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Abstract

Despite growing interest in applying natural
language processing (NLP) and computer vi-
sion (CV) models to the scholarly domain,
scientific documents remain challenging to
work with. They’re often in difficult-to-use
PDF formats, and the ecosystem of models
to process them is fragmented and incom-
plete. We introduce papermage, an open-
source Python toolkit for analyzing and pro-
cessing visually-rich, structured scientific doc-
uments. papermage offers clean and intuitive
abstractions for seamlessly representing and
manipulating both textual and visual document
elements. papermage achieves this by integrat-
ing disparate state-of-the-art NLP and CV mod-
els into a unified framework, and provides turn-
key recipes for common scientific document
processing use-cases. papermage has powered
multiple research prototypes of AI applications
over scientific documents, along with Seman-
tic Scholar’s large-scale production system for
processing millions of PDFs.

§ github.com/allenai/papermage1

1 Introduction

Research papers and textbooks are central to the
scientific enterprise, and there is increasing inter-
est in developing new tools for extracting knowl-
edge from these visually-rich documents. Recent
research has explored, for example, AI-powered
reading support for math symbol definitions (Head
et al., 2021), in-situ passage explanations or sum-
maries (August et al., 2023; Rachatasumrit et al.,
2022; Kim et al., 2023), automatic span highlight-
ing (Chang et al., 2023; Fok et al., 2023b), interac-
tive clipping and synthesis (Kang et al., 2022, 2023)

∗Core contributors; see author contributions for details.
1We use code snippets to illustrate our toolkit’s core de-

signs and abstractions. Exact syntax in paper may differ from
the actual code, as software will evolve beyond the paper and
we opt to simplify syntax when needed for legibility and clarity.
We refer readers to our public code for latest documentation.

Figure 1: papermage’s document creation and represen-
tation. (A) Recipes are turn-key methods for processing
a PDF. (B) They compose models operating across dif-
ferent data modalities and machine learning frameworks
to extract document structure, which we conceptualize
as layers of annotation that store textual and visual in-
formation. (C) Users can access and manipulate layers.

and more. Further, extracting clean, properly-
structured scientific text from PDF documents (Lo
et al., 2020; Wang et al., 2020) forms a critical
first step in pretraining language models of sci-
ence (Beltagy et al., 2019; Lee et al., 2019; Gu et al.,
2020; Luo et al., 2022; Taylor et al., 2022; Tre-
wartha et al., 2022; Hong et al., 2023), automatic
generation of more accessible paper formats (Wang
et al., 2021), and developing datasets for scientific
natural language processing (NLP) tasks over struc-
tured full text (Jain et al., 2020; Subramanian et al.,
2020; Dasigi et al., 2021; Lee et al., 2023).

However, this type of NLP research on scientific
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corpora is difficult because the documents come
in difficult-to-use formats like PDF,2 and existing
tools for working with the documents are limited.
Typically, the first step in scientific document pro-
cessing is to invoke a parser on a document file to
convert it into a sequence of tokens and bounding
boxes in inferred reading order. Parsers extract only
the raw document content, and obtaining richer
document structure (e.g., titles, authors, figures) or
linguistic structure and semantics (e.g., sentences,
discourse units, scientific claims) requires sending
the token sequence through downstream models.
Unlike more mature parsers (§2.1), these down-
stream models are often research prototypes (§2.2)
that are limited to extracting only a subset of the
structures needed for one’s research (e.g., the same
model may not provide both sentence splits and fig-
ure detection). As a result, users must write exten-
sive custom code that strings pipelines of multiple
models together. Research projects using models
of different modalities (e.g., combining an image-
based formula detector with a text-based definition
extractor) can require hundreds of lines of code.

We introduce papermage, an open-source
Python toolkit for processing scientific documents.
Its contributions include (1) magelib, a library of
primitives and methods for representing and ma-
nipulating visually-rich documents as multimodal
constructs, (2) Predictors, a set of implementa-
tions that integrate different state-of-the-art scien-
tific document analysis models into a unified inter-
face, even if individual models are written in differ-
ent frameworks or operate on different modalities,
and (3) Recipes, which provide turn-key access
to well-tested combinations of individual (often
single-modality) modules to form sophisticated, ex-
tensible multimodal pipelines.

