
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 495–507
December 6-10, 2023 ©2023 Association for Computational Linguistics

PaperMage: A Unified Toolkit for Processing, Representing, and
Manipulating Visually-Rich Scientific Documents

Kyle Loα∗ Zejiang Shenα,τ∗ Benjamin Newmanα∗ Joseph Chee Changα∗

Russell Authurα Erin Bransomα Stefan Candraα Yoganand Chandrasekharα
Regan Huffα Bailey Kuehlα Amanpreet Singhα Chris Wilhelmα Angele Zamarronα

Marti A. Hearstβ Daniel S. Weldα,ω Doug Downeyα,η Luca Soldainiα∗
αAllen Institute for AI τMassachusetts Institute of Technology

βUniversity of California Berkeley ωUniversity of Washington ηNorthwestern University
{kylel, lucas}@allenai.org

Abstract

Despite growing interest in applying natural
language processing (NLP) and computer vi-
sion (CV) models to the scholarly domain,
scientific documents remain challenging to
work with. They’re often in difficult-to-use
PDF formats, and the ecosystem of models
to process them is fragmented and incom-
plete. We introduce papermage, an open-
source Python toolkit for analyzing and pro-
cessing visually-rich, structured scientific doc-
uments. papermage offers clean and intuitive
abstractions for seamlessly representing and
manipulating both textual and visual document
elements. papermage achieves this by integrat-
ing disparate state-of-the-art NLP and CV mod-
els into a unified framework, and provides turn-
key recipes for common scientific document
processing use-cases. papermage has powered
multiple research prototypes of AI applications
over scientific documents, along with Seman-
tic Scholar’s large-scale production system for
processing millions of PDFs.

§ github.com/allenai/papermage1

1 Introduction

Research papers and textbooks are central to the
scientific enterprise, and there is increasing inter-
est in developing new tools for extracting knowl-
edge from these visually-rich documents. Recent
research has explored, for example, AI-powered
reading support for math symbol definitions (Head
et al., 2021), in-situ passage explanations or sum-
maries (August et al., 2023; Rachatasumrit et al.,
2022; Kim et al., 2023), automatic span highlight-
ing (Chang et al., 2023; Fok et al., 2023b), interac-
tive clipping and synthesis (Kang et al., 2022, 2023)

∗Core contributors; see author contributions for details.
1We use code snippets to illustrate our toolkit’s core de-

signs and abstractions. Exact syntax in paper may differ from
the actual code, as software will evolve beyond the paper and
we opt to simplify syntax when needed for legibility and clarity.
We refer readers to our public code for latest documentation.

Figure 1: papermage’s document creation and represen-
tation. (A) Recipes are turn-key methods for processing
a PDF. (B) They compose models operating across dif-
ferent data modalities and machine learning frameworks
to extract document structure, which we conceptualize
as layers of annotation that store textual and visual in-
formation. (C) Users can access and manipulate layers.

and more. Further, extracting clean, properly-
structured scientific text from PDF documents (Lo
et al., 2020; Wang et al., 2020) forms a critical
first step in pretraining language models of sci-
ence (Beltagy et al., 2019; Lee et al., 2019; Gu et al.,
2020; Luo et al., 2022; Taylor et al., 2022; Tre-
wartha et al., 2022; Hong et al., 2023), automatic
generation of more accessible paper formats (Wang
et al., 2021), and developing datasets for scientific
natural language processing (NLP) tasks over struc-
tured full text (Jain et al., 2020; Subramanian et al.,
2020; Dasigi et al., 2021; Lee et al., 2023).

However, this type of NLP research on scientific

495

https://github.com/allenai/papermage

corpora is difficult because the documents come
in difficult-to-use formats like PDF,2 and existing
tools for working with the documents are limited.
Typically, the first step in scientific document pro-
cessing is to invoke a parser on a document file to
convert it into a sequence of tokens and bounding
boxes in inferred reading order. Parsers extract only
the raw document content, and obtaining richer
document structure (e.g., titles, authors, figures) or
linguistic structure and semantics (e.g., sentences,
discourse units, scientific claims) requires sending
the token sequence through downstream models.
Unlike more mature parsers (§2.1), these down-
stream models are often research prototypes (§2.2)
that are limited to extracting only a subset of the
structures needed for one’s research (e.g., the same
model may not provide both sentence splits and fig-
ure detection). As a result, users must write exten-
sive custom code that strings pipelines of multiple
models together. Research projects using models
of different modalities (e.g., combining an image-
based formula detector with a text-based definition
extractor) can require hundreds of lines of code.

We introduce papermage, an open-source
Python toolkit for processing scientific documents.
Its contributions include (1) magelib, a library of
primitives and methods for representing and ma-
nipulating visually-rich documents as multimodal
constructs, (2) Predictors, a set of implementa-
tions that integrate different state-of-the-art scien-
tific document analysis models into a unified inter-
face, even if individual models are written in differ-
ent frameworks or operate on different modalities,
and (3) Recipes, which provide turn-key access
to well-tested combinations of individual (often
single-modality) modules to form sophisticated, ex-
tensible multimodal pipelines.

