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Abstract

With the advent of Large Language Mod-
els (LLMs) the process known as prompting,
which entices the LLM to solve an arbitrary lan-
guage processing task without the need for fine-
tuning, has risen to prominence. Finding well-
performing prompts, however, is a non-trivial
task that requires experimentation to arrive at
a prompt that solves a specific task. When a
given task does not readily reduce to one that
can be easily measured with well-established
metrics, human evaluation of the results ob-
tained by prompting is often necessary. In
this work, we present prompterator, a tool
that helps the user interactively iterate over
various potential prompts and choose the best-
performing one based on human feedback. It is
distributed as an open-source package with out-
of-the-box support for various LLM providers
and was designed to be easily extensible.1

1 Introduction

The standard approach to solving language tasks
using machine learning models has been to assume
a train-test/metric setup, in which a task is well
defined in advance, a dataset relevant for the task is
gathered and split into a set of data that is used for
training a specific model and optimizing its hyper-
parameters in a supervised way (train) and testing
its performance (test), as well as one or multiple
metrics that are used to provide a summary of the
model’s performance on this dataset. In practice,
however, it is very difficult for many language tasks
to be carefully designed in advance, in order for the
dataset to be collected and an appropriate metric to
be defined.

To alleviate this issue, an alternative approach
called prompting or prompt engineering rose to
prominence recently. In it, the user provides a

1prompterator’s code is MIT licensed and can be found
at https://github.com/slidoapp/prompterator. Also
check out the demo at https://drive.google.com/file/
d/1f3D5LM-UA4wY-Cro412FXe_ivDTe1Vrv/view

description of the task in along with instructions
for the model to transform the provided input into
a specific output. This is provided in a natural
language (for instance English) and is also referred
to as prompt or a prompt template, as part of the
prompt is interpolated with each specific input. For
instance, ”Provide a paraphrase of the following
sentence: {text}”, where {text} would be replaced
with a particular input text sentence, is an example
of a prompt that could be directly used for the
sentence paraphrasing task, without the need to
gather any train or test data. To aid the model in
solving specific tasks, the prompt can also contain
a list of training examples.

This approach has risen to prominence with the
introduction of Large Language Models (LLMs),
such as GPT-3 (Brown et al., 2020), Gopher (Rae
et al., 2021), OPT (Zhang et al., 2022) and BLOOM
(Scao et al., 2022). These models were trained on
vast amounts of training data, their size often ex-
ceeds a hundred billion parameters and they demon-
strate strong generalization capability in zero-shot
or few-shot learning, in which they are able to learn
to perform a new task based on the prompt alone,
without requiring any parameter updates in the un-
derlying model. It is hence the combination of a
model and a prompt that yields the ability to solve
a specific language task. Finding an appropriate
prompt for a specific model thus becomes of criti-
cal importance, as the choice of a specific prompt
has an outsized impact on the final performance
(Zhao et al., 2021; Webson and Pavlick, 2021; Min
et al., 2022).

In this work, we present prompterator, an inte-
grated development environment for LLM prompts.
It provides a web-based interface that allows the
user to interactively iterate over various prompt
variants, evaluate their performance and save the
evaluation data for future use. The application
works locally and uses standardized JSON files
that can be easily version controlled, allowing for
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decentralized team collaboration. It supports var-
ious LLM providers such as OpenAI, Anthropic,
Google Vertex AI, AWS Bedrock, Cohere, as well
as HuggingFace Transformers (Wolf et al., 2020)
out of the box. It provides an easily programmable
interface for integrating other models in the future.
Unlike other related works in the area, it does not
make any assumptions about the task itself, making
it a suitable choice for any language processing task
where LLMs can be reasonably used and human
evaluation is appropriate.

2 Related Work

2.1 Prompting

The usage of LLMs as an alternative to super-
vised training has first been introduced alongside
the GPT-3 language model series (Radford et al.,
2019). Since then, the usage of prompts as means
of improving few-shot as well as zero-shot perfor-
mance of LLMs has been explored extensively for a
wide range of tasks (Brown et al., 2020; Sanh et al.,
2021; Schick and Schütze, 2021; Wei et al., 2021,
2022) and is increasingly being used in various
applications (Liu et al., 2023). Broadly speaking,
prompts can be either expressed as human-readable
text in a natural language such as English (Gao
et al., 2020) or as continuous vectors that do not
necessarily correspond to any words in the model’s
vocabulary (Qin and Eisner, 2021).