2 Related Work

2.1 Turn-key software for scientific documents

Processing visually-rich documents like scientific
documents requires a joint understanding of both
visual and textual information. In practice, this
often requires combining different models into
complex processing pipelines. For example, GRO-
BID (Grobid, 2008–2023), a widely-adopted soft-
ware tool for scientific document processing, uses

2PDFs store text as character glyphs and their (x, y) posi-
tions on a page. Converting this data to usable text for NLP
requires error-prone operations like inferring token boundaries,
whitespacing, and reading order using visual positioning.

twelve interdependent sequence labeling models3

to perform its full text extraction. Other similar
tools inlude CERMINE (Tkaczyk et al., 2015) and
ParsCit (Councill et al., 2008). While such software
is often an ideal choice for off-the-shelf processing,
they are not necessarily designed for easy extension
and/or integration with newer research models.4

2.2 Models for scientific document processing

While aforementioned software tools use CRF or
BiLSTM-based models, Transformer-based models
have seen wide adoption among NLP researchers
for their powerful processing capabilities. Recent
years have seen the rise of layout-infused Trans-
formers (Xu et al., 2019; Shen et al., 2022; Xu
et al., 2021; Huang et al., 2022b; Chen et al., 2023)
for processing visually-rich documents, including
recovering logical structure (e.g., titles, abstracts)
of scientific papers (Huang et al., 2022a). Similarly,
computer vision (CV) researchers have also shown
impressive capabilities of CNN-based object de-
tection models (Ren et al., 2015; Tan et al., 2020)
for segmenting visually-rich documents based on
their layout. While these research models are pow-
erful and extensible for research purposes, it often
requires significant “glue” code and stitching soft-
ware tools to create robust processing pipelines.
For example, Lincker et al. (2023) bootstraps a so-
phisticated processing pipeline around a research
model for processing children’s textbooks.

2.3 Combining models and pipelines

papermage’s use case lies between that of turn-
key software and a framework for supporting re-
search. Similar to Transformers (Wolfe et al.,
2022)’s integration of different research mod-
els into standard interfaces, others have done
similarly for the visually-rich document domain.
LayoutParser (Shen et al., 2021) provides mod-
els for visually-rich documents and supports
the creation of document processing pipelines.
papermage, in fact, depends on LayoutParser
for access to vision models, but is designed to
also integrate text models which are omitted from

3https://grobid.readthedocs.io/en/latest/
Training-the-models-of-Grobid/#models

4Most research in NLP requires that a researcher be able to
manipulate models within Python. Yet, Grobid requires users
to manage a separate service process and send PDFs through
a client. In performing evaluation in §3.3, we also found it
difficult to run only the model components isolated from PDF
utilities, which makes comparison with other research models
challenging without significant “glue” code.
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Figure 2: Entities are multimodal content units. Here,
spans of a sentence are used to identify its text among
all symbols, while boxes map its visual coordinates on
a page. spans and boxes can include non-contiguous
units, allowing great flexibility in Entities to handle
layout nuances. A sentence split across columns/pages
and interrupted by floating figures/footnotes would re-
quire multiple spans and bounding boxes to represent.

LayoutParser. To allow models of different
modalities to work well together, we also devel-
oped the magelib library (§3.1).

3 Design of papermage

papermage is three parts: (1) magelib, a library for
intuitively representing and manipulating visually-
rich documents, (2) Predictors, implementations
of models for analyzing scientific papers that unify
disparate machine learning frameworks under a
common interface, and (3) Recipes, combinations
of Predictors that form multimodal pipelines.

3.1 Representing and manipulating
visually-rich documents with magelib

In this section, we use code snippets to show how
our library’s abstractions and syntax are tailored
for the visually-rich document problem domain.

Data Classes. magelib provides three base data
classes for representing fundamental elements of
visually-rich, structured documents: Document,
Layers and Entities. First, a Document might
minimally store text as a string of symbols:

1 >>> from papermage import Document
2 >>> doc.symbols
3 "Revolt: Collaborative Crowdsourcing ..."

