45.6 (51.4) 28.9 (49.2) 35.0 (43.2) 36.4 (48.8) 28.1 (35.8) 71.1 (83.9) 21.5 13.2

3-action - 24.4 (70.0) - - 16.3 (46.8) - 36.9 (49.3) - - - -

Model / Metric KILT-Accuracy KILT-EM KILT-RL KILT-F1

RAG♢ 55.5 77.4 49.0 46.7 25.4 42.6 36.3 3.1 36.1 2.7 7.5
e5 + Llama2-70B 40.2 (71.2) 51.2 (51.2) 48.6 (48.6) 45.5 (45.5) 19.2 (29.7) 32.8 (40.4) 27.7 (36.3) 11.3 (14.5) 42.8 (49.7) 2.7 8.1

3-action - 9.5 (27.7) - - 10.4 (27.9) - 28.0 (36.6) - - - -

Table 5: Downstream performance of the 3-action chain on KILT dev set along with baselines. The figures in
parentheses represent has_answer percentage, which corresponds to the proportion of questions with gold answers
included in the final output of the LLM. ♢: Results from Petroni et al. (2021).

Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Dataset FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW

Model / Metric Accuracy Exact Match RL F1

BART-large♢ 80.7 86.6 47.9 48.0 43.8 3.0 26.2 16.9 32.5 22.7 13.8
W-Vicuna-13B 0.0 (58.4) 0.1 (52.2) 2.0 (44.9) 0.0 (48.1) 17.9 (33.0) 5.9 (8.5) 6.2 (27.4) 1.7 (17.1) 20.0 (64.5) 22.7 12.7
Llama2-13B 26.3 (50.7) 34.6 (47.5) 35.0 (42.8) 28.5 (41.3) 26.9 (36.7) 7.8 (9.9) 11.5 (29.1) 8.3 (20.3) 43.0 (70.2) 27.6 13.0
Llama2-70B 33.6 (74.9) 39.8 (54.5) 42.8 (53.8) 39.2 (55.7) 28.5 (40.5) 11.3 (13.6) 19.6 (37.4) 13.9 (25.1) 67.4 (80.8) 23.0 13.3

Table 6: Downstream performance on KILT development set in a closed-book setting (generation without retrieval).
Following Petroni et al. (2021), we report the results of typical metrics for each dataset, with bold indicating the
best result. The figures in parentheses represent has_answer percentage, which corresponds to the proportion of
questions with gold answers included in the final output of the LLM. ♢: Results from Petroni et al. (2021).

datasets, while our chosen LLMs have not. Despite
this, the LLMs demonstrate superior performance
compared to the baseline on several datasets.

Specifically, the Llama2-70B model outperforms
the BART baseline on the zsRE and TQA datasets,
and the Llama2-13B model outperforms the base-
line on the ELI5 dataset. This suggests that the
parametric knowledge embedded in the LLMs and
their capacity for text generation can be leveraged
effectively for knowledge-intensive tasks, even
zero-shot setting. Nevertheless, as described in
Section 4.2, retrieval augmentation can enhance
the performance on downstream tasks, except the
ELI5 dataset. We also present the closed-book per-
formances of several LLMs on the development set
of NQ dataset in Table 7.

A.7 Additional Results for Retrieval
Performance

Table 8 presents the recall@5 of the retrievers used
in our experiments. Note that even though m-
e5 outperforms e5 on the MTEB Retrieval task
(shown in Table 1), e5 still demonstrates superior
performance compared to m-e5 in terms of both

R-precision (shown in Table 3) and recall@5.

A.8 Details of Speed Analysis

Table 9 presents the details of speed analysis on
KILT development set. The search speed of BM25
(without REWRITE-EL) decreases as the total
number of words in a query increases. In con-
trast, for dense vector search, the search speed re-
mains relatively constant regardless of the size of
the query due to the fixed dimensionality of the
embedding vectors.

According to Table 9, the execution times re-
quired for generation with an LLM is longer than
the times required for retrieval, particularly when
generating lengthy responses such as ELI5 and
WoW. Therefore, it may seem counterintuitive that
the advantages of ANNS used in vector search are
not fully realized in terms of execution time of
R-LLMs. However, as previously discussed in Sec-
tion 4.4, DiskANN requires less memory compared
to other vector search algorithms, which means that
using such algorithm can actually help conserve
computational resources for R-LLM.