2 Related Work

2.1 Turn-key software for scientific documents

Processing visually-rich documents like scientific
documents requires a joint understanding of both
visual and textual information. In practice, this
often requires combining different models into
complex processing pipelines. For example, GRO-
BID (Grobid, 2008–2023), a widely-adopted soft-
ware tool for scientific document processing, uses

2PDFs store text as character glyphs and their (x, y) posi-
tions on a page. Converting this data to usable text for NLP
requires error-prone operations like inferring token boundaries,
whitespacing, and reading order using visual positioning.

twelve interdependent sequence labeling models3

to perform its full text extraction. Other similar
tools inlude CERMINE (Tkaczyk et al., 2015) and
ParsCit (Councill et al., 2008). While such software
is often an ideal choice for off-the-shelf processing,
they are not necessarily designed for easy extension
and/or integration with newer research models.4

2.2 Models for scientific document processing

While aforementioned software tools use CRF or
BiLSTM-based models, Transformer-based models
have seen wide adoption among NLP researchers
for their powerful processing capabilities. Recent
years have seen the rise of layout-infused Trans-
formers (Xu et al., 2019; Shen et al., 2022; Xu
et al., 2021; Huang et al., 2022b; Chen et al., 2023)
for processing visually-rich documents, including
recovering logical structure (e.g., titles, abstracts)
of scientific papers (Huang et al., 2022a). Similarly,
computer vision (CV) researchers have also shown
impressive capabilities of CNN-based object de-
tection models (Ren et al., 2015; Tan et al., 2020)
for segmenting visually-rich documents based on
their layout. While these research models are pow-
erful and extensible for research purposes, it often
requires significant “glue” code and stitching soft-
ware tools to create robust processing pipelines.
For example, Lincker et al. (2023) bootstraps a so-
phisticated processing pipeline around a research
model for processing children’s textbooks.

2.3 Combining models and pipelines

papermage’s use case lies between that of turn-
key software and a framework for supporting re-
search. Similar to Transformers (Wolfe et al.,
2022)’s integration of different research mod-
els into standard interfaces, others have done
similarly for the visually-rich document domain.
LayoutParser (Shen et al., 2021) provides mod-
els for visually-rich documents and supports
the creation of document processing pipelines.
papermage, in fact, depends on LayoutParser
for access to vision models, but is designed to
also integrate text models which are omitted from

3https://grobid.readthedocs.io/en/latest/
Training-the-models-of-Grobid/#models

4Most research in NLP requires that a researcher be able to
manipulate models within Python. Yet, Grobid requires users
to manage a separate service process and send PDFs through
a client. In performing evaluation in §3.3, we also found it
difficult to run only the model components isolated from PDF
utilities, which makes comparison with other research models
challenging without significant “glue” code.

496

https://grobid.readthedocs.io/en/latest/Training-the-models-of-Grobid/#models
https://grobid.readthedocs.io/en/latest/Training-the-models-of-Grobid/#models

Figure 2: Entities are multimodal content units. Here,
spans of a sentence are used to identify its text among
all symbols, while boxes map its visual coordinates on
a page. spans and boxes can include non-contiguous
units, allowing great flexibility in Entities to handle
layout nuances. A sentence split across columns/pages
and interrupted by floating figures/footnotes would re-
quire multiple spans and bounding boxes to represent.

LayoutParser. To allow models of different
modalities to work well together, we also devel-
oped the magelib library (§3.1).

3 Design of papermage

papermage is three parts: (1) magelib, a library for
intuitively representing and manipulating visually-
rich documents, (2) Predictors, implementations
of models for analyzing scientific papers that unify
disparate machine learning frameworks under a
common interface, and (3) Recipes, combinations
of Predictors that form multimodal pipelines.

3.1 Representing and manipulating
visually-rich documents with magelib

In this section, we use code snippets to show how
our library’s abstractions and syntax are tailored
for the visually-rich document problem domain.

Data Classes. magelib provides three base data
classes for representing fundamental elements of
visually-rich, structured documents: Document,
Layers and Entities. First, a Document might
minimally store text as a string of symbols:

1 >>> from papermage import Document
2 >>> doc.symbols
3 "Revolt: Collaborative Crowdsourcing ..."

But visually-rich documents are more than a lin-
earized string. For example, analyzing a scientific
paper requires access to its visuospatial layout (e.g.,

pages, blocks, lines), logical structure (e.g., title,
abstract, figures, tables, footnotes, sections), se-
mantic units (e.g., paragraphs, sentences, tokens),
and more (e.g., citations, terms). In practice, this
means different parts of doc.symbols can corre-
spond to different paragraphs, sentences, tokens,
etc. in the Document, each with its own set of
corresponding coordinates representing its visual
position on a page.
magelib represents structure using Layers that

can be accessed as attributes of a Document (e.g.,
doc.sentences, doc.figures, doc.tokens)
(Figure 1). Each Layer is a sequence of content
units, called Entities, which store both textual
(e.g., spans, strings) and visuospatial (e.g.,
bounding boxes, pixel arrays) information:

1 >>> sentences = Layer(entities =[
2 Entity (...), Entity (...) , ...
3])

See Figure 2 for an example on how “sentences” in
a scientific document are represented as Entities.
Section §3.2 explains in more detail how a user can
generate Entities.

Methods. magelib also provides a set of func-
tions for building and interacting with data: aug-
menting a Document with additional Layers,
traversing and spatially searching for matching
Entities in one Layer, and cross-referencing be-
tween Layers (see Figure 3).

A Document that only contains doc.symbols
can be augmented with additional Layers:

1 >>> paragraphs = Layer (...)
2 >>> sentences = Layer (...)
3 >>> tokens = Layer (...)
4

5 >>> doc.add(paragraphs , sentences , tokens)

Adding Layers automatically grants users the
ability to iterate through Entities and cross-
reference intersecting Entities across Layers:

1 >>> for paragraph in doc.paragraphs:
2 for sent in paragraph.sentences:
3 for token in sentence.tokens:
4 ...

magelib also supports cross-modality opera-
tions. For example, searching for textual Entities
within a visual region on the PDF (See Figure 3 F):

1 >>> query = Box(l=423, t=71, w=159, h=87)
2 >>> selection = doc.find(query , "tokens")
3 >>> [t.text for t in selection]
4 ["Techniques", "for", "collecting", ...]