In the case of human-readable prompts, there
are also a few broad categories of prompts we can
distinguish. The first one is zero-shot prompts, in
which the model is not provided with any examples
of correct input/output. Another option is few-shot
prompts which make use of training examples and
can either be used to finetune the model further
(Gao et al., 2020) or provided to the model as part
of the input in an effort to entice the model to per-
form in-context learning and change its behavior
solely based on its input, without changing its pa-
rameters (Brown et al., 2020).
prompterator is concerned only with human-

readable prompts, makes no assumption on the
prompt’s language, and supports both the zero-shot
as well as few-shot setup. It does not aim to find
the prompt automatically but rather aids the user in
the iterative process of prompt engineering.

2.2 Prompting tools and IDEs

Even though prompting and prompt engineering are
emerging disciplines, there exists a sizable body

of work in the area of tools and IDEs specifically
focused on prompting. These include commercial
offerings, such as Dust2, Everyprompt3, Human
Loop4, Promptmetheus5, Spellbook6 and Snorkel7

as well as various libraries, such as Promptify8,
PromptTools9, Lang Chain10 and Open Prompt
(Ding et al., 2021) and research-oriented tools,
such as Prompt IDE (Strobelt et al., 2022), Promp-
tAid (Mishra et al., 2023), PromptChainer (Wu
et al., 2022), PromptMaker (Jiang et al., 2022) and
PromptSource (Bach et al., 2022).

Although various of the aforementioned tools, li-
braries, and IDEs provide the functionality to some
extent similar to that of prompterator, to the best
of our knowledge, none of them focuses solely
on prompt iteration via a single interface without
making any assumption on the task the prompt in
combination with the LLM is tasked with solving.
For instance, PromptSource is described as an IDE
for natural language prompts, but it focuses more
on the creation and visualization of data-linked
prompts than their iteration, development, and eval-
uation. Given their name and functionality, perhaps
the closest of all the aforementioned systems would
be PromptAid and PromptIDE, both of which also
aims to help users find appropriate prompts via
interactive visualization. We note, however, that
neither of these systems is publicly available, and
their associated papers only mention classification
as the use case they were evaluated on. Regarding
the libraries, PromptTools also has a feature that
allows the user to provide ”human feedback”. Its
focus, however, is on providing facilities for auto-
mated testing and evaluation of LLMs in Python,
the familiarity with which it expects from its users.
In contrast, as per the distinction highlighted by
Zamfirescu-Pereira et al. (2023), prompterator
does not assume any familiarity with software en-
gineering or machine learning and can hence also
be used by non-experts. An overview of the most
relevant tools, libraries, and IDEs can be found in
Table 1.

2https://dust.tt
3https://www.everyprompt.com/
4https://humanloop.com/
5https://promptmetheus.com/
6https://scale.com/spellbook
7https://snorkel.ai/snorkel-flow/

foundation-model-development/
8https://github.com/promptslab/Promptify
9https://github.com/hegelai/prompttools/

10https://github.com/langchain-ai/langchain
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Non-expert friendly Open Source Non-classification tasks Collaborative

PromptTools 7 3 3 7

PromptAid 3 7 7 7

Prompt IDE 3 7 7 7

SpellBook 3 7 3 3

prompterator 3 3 3 3

Table 1: Comparison of prompterator with related IDEs and libraries.

3 System Description and Key Features

In this section, we provide a walkthrough of
prompterator’s functionality from the point of
view of a potential user whose aim is to arrive at
a prompt that is capable of solving a specific task
of their interest. To make the walkthrough a bit
more concrete, let us consider the example of Jane,
a Data Scientist at a company that builds a Q&A
platform, who was tasked with finding out whether
ChatGPT (that is, gpt-3.5-turbo) would be ca-
pable of automatically shortening the questions
coming to the Q&A sessions after the interest in
such a feature has been validated via user research
calls.