We observe that Llama2-13B requires more time
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NQ

Model Name EM has_answer f1 sec/Q

Llama-2-70b-chat 19.6 37.4 36.8 2.254
Llama-2-13b-chat 11.5 29.1 28.1 1.179
StableBeluga2 16.2 40.9 35.5 2.858
gpt-3.5-turbo 25.4 38.9 41.1 -

Table 7: Accuracies on NQ dev set in a closed-book setting. For gpt-3.5-turbo (version 0613), the accuracy was
calculated excluding five questions out of 2,837 questions in the NQ development set that were deemed inappropriate
prompts by OpenAI and were not processed.

Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Dataset FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

Model Recall@5

RAG♢ 76.1 77.5 49.0 46.7 33.7 73.1 65.5 12.3 56.9 27.3 66.6 53.1
BM25 74.2 28.8 34.7 30.6 42.7 74.7 42.5 22.8 48.7 12.3 45.1 41.6
− REWRITE-EL 74.2 7.6 (−21.2) 3.1 (−31.6) 5.9* (−24.7) 42.7 74.7 42.5 22.8 48.7 12.3 45.1 34.5 (−7.1)

m-e5 (Flat) 91.0 58.5 60.6 62.2 53.1 87.0 69.5 40.4 65.4 19.1 75.0 62.0
− REWRITE-EL 91.0 7.8 (−50.7) 3.8 (−56.8) 5.5 (−56.7) 53.1 87.0 69.5 40.4 65.4 19.1 75.0 47.1 (−14.9)

m-e5 (HNSW) − REWRITE-EL 63.2 4.9 3.5 2.6 26.0 48.2 55.6 14.1 48.7 14.6 66.8 31.7
e5 (Flat) 90.6 66.1 63.3 66.7 52.1 87.2 71.6 40.9 65.4 21.3 75.3 63.7
− REWRITE-EL 90.6 7.6 (−58.5) 3.4 (−59.9) 4.8 (−61.9) 52.1 87.2 71.6 40.9 65.4 21.3 75.3 47.3 (−16.4)

e5 (HNSW) 74.7 49.6 50.7 50.8 26.7 55.9 65.2 19.3 58.6 16.0 70.9 48.9
− REWRITE-EL 74.7 6.0 (−43.6) 3.3 (−47.4) 3.3 (−47.5) 26.7 55.9 65.2 19.3 58.6 16.0 70.9 36.4 (−12.5)

e5 (DiskANN) 86.6 57.1 58.3 60.9 42.1 78.7 70.7 34.7 64.6 20.8 75.0 59.0
− REWRITE-EL 86.6 7.4 (−49.7) 3.3 (−55.0) 3.6 (−57.3) 42.1 78.7 70.7 34.7 64.6 20.8 75.0 44.3 (−14.7)

Table 8: Retrieval performances (recall@5) on KILT dev set. Avg. refers to macro-average of the scores in each
dataset. Bold indicates the best result. The figures shown in gray are copied from the column above because they do
not change based on the given setting. ♢: Results from Petroni et al. (2021). *: BM25 (without REWRITE-EL)
failed with long queries (45 out of 5,599 questions) in WnCw.

to process each question compared to Llama2-
70B. Upon further analysis, we discovered that
the Llama2-13B model occasionally produced non-
sensical responses such as multiple newline char-
acters (“\n”), partially due to the limitations of our
prompts.

A.9 Model Information

As shown in Table 10, we utilize several open-
source models from Hugging Face, specifically
their officially released versions. We load the dis-
tributed models in 8-bit precision by default except
Llama2-70B model (in 4-bit) using Hugging Face
Accelerate13 library.

A.10 Using Custom Datasets

In addition to utilizing KILT datasets, RALLE en-
ables developers to develop and evaluate R-LLMs
on their own QA datasets and corpora. To use the

13https://huggingface.co/docs/
accelerate/index

custom datasets with RALLE, you will need to
perform the following preprocessing:

• Prepare your corpus as a TSV file containing
the document IDs, texts, and titles.

• Create a JSONL file for your QA dataset.
The format should look like this: {"id":
"", "input": "", "output":
[{"answer": "", "provenance":
[{"wikipedia_id": "", "title":
""}]}]}, where “input” represents a question.

See our repo for more detailed instructions:
https://github.com/yhoshi3/RaLLe.

A.11 The Prompts used in the Evaluation
Table 11 summarizes the prompts used in our exper-
iment. Open-book indicates retrieve-then-generate
setting. The queries used for retrieval are the
raw questions without any rewriting, except for
the REWRITE-EL settings of AY2, WnWi, and
WnCw.