497

>>> doc.paragraphs[0]

>>> doc.paragraphs[0].sentences[2]
or
>>> doc.sentences[2]

>>> doc.sentences[2].tokens[9:13]
or
>>> doc.tokens[169:173]

>>> doc.figures[0]

>>> doc.captions[0]

>>> user_query = Box(l,t,w,h, page=0)

>>> selected_tokens =
 doc.find(user_query, layer=“tokens”)

>>> [token.text for
 token in selected_tokens]

[“Techniques”, “for”, “collecting”,
“labeled”, “data”, “perts”, “for”,
“manual”, “annotation”, ...]

Crowdsourcing provides a scalable and efficient way to con-
struct labeled datasets for training machine learning systems.
However, creating comprehensive label guidelines for crowd-
workers is often prohibitive even for seemingly simple con-
cepts. Incomplete or ambiguous label guidelines can then
result in differing interpretations of concepts and inconsistent
labels. Existing approaches for improving label quality, such as
worker screening or detection of poor work, are ineffective for
this problem and can lead to rejection of honest work and a
missed opportunity to capture rich interpretations about data.
We introduce Revolt, a collaborative approach that brings ideas
from expert annotation workflows to crowd-based labeling.
Revolt eliminates the burden of creating detailed label guide-
lines by harnessing crowd disagreements to identify ambigu-
ous concepts and create rich structures (groups of semantically
related items) for post-hoc label decisions. Experiments com-
paring Revolt to traditional crowdsourced labeling show that
Revolt produces high quality labels without requiring label
guidelines in turn for an increase in monetary cost. This up
front cost, however, is mitigated by Revolt's ability to produce
reusable structures that can accommodate a variety of label
boundaries without requiring new data to be collected. Further
comparisons of Revolt's collaborative and non-collaborative
variants show that collabvoration reaches higher label accura-
cy with lower monetary cost.

learned models that must be trained on representative datasets
labeled according to target concepts (e.g., speech labeled by
their intended commands, faces labeled in images, emails la-
beled as spam or not spam).

crowdsourcing; machine learning; collaboration; real-time

H.5.m. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

From conversational assistants on mobile devices, to facial

Techniques for collecting labeled data include recruiting ex-
perts for manual annotation [51], extracting relations from
readily available sources (e.g., identifying bodies of text in
parallel online translations [46, 13]), and automatically
gener- ating labels based on user behaviors (e.g., using dwell
time to implicitly mark search result relevance [2]). Recently,
many practitioners have also turned to crowdsourcing for cre-
ating labeled datasets at low cost [49]. Successful crowd-

Figure 1. Revolt creates labels for unanimously labeled “certain” items
(e.g., cats and not cats), and surfaces categories of “uncertain” items
enriched with crowd feedback (e.g., cats and dogs and cartoon cats in
the dotted middle region are annotated with crowd explanations). Rich
structures allow label requesters to better understand concepts in the
data and make post-hoc decisions on label boundaries (e.g., assigning
cats and dogs to the cats label and cartoon cats to the not cats label)
rather than providing crowd-workers with a priori label guidelines.

ABSTRACT

ACM Classification Keywords

Author Keywords

INTRODUCTION

A

B

C

D

E

F

A

B

C

D

E

F

Figure 3: Illustrates how Entities can be accessed flexibly in different ways: (A) Accessing the Entity of the first
paragraph in the Document via its own Layer (B) Accessing a sentence via the paragraph Entity or directly via the
sentences Layer (C) Similarly, the same tokens can be accessed via the overlapping sentence Entity or directly
via the tokens Layer of the Document (where the first tokens are the title of the paper.) (D, E) Figures, captions,
tables and keywords can be accessed in similar ways (F) Additionally, given a bounding box (e.g., of a user selected
region), papermage can find the corresponding Entities for a given Layer, in this case finding the tokens under
the region. Excerpt from Chang et al. (2017).

Protocols and Utilities. To instantiate a
Document, magelib provides protocols and
utilities like Parsers and Rasterizers, which
hook into off-the-shelf PDF processing tools:5

1 >>> import papermage as pm
2 >>> parser = pm.PDF2TextParser ()
3 >>> doc = parser.parse("...pdf")
4 >>> [token.text for token in doc.tokens]
5 ["Revolt", ":", "Collaborative", ...]
6 >>> doc.images
7 None
8

9 >>> rasterizer = pm.PDF2ImageRasterizer ()
10 >>> doc2 = rasterizer.rasterize("...pdf")
11 >>> doc.images = doc2.images
12 >>> doc.images
13 [Image(np.array (...)) , ...]

In this example, papermage runs PDF2TextParser
(using pdfplumber) to extract the textual in-
formation from a PDF file. Then it runs
PDF2ImageRasterizer (using pdf2image) to up-
date the first Document with images of pages.

5PDFs are not the only way of representing visually-rich
documents. For example, many scientific documents are dis-
tributed in XML format. As PDFs are the dominant distribu-
tion format of scientific documents, we focus our efforts on
PDF-specific needs. Nevertheless, we also provide Parsers
in magelib that can instantiate a Document from XML input.
See Appendix A.1.

3.2 Interfacing with models for scientific
document analysis through Predictors

In §3.1, we described how users create Layers
by assembling collections of Entities. But how
would they make Entities in the first place?