But visually-rich documents are more than a lin-
earized string. For example, analyzing a scientific
paper requires access to its visuospatial layout (e.g.,

pages, blocks, lines), logical structure (e.g., title,
abstract, figures, tables, footnotes, sections), se-
mantic units (e.g., paragraphs, sentences, tokens),
and more (e.g., citations, terms). In practice, this
means different parts of doc.symbols can corre-
spond to different paragraphs, sentences, tokens,
etc. in the Document, each with its own set of
corresponding coordinates representing its visual
position on a page.
magelib represents structure using Layers that

can be accessed as attributes of a Document (e.g.,
doc.sentences, doc.figures, doc.tokens)
(Figure 1). Each Layer is a sequence of content
units, called Entities, which store both textual
(e.g., spans, strings) and visuospatial (e.g.,
bounding boxes, pixel arrays) information:

1 >>> sentences = Layer(entities =[
2 Entity (...), Entity (...) , ...
3 ])

See Figure 2 for an example on how “sentences” in
a scientific document are represented as Entities.
Section §3.2 explains in more detail how a user can
generate Entities.

Methods. magelib also provides a set of func-
tions for building and interacting with data: aug-
menting a Document with additional Layers,
traversing and spatially searching for matching
Entities in one Layer, and cross-referencing be-
tween Layers (see Figure 3).

A Document that only contains doc.symbols
can be augmented with additional Layers:

1 >>> paragraphs = Layer (...)
2 >>> sentences = Layer (...)
3 >>> tokens = Layer (...)
4

5 >>> doc.add(paragraphs , sentences , tokens)

Adding Layers automatically grants users the
ability to iterate through Entities and cross-
reference intersecting Entities across Layers:

1 >>> for paragraph in doc.paragraphs:
2 for sent in paragraph.sentences:
3 for token in sentence.tokens:
4 ...

magelib also supports cross-modality opera-
tions. For example, searching for textual Entities
within a visual region on the PDF (See Figure 3 F):

1 >>> query = Box(l=423, t=71, w=159, h=87)
2 >>> selection = doc.find(query , "tokens")
3 >>> [t.text for t in selection]
4 ["Techniques", "for", "collecting", ...]
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>>> doc.paragraphs[0]

>>> doc.paragraphs[0].sentences[2]
or
>>> doc.sentences[2]

>>> doc.sentences[2].tokens[9:13]
or
>>> doc.tokens[169:173]

>>> doc.figures[0]

>>> doc.captions[0]

>>> user_query = Box(l,t,w,h, page=0)

>>> selected_tokens = 
 doc.find(user_query, layer=“tokens”)

>>> [token.text for 
           token in selected_tokens]

[“Techniques”, “for”, “collecting”, 
“labeled”, “data”, “perts”, “for”, 
“manual”, “annotation”, ...]

Crowdsourcing provides a scalable and efficient way to con-
struct labeled datasets for training machine learning systems. 
However, creating comprehensive label guidelines for crowd-
workers is often prohibitive even for seemingly simple con-
cepts. Incomplete or ambiguous label guidelines can then 
result in differing interpretations of concepts and inconsistent 
labels. Existing approaches for improving label quality, such as 
worker screening or detection of poor work, are ineffective for 
this problem and can lead to rejection of honest work and a 
missed opportunity to capture rich interpretations about data. 
We introduce Revolt, a collaborative approach that brings ideas 
from expert annotation workflows to crowd-based labeling. 
Revolt eliminates the burden of creating detailed label guide-
lines by harnessing crowd disagreements to identify ambigu-
ous concepts and create rich structures (groups of semantically 
related items) for post-hoc label decisions. Experiments com-
paring Revolt to traditional crowdsourced labeling show that 
Revolt produces high quality labels without requiring label 
guidelines in turn for an increase in monetary cost. This up 
front cost, however, is mitigated by Revolt's ability to produce 
reusable structures that can accommodate a variety of label 
boundaries without requiring new data to be collected. Further 
comparisons of Revolt's collaborative and non-collaborative 
variants show that collabvoration reaches higher label accura-
cy with lower monetary cost.

learned models that must be trained on representative datasets 
labeled according to target concepts (e.g., speech labeled by 
their intended commands, faces labeled in images, emails la-
beled as spam or not spam).