64

https://huggingface.co/docs/accelerate/index
https://huggingface.co/docs/accelerate/index
https://github.com/yhoshi3/RaLLe


Fact Check. Entity Linking Slot Filling Open Domain QA Dial.

Tasks FEV AY2 WnWi WnCw T-REx zsRE NQ HoPo TQA ELI5 WoW Avg.

Models Completion in Closed-Book Setting (in seconds per question)

W-Vicuna-13B 1.565 13.040 10.870 9.793 0.983 1.142 2.165 1.969 1.414 22.820 7.122 6.626
Llama2-13B 0.625 1.077 1.036 1.201 0.940 0.913 1.270 1.185 1.014 40.100 9.522 5.353
Llama2-70B 1.765 2.936 2.745 2.618 1.953 2.031 2.285 2.188 1.877 42.500 11.100 6.727

Retrieval + Generation (in seconds per question)

e5 + W-Vicuna-13B 1.529 1.310 1.368 1.158 1.192 1.453 2.595 1.945 1.734 15.480 10.850 3.692
e5 + Llama2-13B 1.084 1.165 1.209 1.046 1.300 1.407 1.284 1.975 9.830 32.48 16.76 6.322
BM25 + Llama2-70B 1.841 0.008 0.009 0.008 2.015 2.296 2.206 2.344 2.249 15.020 12.010 3.637
e5 + Llama2-70B 1.926 0.133 0.131 0.135 2.135 2.424 2.419 2.346 2.238 16.030 11.810 3.793
e5 (top-2) + Llama2-70B 1.544 0.133 0.131 0.135 1.661 1.908 1.994 1.833 1.759 15.120 10.820 3.367
e5 (top-10) + Llama2-70B 2.811 0.133 0.131 0.135 2.951 3.276 - 13.900 14.400 35.070 24.100 -
e5 (DiskANN) + Llama2-70B 1.803 0.044 0.044 0.043 2.009 2.281 2.166 2.247 2.116 15.780 11.370 3.628
e5 + Llama2-70B (3-action) - 25.41 - - 4.993 - 16.320 - - - -

Retrieval (in seconds per question)

BM25 0.038 0.008 0.009 0.008 0.018 0.013 0.052 0.105 0.086 0.136 0.857 0.121
BM25 (without REWRITE-EL) 0.038 5.700 4.531 5.440 0.018 0.013 0.052 0.105 0.086 0.136 0.857 1.543
m-e5 (Flat) 0.174 0.164 0.166 0.176 0.187 0.165 0.194 0.156 0.176 0.177 0.165 0.173
m-e5 (HNSW) 0.008 0.013 0.013 0.015 0.008 0.009 0.009 0.009 0.009 0.011 0.010 0.010
e5 (Flat) 0.177 0.168 0.172 0.159 0.201 0.170 0.171 0.146 0.155 0.174 0.165 0.169
e5 (HNSW) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.009 0.008
e5 (DiskANN) 0.018 0.020 0.038 0.020 0.020 0.030 0.020 0.021 0.019 0.019 0.021 0.022

Mean Query Length (tokens)

11.1±4.0 357.9±149.0 331.5±113.5 505.2±31.1 7.5±2.5 7.6±2.3 9.9±2.1 19.5±6.6 17.9±8.9 21.0±10.7 86.3±58.0

Table 9: Execution time (in seconds per question) in RALLE. Avg. refers to macro-average of the times in each
task. The mean query length and its standard deviation (shown as ± after the value) are also displayed, which were
calculated using the e5 tokenizer.

Language Model

Model Name Size max len. emb dim URL

wizard-vicuna-13b (Lee, 2023) 13,015,864,320 2,048 - https://huggingface.co/junelee/wizard-vicuna-13b

Llama-2-13b-chat (Touvron et al., 2023b) 13,015,864,320 4,096 - https://huggingface.co/meta-llama/Llama-2-13b-chat

Llama-2-70b-chat (Touvron et al., 2023b) 68,976,653,312 4,096 - https://huggingface.co/meta-llama/Llama-2-70b-chat

StableBeluga2 70B 4,096 - https://huggingface.co/stabilityai/StableBeluga2

Retriever

multilingual-e5-large 559,890,946 514 1,024 https://huggingface.co/intfloat/multilingual-e5-large

e5-large-v2 (Wang et al., 2022) 335,142,400 512 1,024 https://huggingface.co/intfloat/e5-large-v2

Table 10: Hugging Face links of the models used in our evaluation. Size refers to the total number of effective
parameters of each model. max len. refers to the maximum token length of model input.