For example, to identify multimodal structures
in visually-rich documents, researchers might want
to build complex pipelines that run and combine
output from many different models (e.g., computer
vision models for extracting figures, NLP models
for classifying body text). papermage provides
a unified interface, called Predictors, to ensure
models produce Entities that are compatible with
the Document.
papermage includes several ready-to-use

Predictors that leverage state-of-the-art models
to extract specific document structures (Table 1).
While magelib’s abstractions are general for
visually-rich documents, Predictors are opti-
mized for parsing of scientific documents. They
are designed to (1) be compatible with models
from many different machine learning frameworks,
(2) support inference with text-only, vision-only,
and multimodal models, and (3) support both adap-
tation of off-the-shelf, pretrained models as well as

498

Use case Description Examples

Linguistic/
Semantic

Segments doc into text
units often used for down-
stream models.

SentencePredictor wraps sciSpaCy (Neumann et al., 2019) and
PySBD (Sadvilkar and Neumann, 2020) to segment sentences. WordPredictor is
a custom scikit-learn model to identify broken words split across PDF lines or
columns. ParagraphPredictor is a set of heuristics on top of both layout and
logical structure models to extract paragraphs.

Layout
Structure

Segments doc into visual
block regions.

BoxPredictor wraps models from LayoutParser (Shen et al., 2021), which
provides vision models like EfficientDet (Tan et al., 2020) pretrained on scientific
layouts (Zhong et al., 2019).

Logical
Structure

Segments doc into orga-
nizational units like title,
abstract, body, footnotes,
caption, and more.

SpanPredictor wraps Token Classifiers from Transformers (Wolfe et al., 2022),
which provides both pretrained weights from VILA (Shen et al., 2022), as well as
RoBERTa (Liu et al., 2019), SciBERT (Beltagy et al., 2019) weights that we’ve
finetuned on similar data.

Task-
specific

Models for a given sci-
entific document process-
ing task can be used with
papermage if wrapped as
a Predictor following
common patterns.

As many practitioners depend on prompting a model through an API call, we
implement APIPredictor which interfaces external APIs, such as GPT-3 (Brown
et al., 2020), to perform tasks like question answering over a structured Document.
We also implement SnippetRetrievalPredictor which wraps models like Con-
triever (Izacard et al., 2022) to perform top-k within-document snippet retrieval.
See §4 for how these two can be combined.

Table 1: Types of Predictors implemented in papermage.

Model Full Grobid Subset
P R F1 P R F1

GrobidCRF 40.6 38.3 39.1 81.2 76.7 78.9
GrobidNN 42.0 36.5 37.6 84.1 73.0 78.2
RoBERTa 75.9 80.0 76.8 82.6 83.9 83.2
I-VILA 92.0 94.1 92.7 92.2 95.2 93.7

Table 2: Evaluating performance of CoreRecipe for
logical structure recovery on S2-VL (Shen et al., 2022).
Metrics are computed for token-level classification,
macro-averaged over categories. The “Grobid Subset”
limits evaluation to only categories for which Grobid
returns bounding box information, which was necessary
for evaluation on S2-VL. See Appendix A.3 for details.

development of new ones from scratch. Similarly
to the Transformers library, a Predictor’s
implementation is typically independent from
its configuration, allowing users to customize
each Predictor by tweaking hyperparameters or
loading a different set of weights.

Below, we showcase how a vision model and
two text models (both neural and symbolic) can be
applied in succession to a single Document. See
Table 1 for a summary of supported Predictors.

1 >>> import papermage as pm
2 >>> cv = pm.BoxPredictor (...)
3 >>> tables , figures = cv.predict(doc)
4 >>> doc.add(tables , figures)
5

6 >>> nlp_neu = pm.SpanPredictor (...)
7 >>> titles , authors = nlp_neu.predict(doc)
8 >>> doc.add(titles , authors)
9

10 >>> nlp_sym = pm.SentencePredictor (...)
11 >>> sentences = nlp_sym.predict(doc)
12 >>> doc.add(sentences)

Predictors return a list of Entities, which
can be group_by() to organize them based on pre-
dicted label value (e.g., tokens classified as “title”
or “authors”). Finally, these predictions are passed
to doc.annotate() to be added to Document.

3.3 End-to-end processing with Recipes

Finally, papermage provides predefined combina-
tions of Predictors, called Recipes, for users
seeking high-quality options for turn-key process-
ing of visually-rich documents:

1 from papermage import CoreRecipe
2 recipe = CoreRecipe ()
3 doc = recipe.run("... pdf")
4 doc.captions [0]. text
5 >>> "Figure 1. ..."

Recipes can also be flexibly modified to sup-
port development. For example, our current de-
fault combines the pdfplumber PDF parsing utility
with the I-VILA (Shen et al., 2022) research model.
We show in Table 2 an evaluation comparing this
against the same recipe but configured to (1) swap
I-VILA for a RoBERTa model, as well as (2) swap
both for Grobid API calls. We expect Recipes
to appeal to two groups of users—end-to-end con-
sumers, and developers of high-level applications.
The former is comprised of developers and re-
searchers who are looking for a one-step solution
to multimodal scientific document analysis. The
latter are likely developers and researchers looking
to combine document structure primitives to build
a complex application (see example in §4).

499

4 Vignette: Building an Attributed QA
System for Scientific Papers

How could researchers leverage papermage for
their research? Here, we walk through a user sce-
nario in which a researcher (Lucy) is prototyping
an attributed QA system for science.