crowdsourcing; machine learning; collaboration; real-time

H.5.m. Information Interfaces and Presentation (e.g. HCI): 
Miscellaneous

From conversational assistants on mobile devices, to facial

Techniques for collecting labeled data include recruiting ex- 
perts for manual annotation [51], extracting relations from 
readily available sources (e.g., identifying bodies of text in 
parallel online translations [46, 13]), and automatically 
gener- ating labels based on user behaviors (e.g., using dwell 
time to implicitly mark search result relevance [2]). Recently, 
many practitioners have also turned to crowdsourcing for cre-
ating labeled datasets at low cost [49]. Successful crowd-

Figure 1. Revolt creates labels for unanimously labeled “certain” items 
(e.g., cats and not cats), and surfaces categories of “uncertain” items 
enriched with crowd feedback (e.g., cats and dogs and cartoon cats in 
the dotted middle region are annotated with crowd explanations). Rich 
structures allow label requesters to better understand concepts in the 
data and make post-hoc decisions on label boundaries (e.g., assigning 
cats and dogs to the cats label and cartoon cats to the not cats label) 
rather than providing crowd-workers with a priori label guidelines.
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ACM Classification Keywords

Author Keywords
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Figure 3: Illustrates how Entities can be accessed flexibly in different ways: (A) Accessing the Entity of the first
paragraph in the Document via its own Layer (B) Accessing a sentence via the paragraph Entity or directly via the
sentences Layer (C) Similarly, the same tokens can be accessed via the overlapping sentence Entity or directly
via the tokens Layer of the Document (where the first tokens are the title of the paper.) (D, E) Figures, captions,
tables and keywords can be accessed in similar ways (F) Additionally, given a bounding box (e.g., of a user selected
region), papermage can find the corresponding Entities for a given Layer, in this case finding the tokens under
the region. Excerpt from Chang et al. (2017).

Protocols and Utilities. To instantiate a
Document, magelib provides protocols and
utilities like Parsers and Rasterizers, which
hook into off-the-shelf PDF processing tools:5

1 >>> import papermage as pm
2 >>> parser = pm.PDF2TextParser ()
3 >>> doc = parser.parse("...pdf")
4 >>> [token.text for token in doc.tokens]
5 ["Revolt", ":", "Collaborative", ...]
6 >>> doc.images
7 None
8

9 >>> rasterizer = pm.PDF2ImageRasterizer ()
10 >>> doc2 = rasterizer.rasterize("...pdf")
11 >>> doc.images = doc2.images
12 >>> doc.images
13 [Image(np.array (...)) , ...]

In this example, papermage runs PDF2TextParser
(using pdfplumber) to extract the textual in-
formation from a PDF file. Then it runs
PDF2ImageRasterizer (using pdf2image) to up-
date the first Document with images of pages.

5PDFs are not the only way of representing visually-rich
documents. For example, many scientific documents are dis-
tributed in XML format. As PDFs are the dominant distribu-
tion format of scientific documents, we focus our efforts on
PDF-specific needs. Nevertheless, we also provide Parsers
in magelib that can instantiate a Document from XML input.
See Appendix A.1.

3.2 Interfacing with models for scientific
document analysis through Predictors

In §3.1, we described how users create Layers
by assembling collections of Entities. But how
would they make Entities in the first place?

For example, to identify multimodal structures
in visually-rich documents, researchers might want
to build complex pipelines that run and combine
output from many different models (e.g., computer
vision models for extracting figures, NLP models
for classifying body text). papermage provides
a unified interface, called Predictors, to ensure
models produce Entities that are compatible with
the Document.
papermage includes several ready-to-use

Predictors that leverage state-of-the-art models
to extract specific document structures (Table 1).
While magelib’s abstractions are general for
visually-rich documents, Predictors are opti-
mized for parsing of scientific documents. They
are designed to (1) be compatible with models
from many different machine learning frameworks,
(2) support inference with text-only, vision-only,
and multimodal models, and (3) support both adap-
tation of off-the-shelf, pretrained models as well as
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Use case Description Examples

Linguistic/
Semantic

Segments doc into text
units often used for down-
stream models.