3.1 Prerequisites

To begin, Jane first ensures the ChatGPT model
(gpt-3.5-turbo) is supported by prompterator.
As it is one of the most often popular mod-
els in terms of usage at the time when her ex-
ploration takes place, she indeed confirms that
prompterator supports this model out of the box
and that all she needs to provide to use it is a valid
OpenAI API key.

She next prepares a small dataset of about 30
questions that came to the aforementioned Q&A
platform and are publicly available in the form of a
.csv file and ensures that the texts of the questions
to be potentially shortened are located in the text
column. In principle, she could also use a .tsv or
a .jsonl file, but .csv works best for her in this
case. She also extends the dataset with a few more
columns with various metadata that can come in
handy when constructing the prompt.

3.2 Data upload

Once the data is ready, Jane uploads it to the
prompterator using the web interface (see Figure 1,
1 ). Right under the upload button she can also

choose the model she would like to prompt (in this

case gpt-3.5-turbo) and set some of its hyperpa-
rameters, such for instance, the temperature.

With the data being uploaded into the
prompterator interface and the model parameters
being set, Jane is ready to start experimenting with
the actual prompts.

3.3 Prompt updating
While many LLMs support only one input method
regardless of whether the input comes from the sys-
tem prompt or the user, the GPT-3.5 and GPT-4
models and their respective API distinguishes be-
tween these two roles11. prompterator natively
supports these specific roles, allowing Jane to pro-
vide her actual prompt in the ”system” part of the
prompt (see Figure 1, 2 ). The ”user” part of
the prompt would then only contain ”{{text}}”,
which would be interpreted by prompterator as a
placeholder for the ”text” column in the uploaded
CSV and replaced with the question text for each
of the questions in the dataset.

When constructing the prompt, Jane can also
make use of all the other columns in the dataset she
has prepared. For instance, she could use all the
questions that came to the Q&A session prior to the
question whose contents are currently in the text
column. She might achieve this utilizing the fact
that prompterator uses Jinja12 for the processing
of the prompt text. An example of such a prompt
can be found in Figure 2.

3.4 Predicting
Once the prompt is done, Jane can easily obtain
the predictions from the model for this particular
prompt by clicking on the ”Run prompt” button
(see Figure 1, 3 ). Depending on the model set-
tings, prompterator will aim to parallelize the
requests in order to achieve maximal throughput

11See the role parameter of the ChatCompletion
API call at https://platform.openai.com/docs/
api-reference/chat/create

12https://jinja.palletsprojects.com/en/

473

 https://platform.openai.com/docs/api-reference/chat/create
 https://platform.openai.com/docs/api-reference/chat/create
https://jinja.palletsprojects.com/en/


Figure 1: A screenshot of the prompterator interface, with numbered areas of interest: 1 Upload, 2 Prompt, 3
Run prompt, 4 Evaluation interface and 5 History.

Please shorten the following question
from a Q&A session. Here are the questions
that preceded the current question:

{% for question in questions | fromjson -%}
- {{ question.text }}
{% endfor %}

Current question: {{ text }}

Figure 2: A user-defined prompterator prompt which
makes use of Jinja templating capabilities. Notice the
use of the from_json filter that loads the input string in
JSON format and loads it into Python-native representa-
tion.

and to make sure Jane can work with the results as
soon as possible. In order not to lose the predic-
tions, Jane may choose to click the ”Save” button
at any time, which will serialize the current state of
the prompterator interface to disk and allow Jane
to load it again at a later time.

3.5 Evaluation

With the predictions ready, Jane can gauge the qual-
ity of the prompt she has prepared using the ”eval-
uation interface” prompterator provides (see Fig-
ure 1, 4 ). Its core parts are the thumbs up ( )

and thumbs down ( ) buttons which stand for a
good and a bad prediction, respectively and allow
for quick labeling of the provided dataset. The
interface also features left ( ) and right ( ) but-
tons, which allow for quick navigation through the
dataset without the need to label a given predic-
tion. The interface also features a progress bar that
visually highlights the progress of the evaluation
process.