System Design. Drawing inspiration from Ko
et al. (2020), Lee et al. (2023), Fok et al. (2023a),
and Newman et al. (2023), Lucy is studying how
language models can be used to resolve questions
that arise while reading a paper (e.g. What does
this mean? or What does this refer to?). In her
prototype interface, a user can highlight a passage
in a PDF and ask a question about it. A retrieval
model then finds relevant passages from the rest
of the paper. The prototype then uses the text of
the retrieved passages along with the user question
to prompt a language model to generate an answer.
When presenting the answer to the user, the proto-
type also visually highlights the retrieved passages
as supporting evidence to the generated answer.

Getting started quickly. As a researcher profi-
cient in Python, it only takes Lucy minutes to install
papermage using pip and successfully process a lo-
cal PDF file by following the example code snippet
for CoreRecipe in §3.2. In an interactive session,
she familiarizes herself with the provided Layers
by following the traversal, cross-referencing and
querying examples in §3.1. She makes sure she can
serialize and re-instantiate her Document (§A.2).

Formatting input. Before using papermage,
Lucy has prior experience building QA pipelines,
but has only dealt with documents as sentence-
split text data (e.g., <List[str]>). Lucy realizes
that she can reuse her prior text-only code with
papermage by implementing a couple of wrappers
to gain additional capabilities: First, she converts
a user’s highlighted passage from a visual selec-
tion to text following the example in Figure 3F.
Next, she converts Document to her required text
format by following the traversal examples in §3.1
(e.g., using [s.text for s in doc.sentences]).
Within a few lines of code, Lucy has everything
she needs for text-only input to her QA pipeline.

Formatting output. Lucy runs her QA system
on her newly acquired text data and now has (1) a
model-generated answer and (2) several retrieved
evidence passages. She realizes that she already
has access to the evidences’ bounding boxes via a

similar call to how she defined the model input con-
text (e.g., [s.boxes for s in doc.sentences]).
She can easily pass this to the user interface to en-
able linking to and highlighting of those passages.

Defining a Predictor. The pattern Lucy has
followed is used in our many Predictor imple-
mentations: (1) gain access to text by traversing
Layers (e.g., sentences), (2) perform all usual
NLP computation on that text, and (3) format
model output as Entities. This simple pattern
allows users to reuse familiar models in existing
frameworks and eschews lengthy onboarding to
papermage. Lucy wraps her prompting and re-
trieval code in new classes: APIPredictor and
SnippetRetrievalPredictor (see Table 1).

Fast iterations. Leveraging the bounding box
data from papermage to visually highlight the re-
trieved passages, Lucy suspects the retrieval com-
ponent is likely underperforming. She makes a sim-
ple edit from doc.sentences to doc.paragraphs
and evaluates system performance under different
input granularity. She also realizes the system of-
ten retrieves content outside the main body text.
She restricts her traversal to filter out paragraphs
that overlap with footnotes—[p.text for p in
doc.paragraphs if len(p.footnotes) == 0]—
making clever use of the cross-referencing function-
ality to detect when a paragraph is actually coming
from a footnote. This example demonstrates the
versatility of the affordances provided by magelib.

5 Conclusion

In this work, we’ve introduced papermage, an
open-source Python toolkit for processing scientific
documents. papermage was developed to supply
high-quality data and reduce friction for research
prototype development at Semantic Scholar. To-
day, it is being used in the production PDF process-
ing pipeline to provide data for both the literature
graph (Ammar et al., 2018; Kinney et al., 2023)
and the paper-reading interface (Lo et al., 2023). It
has also been used in working research prototypes
which have since contributed to research publica-
tions (Fok et al., 2023b; Kim et al., 2023).6 We
open-source papermage in hopes it will simplify
research workflows that depend on scientific doc-
uments and promote extensions to other visually-
rich documents like textbooks (Lincker et al., 2023)
and digitized print media (Lee et al., 2020).

6See a demo of such a prototype papeo.app/demo.

500

https://semanticscholar.org
https://papeo.app/demo

Ethical Considerations

As a toolkit primarily designed to process scientific
documents, there are two areas where papermage
could cause harms or have unintended effects.

Extraction of bibliographic information
papermage could be used to parse author names,
affiliation, emails from scientific documents. Like
any software, this extraction can be noisy, leading
to incorrect parsing and thus mis-attribution of
manuscripts. Further, since papermage relies
on static PDF documents, rather than metadata
dynamically retrieved from publishers, users of
papermage need consider how and when extracted
names should no longer be associated with authors,
a harmful practice called deadnaming (Queer in AI
et al., 2023). We recommend papermage users to
exercise caution when using our toolkit to extract
metadata, to cross-reference extracted content with
other sources when possible, and to design systems
such that authors have the ability to manually edit
any data about themselves.

Misrepresentation or fabrication of informa-
tion in documents In §3, we discussed how
papermage can be easily extended to support high-
level applications. Such applications might include
question answering chatbots, or AI summarizers
that perform information synthesis over one or
more papermage documents. Such applications
typically rely on generative models to produce their
output, which might fabricate incorrect informa-
tion or misstate claims. Developers should be vig-
ilant when integrating papermage output into any
downstream application, especially in systems that
purport to represent information gathered from sci-
entific publications.

Acknowledgements

We thank our teammates at Semantic Scholar for
their help on this project. In particular: Rodney
Kinney provided insight during discussions about
how best to represent data extracted from docu-
ments; Paul Sayre provided feedback on initial
designs of the library; Chloe Anastasiades, Dany
Haddad and Egor Klevak tested earlier versions of
the library; Tal August, Raymond Fok, and Andrew
Head motivated the need for such a toolkit dur-
ing their internships building augmented reading
interfaces; Jaron Lochner and Kelsey MacMillan
helped us get additional engineering support; and

Oren Etzioni provided enthusiasm and support for
continued investment in this toolkit.