SentencePredictor wraps sciSpaCy (Neumann et al., 2019) and
PySBD (Sadvilkar and Neumann, 2020) to segment sentences. WordPredictor is
a custom scikit-learn model to identify broken words split across PDF lines or
columns. ParagraphPredictor is a set of heuristics on top of both layout and
logical structure models to extract paragraphs.

Layout
Structure

Segments doc into visual
block regions.

BoxPredictor wraps models from LayoutParser (Shen et al., 2021), which
provides vision models like EfficientDet (Tan et al., 2020) pretrained on scientific
layouts (Zhong et al., 2019).

Logical
Structure

Segments doc into orga-
nizational units like title,
abstract, body, footnotes,
caption, and more.

SpanPredictor wraps Token Classifiers from Transformers (Wolfe et al., 2022),
which provides both pretrained weights from VILA (Shen et al., 2022), as well as
RoBERTa (Liu et al., 2019), SciBERT (Beltagy et al., 2019) weights that we’ve
finetuned on similar data.

Task-
specific

Models for a given sci-
entific document process-
ing task can be used with
papermage if wrapped as
a Predictor following
common patterns.

As many practitioners depend on prompting a model through an API call, we
implement APIPredictor which interfaces external APIs, such as GPT-3 (Brown
et al., 2020), to perform tasks like question answering over a structured Document.
We also implement SnippetRetrievalPredictor which wraps models like Con-
triever (Izacard et al., 2022) to perform top-k within-document snippet retrieval.
See §4 for how these two can be combined.

Table 1: Types of Predictors implemented in papermage.

Model Full Grobid Subset
P R F1 P R F1

GrobidCRF 40.6 38.3 39.1 81.2 76.7 78.9
GrobidNN 42.0 36.5 37.6 84.1 73.0 78.2
RoBERTa 75.9 80.0 76.8 82.6 83.9 83.2
I-VILA 92.0 94.1 92.7 92.2 95.2 93.7

Table 2: Evaluating performance of CoreRecipe for
logical structure recovery on S2-VL (Shen et al., 2022).
Metrics are computed for token-level classification,
macro-averaged over categories. The “Grobid Subset”
limits evaluation to only categories for which Grobid
returns bounding box information, which was necessary
for evaluation on S2-VL. See Appendix A.3 for details.

development of new ones from scratch. Similarly
to the Transformers library, a Predictor’s
implementation is typically independent from
its configuration, allowing users to customize
each Predictor by tweaking hyperparameters or
loading a different set of weights.

Below, we showcase how a vision model and
two text models (both neural and symbolic) can be
applied in succession to a single Document. See
Table 1 for a summary of supported Predictors.

1 >>> import papermage as pm
2 >>> cv = pm.BoxPredictor (...)
3 >>> tables , figures = cv.predict(doc)
4 >>> doc.add(tables , figures)
5

6 >>> nlp_neu = pm.SpanPredictor (...)
7 >>> titles , authors = nlp_neu.predict(doc)
8 >>> doc.add(titles , authors)
9

10 >>> nlp_sym = pm.SentencePredictor (...)
11 >>> sentences = nlp_sym.predict(doc)
12 >>> doc.add(sentences)

Predictors return a list of Entities, which
can be group_by() to organize them based on pre-
dicted label value (e.g., tokens classified as “title”
or “authors”). Finally, these predictions are passed
to doc.annotate() to be added to Document.

3.3 End-to-end processing with Recipes

Finally, papermage provides predefined combina-
tions of Predictors, called Recipes, for users
seeking high-quality options for turn-key process-
ing of visually-rich documents:

1 from papermage import CoreRecipe
2 recipe = CoreRecipe ()
3 doc = recipe.run("... pdf")
4 doc.captions [0]. text
5 >>> "Figure 1. ..."