During evaluation, Jane can make use of the var-
ious debugging features prompterator has, such
as the comparison of character count that is visible
on top both the original as well as the generated
text. It also features a visual diff function, which
can be turned on using the ”show diff” radio button
and is particularly useful when dealing with para-
phrases and/or tasks where only part of the input is
expected to change.

Once the whole dataset is evaluated, Jane can
make use of the name and comment fields to provide
a distinct name to the prompt-dataset combination
and store valuable insights that she observed during
evaluation. These are very helpful when comparing
various stored prompts in the future. To do so
effectively, prompterator also provides facilities
for loading previously stored prompts and data,

474



Figure 3: A visualization of the prompt engineering
lifecycle.

which can also be further filtered by its author as
well as the model which generated the predictions
(see Figure 1, 5 ).

If Jane deems the results that the current prompt
provides to be sufficient for the target language task
to be considered ”solved”, the prompting can be
considered ”done” and no further action is neces-
sary. If, on the other hand, the evaluation suggests
that there is still room for improvement, her next
step would be to continue with Subsection 3.3 and
update the prompt further.

3.6 The prompt engineering lifecycle

The steps Jane went through in the previous sub-
sections form the essence of what we term prompt
engineering lifecycle : the standard procedure for
obtaining prompts that solve specific language
tasks that can then be used in production setting
(see Figure 3 for a visualization). As we saw,
prompterator is capable of supporting it end-to-
end and as we will see in Section 4, it is also very
effective at doing so.

3.7 Integration with LLMs

prompterator has been designed to be very eas-
ily adaptable and extensible, with practical usage
in mind. This is perhaps best illustrated on the
implementation of model integration.

As the field of LLMs is developing very rapidly,
being able to interact with new models soon after
they become available is of critical importance. It

class ClaudeV1(PrompteratorLLMModel):

@property
def default_config(self):

return {
"temperature": 1,
"top_k": 250,
"top_p": 0.999
"stop_sequences": ["\n\nHuman:"],

}

def format_prompt(
self,
user_prompt,
system_prompt,

):
return f"Human: {system_prompt}\n\n"

"Assistant:"

def call(self, prompt, **kwargs):
res = bedrock.invoke_model(

modelId=f"anthropic.claude-v1",
contentType="application/json",
accept="*/*",
body=json.dumps(request),

)
res_data = json.loads(res["body"].read())
res_text = res_data["completion"]

return res_text, res_data

Figure 4: A user defined model for prompterator in
form of a Python. The user only needs to provide the
three functions outlined in the example. (The example
omits import statements for brevity.)

is hence imperative for prompterator to provide
facilities to easily integrate new models.

The example in Figure 4 shows what would an
integration entail on the example of Claude 1 13 be-
ing served via the AWS Bedrock platform. As we
can see, to integrate this model it is only necessary
to provide three functions: the default_config,
which returns the default configuration values,
format_prompt, which converts the user-provided
prompt to the format Claude 1 was trained to ex-
pect and call, which does the actual call to the
API.

4 Experiment

To evaluate the effectiveness of prompterator we
conduct a user study to investigate the time it takes
to perform each part of the prompt engineering
lifecycle (Setup, Predicting, Evaluation, Prompt
updating) in prompterator as well as two other
prompt-engineering setups.

13https://www.anthropic.com/index/
introducing-claude
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The baseline setup is a code-free pipeline con-
sisting of Microsoft Excel used for data labeling
and OpenAI Playground for generating model re-
sponses.

SpellBook is a SaaS prompt-engineering IDE
which, just like prompterator, supports multiple
steps of the prompt-engineering pipeline such as
uploading and processing of datasets, generating
model responses, labeling, and evaluation. To the
best of our knowledge, all other publicly available
prompt-engineering IDEs focus on text classifica-
tion, with limited to no support for text-to-text
tasks.