This project was supported in part by NSF Grant
OIA-2033558 and NSF Grant CNS-2213656.

Author Contributions

All authors contributed to the implementation of
papermage and/or the writing of this paper.

Core contributors. Kyle Lo and Zejiang Shen
initiated the project and co-wrote initial implemen-
tations of magelib and some Predictors. Later,
Kyle Lo and Luca Soldaini refactored a majority of
magelib, Predictors, and added Recipes. Ben-
jamin Newman added new Predictors to support
use-cases like those in the Vignette (§4). Joseph
Chee Chang implemented an end-to-end web-based
visual interface for papermage and helped iterate
on papermage’s designs. All core contributors
helped with writing. Finally, Kyle Lo led all aspects
of the project, including design and implementa-
tion, as well as mentorship of other contributors to
the toolkit (see below).

Other contributors. Russell Authur, Stefan Can-
dra, Yoganand Chandrasekhar, Regan Huff, Aman-
preet Singh and Angele Zamarron each worked
closely with Kyle Lo to contribute a Predictor
to papermage. Erin Bransom and Bailey Kuehl
helped with data annotation for training and evalu-
ating those Predictors. Chris Wilhelm provided
feedback on papermage’s design and implemented
faster indexing of Entities when building Layers.
Finally, Marti Hearst, Daniel Weld, and Doug
Downey helped with writing and overall advising
on the project.

References
Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-

ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier,
Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew Pe-
ters, Joanna Power, Sam Skjonsberg, Lucy Lu Wang,
Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen,
and Oren Etzioni. 2018. Construction of the litera-
ture graph in semantic scholar. In Proceedings of
the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 3 (Indus-
try Papers), pages 84–91, New Orleans - Louisiana.
Association for Computational Linguistics.

Tal August, Lucy Lu Wang, Jonathan Bragg, Marti A.
Hearst, Andrew Head, and Kyle Lo. 2023. Paper

501

https://doi.org/10.18653/v1/N18-3011
https://doi.org/10.18653/v1/N18-3011
https://doi.org/10.1145/3589955

plain: Making medical research papers approachable
to healthcare consumers with natural language pro-
cessing. ACM Trans. Comput.-Hum. Interact., 30(5).

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. SciB-
ERT: A pretrained language model for scientific text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3615–
3620, Hong Kong, China. Association for Computa-
tional Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Joseph Chee Chang, Saleema Amershi, and Ece Kamar.
2017. Revolt: Collaborative crowdsourcing for label-
ing machine learning datasets. In Proceedings of the
2017 CHI Conference on Human Factors in Comput-
ing Systems, CHI ’17, page 2334–2346, New York,
NY, USA. Association for Computing Machinery.

Joseph Chee Chang, Amy X. Zhang, Jonathan Bragg,
Andrew Head, Kyle Lo, Doug Downey, and Daniel S.
Weld. 2023. Citesee: Augmenting citations in scien-
tific papers with persistent and personalized historical
context. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems, CHI ’23,
New York, NY, USA. Association for Computing
Machinery.

Catherine Chen, Zejiang Shen, Dan Klein, Gabriel
Stanovsky, Doug Downey, and Kyle Lo. 2023. Are
layout-infused language models robust to layout dis-
tribution shifts? a case study with scientific docu-
ments. In Findings of the Association for Computa-
tional Linguistics: ACL 2023, pages 13345–13360,
Toronto, Canada. Association for Computational Lin-
guistics.

Isaac Councill, C. Lee Giles, and Min-Yen Kan. 2008.
ParsCit: an open-source CRF reference string pars-
ing package. In Proceedings of the Sixth Interna-
tional Conference on Language Resources and Eval-
uation (LREC’08), Marrakech, Morocco. European
Language Resources Association (ELRA).

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,
Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 4599–4610, On-
line. Association for Computational Linguistics.

Raymond Fok, Joseph Chee Chang, Tal August, Amy X.
Zhang, and Daniel S. Weld. 2023a. Qlarify: Bridg-
ing scholarly abstracts and papers with recursively
expandable summaries. arXiv, abs/2310.07581.

Raymond Fok, Hita Kambhamettu, Luca Soldaini,
Jonathan Bragg, Kyle Lo, Marti Hearst, Andrew
Head, and Daniel S Weld. 2023b. Scim: Intelligent
skimming support for scientific papers. In Proceed-
ings of the 28th International Conference on Intelli-
gent User Interfaces, IUI ’23, page 476–490, New
York, NY, USA. Association for Computing Machin-
ery.

Grobid. 2008–2023. Grobid. https://github.com/
kermitt2/grobid.

Yu Gu, Robert Tinn, Hao Cheng, Michael R. Lucas,
Naoto Usuyama, Xiaodong Liu, Tristan Naumann,
Jianfeng Gao, and Hoifung Poon. 2020. Domain-
specific language model pretraining for biomedical
natural language processing. ACM Transactions on
Computing for Healthcare (HEALTH), 3:1 – 23.

Andrew Head, Kyle Lo, Dongyeop Kang, Raymond
Fok, Sam Skjonsberg, Daniel S. Weld, and Marti A.
Hearst. 2021. Augmenting scientific papers with just-
in-time, position-sensitive definitions of terms and
symbols. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, CHI ’21,
New York, NY, USA. Association for Computing
Machinery.

Zhi Hong, Aswathy Ajith, James Pauloski, Eamon
Duede, Kyle Chard, and Ian Foster. 2023. The dimin-
ishing returns of masked language models to science.
In Findings of the Association for Computational
Linguistics: ACL 2023, pages 1270–1283, Toronto,
Canada. Association for Computational Linguistics.