Recipes can also be flexibly modified to sup-
port development. For example, our current de-
fault combines the pdfplumber PDF parsing utility
with the I-VILA (Shen et al., 2022) research model.
We show in Table 2 an evaluation comparing this
against the same recipe but configured to (1) swap
I-VILA for a RoBERTa model, as well as (2) swap
both for Grobid API calls. We expect Recipes
to appeal to two groups of users—end-to-end con-
sumers, and developers of high-level applications.
The former is comprised of developers and re-
searchers who are looking for a one-step solution
to multimodal scientific document analysis. The
latter are likely developers and researchers looking
to combine document structure primitives to build
a complex application (see example in §4).
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4 Vignette: Building an Attributed QA
System for Scientific Papers

How could researchers leverage papermage for
their research? Here, we walk through a user sce-
nario in which a researcher (Lucy) is prototyping
an attributed QA system for science.

System Design. Drawing inspiration from Ko
et al. (2020), Lee et al. (2023), Fok et al. (2023a),
and Newman et al. (2023), Lucy is studying how
language models can be used to resolve questions
that arise while reading a paper (e.g. What does
this mean? or What does this refer to?). In her
prototype interface, a user can highlight a passage
in a PDF and ask a question about it. A retrieval
model then finds relevant passages from the rest
of the paper. The prototype then uses the text of
the retrieved passages along with the user question
to prompt a language model to generate an answer.
When presenting the answer to the user, the proto-
type also visually highlights the retrieved passages
as supporting evidence to the generated answer.

Getting started quickly. As a researcher profi-
cient in Python, it only takes Lucy minutes to install
papermage using pip and successfully process a lo-
cal PDF file by following the example code snippet
for CoreRecipe in §3.2. In an interactive session,
she familiarizes herself with the provided Layers
by following the traversal, cross-referencing and
querying examples in §3.1. She makes sure she can
serialize and re-instantiate her Document (§A.2).

Formatting input. Before using papermage,
Lucy has prior experience building QA pipelines,
but has only dealt with documents as sentence-
split text data (e.g., <List[str]>). Lucy realizes
that she can reuse her prior text-only code with
papermage by implementing a couple of wrappers
to gain additional capabilities: First, she converts
a user’s highlighted passage from a visual selec-
tion to text following the example in Figure 3F.
Next, she converts Document to her required text
format by following the traversal examples in §3.1
(e.g., using [s.text for s in doc.sentences]).
Within a few lines of code, Lucy has everything
she needs for text-only input to her QA pipeline.

Formatting output. Lucy runs her QA system
on her newly acquired text data and now has (1) a
model-generated answer and (2) several retrieved
evidence passages. She realizes that she already
has access to the evidences’ bounding boxes via a

similar call to how she defined the model input con-
text (e.g., [s.boxes for s in doc.sentences]).
She can easily pass this to the user interface to en-
able linking to and highlighting of those passages.

Defining a Predictor. The pattern Lucy has
followed is used in our many Predictor imple-
mentations: (1) gain access to text by traversing
Layers (e.g., sentences), (2) perform all usual
NLP computation on that text, and (3) format
model output as Entities. This simple pattern
allows users to reuse familiar models in existing
frameworks and eschews lengthy onboarding to
papermage. Lucy wraps her prompting and re-
trieval code in new classes: APIPredictor and
SnippetRetrievalPredictor (see Table 1).

Fast iterations. Leveraging the bounding box
data from papermage to visually highlight the re-
trieved passages, Lucy suspects the retrieval com-
ponent is likely underperforming. She makes a sim-
ple edit from doc.sentences to doc.paragraphs
and evaluates system performance under different
input granularity. She also realizes the system of-
ten retrieves content outside the main body text.
She restricts her traversal to filter out paragraphs
that overlap with footnotes—[p.text for p in
doc.paragraphs if len(p.footnotes) == 0]—
making clever use of the cross-referencing function-
ality to detect when a paragraph is actually coming
from a footnote. This example demonstrates the
versatility of the affordances provided by magelib.

5 Conclusion

In this work, we’ve introduced papermage, an
open-source Python toolkit for processing scientific
documents. papermage was developed to supply
high-quality data and reduce friction for research
prototype development at Semantic Scholar. To-
day, it is being used in the production PDF process-
ing pipeline to provide data for both the literature
graph (Ammar et al., 2018; Kinney et al., 2023)
and the paper-reading interface (Lo et al., 2023). It
has also been used in working research prototypes
which have since contributed to research publica-
tions (Fok et al., 2023b; Kim et al., 2023).6 We
open-source papermage in hopes it will simplify
research workflows that depend on scientific doc-
uments and promote extensions to other visually-
rich documents like textbooks (Lincker et al., 2023)
and digitized print media (Lee et al., 2020).