Closed-book indicates that an LLM answers to
the given question without retrieval. Although
these prompts have been our established best prac-
tices, we recognize that there may be opportunities
for improvement (see also Section 5).
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Open-book Closed-book

FEVER

Action 1: Retriever
{question}

Action 2: LLM
{response[0]} ←↩

←↩

Answer IN ONE WORD if the document SUPPORTS or REFUTES
"{question}". ←↩

←↩

Answer:

Action 1: LLM
Answer IN ONE WORD if your knowledge SUPPORTS or REFUTES
"{question}". ←↩

←↩

Answer:

AY2

Action 1: Retriever
'What is "'+ '{}'.format(question).split(
'[START_ENT]')[1].split('[END_ENT]')[0][1:-1] + '" ?'

Action 2: Identity
'{}'.format(wiki_id_title[0]).split('; ')[0].split(',
')[0]

Action 1: LLM
'What is the most relevant Wikipedia title to the en-
tity "'+ '{}'.format(question).split('[START_ENT]
')[1].split('[END_ENT]')[0] + '" in the context of
"'+ '{}'.format(question).split('[START_ENT]')[0][-100:]
+ '{}'.format(question).split('[START_ENT]')[1].split(
'[END_ENT]')[0] + '{}'.format(question).split(
'[END_ENT]')[1][:100] + '''..."?\n\nPlease answer only
the Wikipedia title.\n\nAnswer: '''

WnWi

Action 1: Retriever
'What is "'+ '{}'.format(question).split(
'[START_ENT]')[1].split('[END_ENT]')[0][1:-1] + '" ?'

Action 2: Identity
'{}'.format(wiki_id_title[0]).split('; ')[0].split(',
')[0]

Action 1: LLM
'What is the most relevant Wikipedia title to the en-
tity "'+ '{}'.format(question).split('[START_ENT]
')[1].split('[END_ENT]')[0] + '" in the context of
"'+ '{}'.format(question).split('[START_ENT]')[0][-100:]
+ '{}'.format(question).split('[START_ENT]')[1].split(
'[END_ENT]')[0] + '{}'.format(question).split(
'[END_ENT]')[1][:100] + '''..."?\n\nPlease answer only
the Wikipedia title.\n\nAnswer: '''

WnCw

Action 1: Retriever
'What is "'+ '{}'.format(question).split(
'[START_ENT]')[1].split('[END_ENT]')[0][1:-1] + '" ?'

Action 2: Identity
'{}'.format(wiki_id_title[0]).split('; ')[0].split(',
')[0]

Action 1: LLM
'What is the most relevant Wikipedia title to the en-
tity "'+ '{}'.format(question).split('[START_ENT]
')[1].split('[END_ENT]')[0] + '" in the context of
"'+ '{}'.format(question).split('[START_ENT]')[0][-100:]
+ '{}'.format(question).split('[START_ENT]')[1].split(
'[END_ENT]')[0] + '{}'.format(question).split(
'[END_ENT]')[1][:100] + '''..."?\n\nPlease answer only
the Wikipedia title.\n\nAnswer: '''

Continued on next page...

Table 11: Prompt templates used in our experiments. The hook-left arrows←↩ refers to new line. Note that RALLE
supports f-strings and eval() function in Python.
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Table 11 – continued from previous page.

Open-book Closed-book

T-REx

Action 1: Retriever (f-strings)
{question}

Action 2: LLM (eval())
'''Referring to the following document, answer "what
is the '''+ '{}'.format(question).split('[SEP]')[1] +
'of '+ '{}'.format(question).split('[SEP]')[0] + '''?"
in 5 words or less.\n\n'''+ '{}'.format(response[0]) +
'''\n\n'''+ '{}'.format(question).split('[SEP]')[1] + ':
'

Action 1: LLM (eval())
'What is the '+ '"'+ '{}'.for-
mat(question).split('[SEP] ')[1] + '" of "'+ '{}'.for-
mat(question).split('[SEP]')[0] + '"'+ '''in 5 words or
less?\n\n'''+ '{}'.format(question).split('[SEP] ')[1] +
': '

zsRE

Action 1: Retriever (f-strings)
{question}

Action 2: LLM (eval())
Referring to the following document, answer "{ques-
tion}?" in 5 words or less. ←↩

←↩

{response[0]} ←↩

←↩

Answer:

Action 1: LLM (eval())
'Tell me the '+ '"'+ '{}'.for-
mat(question).split('[SEP] ')[1] + '" of "'+ '{}'.for-
mat(question).split('[SEP]')[0] + '"'+ '''in 5 words or
less.\n\n'''+ '{}'.format(question).split('[SEP] ')[1] +
': '

NQ

Action 1: Retriever
{question}

Action 2: LLM
Referring to the following document, answer "{ques-
tion}?" in 5 words or less. ←↩

←↩

{response[0]} ←↩

←↩

Answer:

Action 1: LLM
Answer '{question}?'in 5 words or less. ←↩

←↩

Answer:

HoPo

Action 1: Retriever
{question}

Action 2: LLM
Referring to the following document, answer "{ques-
tion}?" in 5 words or less. ←↩

←↩

{response[0]} ←↩

←↩

Answer:

Action 1: LLM
Answer '{question}?'in 5 words or less. ←↩

←↩

Answer:

Continued on next page...

67



Table 11 – continued from previous page.

Open-book Closed-book

TQA

Action 1: Retriever
{question}

Action 2: LLM
Referring to the following document, answer "{ques-
tion}?" in 5 words or less. ←↩

←↩

{response[0]} ←↩

←↩

Answer:

Action 1: LLM
Answer '{question}'in 5 words or less. ←↩

←↩

Answer:

ELI5

Action 1: Retriever
{question}

Action 2: LLM
Referring to the following document, answer "{question}".
←↩

←↩

{response[0]} ←↩

←↩

Explain the following questions as if I were five years
old. ←↩

{question} ←↩

←↩

Answer:

Action 1: LLM
Explain '{question}'as if I were five years old. ←↩

←↩

Answer:

WoW

Action 1: Retriever
{question}

Action 2: LLM
Referring to the following document, output a short and
informative reply to the conversation. ←↩

←↩

{response[0]} ←↩

←↩

Referring to the above document, output a short and in-
formative reply to the following conversation. ←↩

←↩

This conversation ends on your turn. ←↩

←↩

{question} ←↩

←↩

Informative and short answer: ←↩

←↩

Action 1: LLM
Output a short and informative reply to the conversation.
This conversation ends on your turn. ←↩

←↩

{question} ←↩

←↩

Informative and short answer:
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AY2

Action 1: Retriever
'What is "'+ '{}'.format(question).split('[START_ENT] ')[1].split('[END_ENT]')[0] + '" in the context of "'+
'{}'.format(question).split('[START_ENT]')[0][-100:] + '{}'.format(question).split('[START_ENT]')[1].split('[END_ENT]')[0]
+ '{}'.format(question).split('[END_ENT]')[1][:100] + '..."?'

Action 2: LLM
'What is "'+ '{}'.format(question).split('[START_ENT] ')[1].split('[END_ENT]')[0] + '" in the context of "'+
'{}'.format(question).split('[START_ENT]')[0][-100:] + '{}'.format(question).split('[START_ENT]')[1].split('[END_ENT]')[0]
+ '{}'.format(question).split('[END_ENT]')[1][:100] + '..."?\nAnswer in a short and conc sentence.'+ '''\n\nAnswer:\n'''

Action 3: LLM
'Please select the most appropriate title for the word "'+ '{}'.format(question).split('[START_ENT]
')[1].split('[END_ENT]')[0] + '" based on the given Description.'+ '''\nIf none of these titles suit your needs, please
suggest a possible alternative title.'''+ '''\Titles: \n'''+ '/ '.join([titleid.split(',')[0] for titleid in '{}'.for-
mat(wiki_id_title[0]).split('; ')]) + '''\n\nDescription:\n'''+ '{}'.format(response[1]) + '''\n\nWikipedia Title:\n'''

T-REx

Action 1: Retriever
{question}

Action 2: LLM
Formulate a question that asks [SEP] in the following sentence: ←↩

'{question}' ←↩

←↩

Generated question:

Action 3: LLM
{response[0]} ←↩

←↩

Referring to the document above, answer "{response[1]}" in 5 words or less. ←↩

←↩

Answer:

NQ

Action 1: Retriever
{question}

Action 2: LLM
Please rewrite the following question clearly. ←↩

←↩

{question}? ←↩

←↩

Rewritten question:

Action 3: LLM
Referring to the following document, answer "{response[1]}" in 5 words or less. ←↩

←↩

{response[0]} ←↩

←↩

Answer:

Table 12: Prompt templates used in 3-action chains.
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