Po-Wei Huang, Abhinav Ramesh Kashyap, Yanxia Qin,
Yajing Yang, and Min-Yen Kan. 2022a. Lightweight
contextual logical structure recovery. In Proceedings
of the Third Workshop on Scholarly Document Pro-
cessing, pages 37–48, Gyeongju, Republic of Korea.
Association for Computational Linguistics.

Yupan Huang, Tengchao Lv, Lei Cui, Yutong Lu, and
Furu Wei. 2022b. Layoutlmv3: Pre-training for doc-
ument ai with unified text and image masking. Pro-
ceedings of the 30th ACM International Conference
on Multimedia.

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebas-
tian Riedel, Piotr Bojanowski, Armand Joulin, and
Edouard Grave. 2022. Unsupervised dense informa-
tion retrieval with contrastive learning. Transactions
on Machine Learning Research.

Sarthak Jain, Madeleine van Zuylen, Hannaneh Ha-
jishirzi, and Iz Beltagy. 2020. SciREX: A challenge
dataset for document-level information extraction. In

502

https://doi.org/10.1145/3589955
https://doi.org/10.1145/3589955
https://doi.org/10.1145/3589955
https://doi.org/10.18653/v1/D19-1371
https://doi.org/10.18653/v1/D19-1371
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.1145/3025453.3026044
https://doi.org/10.1145/3025453.3026044
https://doi.org/10.1145/3544548.3580847
https://doi.org/10.1145/3544548.3580847
https://doi.org/10.1145/3544548.3580847
https://aclanthology.org/2023.findings-acl.844
https://aclanthology.org/2023.findings-acl.844
https://aclanthology.org/2023.findings-acl.844
https://aclanthology.org/2023.findings-acl.844
http://www.lrec-conf.org/proceedings/lrec2008/pdf/166_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/166_paper.pdf
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://doi.org/10.18653/v1/2021.naacl-main.365
https://api.semanticscholar.org/CorpusID:263835343
https://api.semanticscholar.org/CorpusID:263835343
https://api.semanticscholar.org/CorpusID:263835343
https://doi.org/10.1145/3581641.3584034
https://doi.org/10.1145/3581641.3584034
http://arxiv.org/abs/1:dir:dab86b296e3c3216e2241968f0d63b68e8209d3c
https://github.com/kermitt2/grobid
https://github.com/kermitt2/grobid
https://api.semanticscholar.org/CorpusID:220919723
https://api.semanticscholar.org/CorpusID:220919723
https://api.semanticscholar.org/CorpusID:220919723
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648
https://doi.org/10.1145/3411764.3445648
https://aclanthology.org/2023.findings-acl.82
https://aclanthology.org/2023.findings-acl.82
https://aclanthology.org/2022.sdp-1.5
https://aclanthology.org/2022.sdp-1.5
https://api.semanticscholar.org/CorpusID:248228056
https://api.semanticscholar.org/CorpusID:248228056
https://openreview.net/forum?id=jKN1pXi7b0
https://openreview.net/forum?id=jKN1pXi7b0
https://doi.org/10.18653/v1/2020.acl-main.670
https://doi.org/10.18653/v1/2020.acl-main.670

Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 7506–
7516, Online. Association for Computational Lin-
guistics.

Hyeonsu B. Kang, Joseph Chee Chang, Yongsung Kim,
and Aniket Kittur. 2022. Threddy: An interactive
system for personalized thread-based exploration and
organization of scientific literature. In Proceedings of
the 35th Annual ACM Symposium on User Interface
Software and Technology, UIST ’22, New York, NY,
USA. Association for Computing Machinery.

Hyeonsu B. Kang, Sherry Tongshuang Wu, Joseph Chee
Chang, and Aniket Kittur. 2023. Synergi: A mixed-
initiative system for scholarly synthesis and sense-
making. In Proceedings of the 36th Annual ACM
Symposium on User Interface Software and Technol-
ogy. Association for Computing Machinery.

Tae Soo Kim, Matt Latzke, Jonathan Bragg, Amy X.
Zhang, and Joseph Chee Chang. 2023. Papeos: Aug-
menting research papers with talk videos. In Proceed-
ings of the 36th Annual ACM Symposium on User
Interface Software and Technology.

Rodney Kinney, Chloe Anastasiades, Russell Authur,
Iz Beltagy, Jonathan Bragg, Alexandra Buraczyn-
ski, Isabel Cachola, Stefan Candra, Yoganand Chan-
drasekhar, Arman Cohan, Miles Crawford, Doug
Downey, Jason Dunkelberger, Oren Etzioni, Rob
Evans, Sergey Feldman, Joseph Gorney, David Gra-
ham, Fangzhou Hu, Regan Huff, Daniel King, Se-
bastian Kohlmeier, Bailey Kuehl, Michael Langan,
Daniel Lin, Haokun Liu, Kyle Lo, Jaron Lochner,
Kelsey MacMillan, Tyler Murray, Chris Newell,
Smita Rao, Shaurya Rohatgi, Paul Sayre, Zejiang
Shen, Amanpreet Singh, Luca Soldaini, Shivashankar
Subramanian, Amber Tanaka, Alex D. Wade, Linda
Wagner, Lucy Lu Wang, Chris Wilhelm, Caroline Wu,
Jiangjiang Yang, Angele Zamarron, Madeleine Van
Zuylen, and Daniel S. Weld. 2023. The Semantic
Scholar Open Data Platform. ArXiv, abs/2301.10140.

Wei-Jen Ko, Te-yuan Chen, Yiyan Huang, Greg Durrett,
and Junyi Jessy Li. 2020. Inquisitive question gener-
ation for high level text comprehension. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6544–6555, Online. Association for Computational
Linguistics.