6See a demo of such a prototype papeo.app/demo.
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Ethical Considerations

As a toolkit primarily designed to process scientific
documents, there are two areas where papermage
could cause harms or have unintended effects.

Extraction of bibliographic information
papermage could be used to parse author names,
affiliation, emails from scientific documents. Like
any software, this extraction can be noisy, leading
to incorrect parsing and thus mis-attribution of
manuscripts. Further, since papermage relies
on static PDF documents, rather than metadata
dynamically retrieved from publishers, users of
papermage need consider how and when extracted
names should no longer be associated with authors,
a harmful practice called deadnaming (Queer in AI
et al., 2023). We recommend papermage users to
exercise caution when using our toolkit to extract
metadata, to cross-reference extracted content with
other sources when possible, and to design systems
such that authors have the ability to manually edit
any data about themselves.

Misrepresentation or fabrication of informa-
tion in documents In §3, we discussed how
papermage can be easily extended to support high-
level applications. Such applications might include
question answering chatbots, or AI summarizers
that perform information synthesis over one or
more papermage documents. Such applications
typically rely on generative models to produce their
output, which might fabricate incorrect informa-
tion or misstate claims. Developers should be vig-
ilant when integrating papermage output into any
downstream application, especially in systems that
purport to represent information gathered from sci-
entific publications.
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A Appendix

A.1 Comparison and Compatibility with
XML

One can view Layers as capturing content hier-
archy (e.g., tokens vs sentences) similar to that of
other structured document representations, like TEI
XML trees. We note that Layers are stored as un-
ordered attributes and don’t require nesting. This
allows for specific cross-layer referencing opera-
tions that don’t adhere to strict nesting relationships.
For example:

1 for sentence in doc.sentences:
2 for line in sentence.lines:
3 ...

Recall that a sentence can begin or end midway
through a line and cross multiple lines (§3.1). Sim-
ilarly, not all lines are exactly contained within
the boundaries of a sentence. As such, sentences
and lines are not strictly nested within each other.
This relationship would be difficult to encode in an
XML format adhering to document tree structure.

Regardless, the way we represent structure
in documents is highly versatile. We demon-
strate this by also implementing GrobidParser
as an alternative to the PDF2TextParser in §3.1.
GrobidParser invokes Grobid to process PDFs,
and reads the resulting TEI XML file generated by
Grobid by converting each XML tag of a common
level into an Entity of its own Layer. We use this
to perform the evaluation in Table 2.

A.2 Additional magelib Protocols and
Utilities

Serialization. Any Document and all of its
Layers can be exported to a JSON format, and
perfectly reconstructed:

1 import json
2 with open(".... json", "w") as f_out:
3 json.dump(doc.to_json(), f_out)
4

5 with open("... json", "r") as f_in:
6 doc = json.load(f_in)

A.3 Evaluating papermage’s CoreRecipe
against Grobid

Here, we detail how we performed the evaluation
reported in §3.3 (Table 2). We also provide a full
breakdown by category in Table 3.

As described earlier in the paper, Grobid is quite
difficult to evaluate as it is developed with tight
coupling between the PDF parser (pdfalto) and

the models it employs to perform logical struc-
ture recovery over the resulting token stream. As
such, there is no straightforward way to run just
the model components of Grobid on an alternative
token stream like that provided in the S2-VL (Shen
et al., 2022) dataset.

To perform this baseline evaluation, we ran
the original PDFs that were annotated for S2-VL
through our GrobidParser using v0.7.3. Grobid
also returns bounding boxes of some predicted cat-
egories (e.g., authors, abstract, paragraphs). We
use these bounding boxes to create Entities that
we annotate on a Document constructed manually
from from S2-VL data. Using magelib cross-layer
referencing, we were able to match Grobid predic-
tions to S2-VL data to perform this evaluation.