4.1 Experimental setup
Our experimental setup involved three prompt en-
gineers performing two full cycles of the prompt-
engineering lifecycle on the ”question improve-
ment” task – setup, prediction, evaluation, and
prompt updating – on three tools: a baseline setup,
SpellBook and prompterator. These cycles were
conducted on a dataset of ten random questions
which was shared between experimenters. Each
sub-task was individually timed and the results
were then averaged to allow a direct comparison
of the efficiency of each tool within the prompt
engineering lifecycle.

4.2 Results

Figure 5: Results of the user study focused on compar-
ing different prompt engineering setups in terms of time
efficiency. The bars represent standard deviation.

The user study results are displayed in Figure 5.
From the Figure we can see that the prompt engi-
neering IDEs are much easier to setup and to use for
predicting model responses compared to the base-
line. In our simple setup, the evaluation step was
surprisingly inefficient in SpellBook which was
caused by it supporting various labeling scenarios

and thus took a non-trivial amount of time to setup
and navigate. On the other hand, prompterator,
while supporting only the basic labeling options,
was faster to setup and go through. The prompt up-
dating step duration oscillated significantly regard-
less of the setup. This was caused mainly by the
fact that updating a prompt takes a different amount
of time for different model outputs – sometimes it
is enough to change the model temperature while
other times it is necessary to completely rewrite the
prompt.

5 Conclusion

We present prompterator, a lightweight prompt
engineering IDE, which is capable of covering the
whole lifecycle of finding an appropriate prompt for
a given language task. prompterator has proven
to be significantly faster and simpler to use than its
alternatives across multiple sub-tasks of the prompt-
ing pipeline. By opensourcing it under the terms
of the MIT license we hope that it will make the
process of prompt engineering singificantly more
efficient in the future.

6 Ethical Considerations and Limitations

prompterator has been designed as a highly ver-
satile tool, one that makes minimal assumptions
on the tasks it would be used for. In that sense we
would like to acknowledge that given its generic na-
ture, it can in principle be used to improve systems
with malicious intent.

Furthermore, we would like to note that since
prompterator relies on human judgement for an-
notation, it has the potential to exacerbate any in-
herent biases that could manifest that way.
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A Experiment Details

In this section we provide further details on the
Experiment described in section 4.

Task participants The three prompt engineers
involved in the experiments were three of the au-
thors of this paper. All of them had prior experience
with prompterator.

Experimental setup The experiment evaluated
four distinct activities of the prompt-engineering
lifecycle: setup, prediction, evaluation, and prompt
updating. Throughout the experiment the gpt-3.5-
turbo-0613 model form OpenAI was used to gen-
erate the predictions 14.

The setup part consisted of any action (or ac-
tions) the evaluated tools required for the evalua-
tion of specific prompts to happen. In case of the
baseline setup (Microsoft Excel used for data label-
ing and OpenAI playground for generating model
responses), this consisted of opening the dataset
of ten random questions in Microsoft Excel. With
SpellBook it involved creating a new evaluation
project and with prompterator it amounted to in-
stalling the application itself.

The prediction part amounted to obtaining the
generated predictions from the evaluated model us-
ing a chosen prompt. For the baseline this meant
copying the prompt along with the each of the ques-
tions in the dataset to the OpenAI Playground and
copying the result back to the Microsot Excel doc-
ument. For SpellBook and prompterator this was
handled automatically by calling the OpenAI API.

The evaluation involved providing a human eval-
uation for each of the predictions in each of the
tools. In the baseline case this amounted to fill-
ing in the strings ”good” or ”bad” to a specific
column of the spreadsheet, whereas for SpellBook
and prompterator this meant clicking on an ap-
propriate button.

Finally, the prompt updating step was comprised
of taking a holistic view of the evaluations on the
dataset obtained in the previous steps and poten-
tially updating the existing prompt to improve its
performance in the next cycle. We note that this
step is highly individualistic, as the time required to
compose a prompt can vary signifcantly in between
individuals, as well as in between evaluation cycles.
We can also observe this in Figure 5, where the fact
that performing this step using prompterator took

14https://platform.openai.com/docs/models/
continuous-model-upgrades

one prompt-engineer a disproportionate amount of
time yielded a standard deviation larger than the
mean itself. We hypothesise that this particular in-
stance was an outlier and would be averaged out in
a larger sample.
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