Though we found there are certain categories
for which bounding box information was either not
available (e.g., Titles) or Grobid simply did not re-
turn that output (e.g., Figure text extraction). These
are represented by zeros in Table 3, which con-
tributes to the lower scores in Table 2 after macro
averaging. For a more apples-to-apples compari-
son, we also included a “Grobid Subset” evaluation
which restricted to just categories in S2-VL for
which Grobid produced bounding box information.

In addition to Grobid, we evaluate two of our pro-
vided Transformer-based models. The RoBERTa-
large (Liu et al., 2019) model is a Transformers
token classification model that we finetuned on the
S2-VL training set. The I-VILA model is a layout-
infused Transformer model pretrained by Shen et al.
(2022) on the S2-VL training set. Like we did with
Grobid, we ran our CoreRecipe using these two
models on the original PDFs in S2-VL, and per-
formed a similar token mapping operation since our
PDF2TextParser also produces a different token
stream than that provided in S2-VL.

At the end of the day, the Transformer-based
models performed better at this task than Grobid.
This is unsurprising given expected improvements
using a Transformer model over a CRF or BiL-
STM. The Transformer models were also trained
on S2-VL data, which gave them an advantage over
Grobid. Overall, this evaluation intended to show
how papermage enables cross-system comparisons,
even eschewing token stream incompatibility, and
to illustrate an upper bound of the performance left
on the table by existing software systems that don’t
use of state-of-the-art models.
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Structure
Category

GROBIDCRF GROBIDNN RoBERTa I-VILA
P R F1 P R F1 P R F1 P R F1

Abstract 81.9 89.1 85.3 85.3 89.8 87.5 89.2 93.7 91.4 97.4 98.3 97.8
Author 55.2 42.6 48.1 75.1 14.0 23.6 87.5 73.5 79.9 65.5 96.9 78.2
Bibliography 96.5 98.6 97.5 95.5 97.6 96.5 93.6 93.3 93.5 99.7 98.2 99.0
Caption 70.3 70.0 70.2 70.2 69.7 70.0 80.0 77.3 78.6 93.1 89.6 91.3
Equation 71.1 85.3 77.6 71.1 85.3 77.6 55.0 85.7 67.0 90.7 94.2 92.4
Figure 0.0 0.0 0.0 0.0 0.0 0.0 88.9 82.3 85.4 99.8 96.8 98.3
Footer 0.0 0.0 0.0 0.0 0.0 0.0 56.1 59.9 57.9 96.8 78.1 86.5
Footnote 0.0 0.0 0.0 0.0 0.0 0.0 59.8 44.3 50.9 80.2 93.5 86.3
Header 0.0 0.0 0.0 0.0 0.0 0.0 40.5 84.3 54.7 92.9 99.1 95.9
Keywords 0.0 0.0 0.0 0.0 0.0 0.0 93.8 97.1 95.4 96.9 99.4 98.1
List 0.0 0.0 0.0 0.0 0.0 0.0 61.9 63.8 62.9 76.7 82.4 79.4
Paragraph 94.5 89.8 92.1 94.4 89.9 92.1 93.5 93.0 93.3 98.7 97.9 98.3
Section 83.0 79.4 81.1 83.0 79.4 81.1 67.7 82.7 74.4 96.2 91.6 93.9
Table 97.3 58.6 73.2 97.9 58.6 73.3 94.7 71.8 81.7 96.1 94.9 95.5
Title 0.0 0.0 0.0 0.0 0.0 0.0 76.3 96.7 85.3 98.7 99.9 99.3

Macro Avg
(Full S2-VL) 40.6 38.3 39.1 42.0 36.5 37.6 75.9 80.0 76.8 92.0 94.1 92.7

Macro Avg
(Grobid Subset) 81.2 76.7 78.9 84.1 73.0 78.2 82.6 83.9 83.2 92.2 95.2 93.7

Table 3: Evaluating CoreRecipe for logical structure recovery on S2-VL (Shen et al., 2022). These are per-category
metrics for Table 2. Metrics are computed for token-level classification, macro-averaged over categories. The
“Grobid Subset” limits evaluation to only categories for which Grobid returns bounding box information, which was
necessary for evaluation on S2-VL.
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