Benjamin Charles Germain Lee, Jaime Mears, Eileen
Jakeway, Meghan Ferriter, Chris Adams, Nathan
Yarasavage, Deborah Thomas, Kate Zwaard, and
Daniel S. Weld. 2020. The newspaper navigator
dataset: Extracting headlines and visual content from
16 million historic newspaper pages in chronicling
america. In Proceedings of the 29th ACM Interna-
tional Conference on Information & Knowledge Man-
agement, CIKM ’20, page 3055–3062, New York,
NY, USA. Association for Computing Machinery.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.

2019. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Yoonjoo Lee, Kyungjae Lee, Sunghyun Park, Dasol
Hwang, Jaehyeon Kim, Hong-In Lee, and Moontae
Lee. 2023. QASA: Advanced question answering on
scientific articles. In Proceedings of the 40th Inter-
national Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research,
pages 19036–19052. PMLR.

Élise Lincker, Olivier Pons, Camille Guinaudeau, Is-
abelle Barbet, Jérôme Dupire, Céline Hudelot, Vin-
cent Mousseau, and Caroline Huron. 2023. Layout
and activity-based textbook modeling for automatic
pdf textbook extraction. In iTextbooks@AIED.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A Robustly Optimized BERT Pretrain-
ing Approach. ArXiv, abs/1907.11692.

Kyle Lo, Joseph Chee Chang, Andrew Head, Jonathan
Bragg, Amy X. Zhang, Cassidy Trier, Chloe Anas-
tasiades, Tal August, Russell Authur, Danielle Bragg,
Erin Bransom, Isabel Cachola, Stefan Candra, Yo-
ganand Chandrasekhar, Yen-Sung Chen, Evie Yu-
Yen Cheng, Yvonne Chou, Doug Downey, Rob
Evans, Raymond Fok, Fangzhou Hu, Regan Huff,
Dongyeop Kang, Tae Soo Kim, Rodney Kinney,
Aniket Kittur, Hyeonsu Kang, Egor Klevak, Bai-
ley Kuehl, Michael Langan, Matt Latzke, Jaron
Lochner, Kelsey MacMillan, Eric Marsh, Tyler Mur-
ray, Aakanksha Naik, Ngoc-Uyen Nguyen, Srishti
Palani, Soya Park, Caroline Paulic, Napol Rachata-
sumrit, Smita Rao, Paul Sayre, Zejiang Shen, Pao
Siangliulue, Luca Soldaini, Huy Tran, Madeleine van
Zuylen, Lucy Lu Wang, Christopher Wilhelm, Caro-
line Wu, Jiangjiang Yang, Angele Zamarron, Marti A.
Hearst, and Daniel S. Weld. 2023. The Semantic
Reader Project: Augmenting Scholarly Documents
through AI-Powered Interactive Reading Interfaces.
ArXiv, abs/2303.14334.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rodney Kin-
ney, and Daniel Weld. 2020. S2ORC: The semantic
scholar open research corpus. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4969–4983, Online. Asso-
ciation for Computational Linguistics.

Renqian Luo, Liai Sun, Yingce Xia, Tao Qin, Sheng
Zhang, Hoifung Poon, and Tie-Yan Liu. 2022.
Biogpt: Generative pre-trained transformer for
biomedical text generation and mining. Briefings
in bioinformatics.

Mark Neumann, Daniel King, Iz Beltagy, and Waleed
Ammar. 2019. ScispaCy: Fast and robust models
for biomedical natural language processing. In Pro-
ceedings of the 18th BioNLP Workshop and Shared
Task, pages 319–327, Florence, Italy. Association for
Computational Linguistics.

503

https://doi.org/10.1145/3526113.3545660
https://doi.org/10.1145/3526113.3545660
https://doi.org/10.1145/3526113.3545660
https://papeo.app
https://papeo.app
https://api.semanticscholar.org/CorpusID:256194545
https://api.semanticscholar.org/CorpusID:256194545
https://doi.org/10.18653/v1/2020.emnlp-main.530
https://doi.org/10.18653/v1/2020.emnlp-main.530
https://doi.org/10.1145/3340531.3412767
https://doi.org/10.1145/3340531.3412767
https://doi.org/10.1145/3340531.3412767
https://doi.org/10.1145/3340531.3412767
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://proceedings.mlr.press/v202/lee23n.html
https://proceedings.mlr.press/v202/lee23n.html
https://api.semanticscholar.org/CorpusID:259504454
https://api.semanticscholar.org/CorpusID:259504454
https://api.semanticscholar.org/CorpusID:259504454
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:198953378
https://api.semanticscholar.org/CorpusID:257766269
https://api.semanticscholar.org/CorpusID:257766269
https://api.semanticscholar.org/CorpusID:257766269
https://doi.org/10.18653/v1/2020.acl-main.447
https://doi.org/10.18653/v1/2020.acl-main.447
https://api.semanticscholar.org/CorpusID:252542956
https://api.semanticscholar.org/CorpusID:252542956
https://doi.org/10.18653/v1/W19-5034
https://doi.org/10.18653/v1/W19-5034

Benjamin Newman, Luca Soldaini, Raymond Fok, Ar-
man Cohan, and Kyle Lo. 2023. A question answer-
ing framework for decontextualizing user-facing snip-
pets from scientific documents. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

Organizers of Queer in AI, Anaelia Ovalle, Arjun Sub-
ramonian, Ashwin Singh, Claas Voelcker, Danica J.
Sutherland, Davide Locatelli, Eva Breznik, Filip Klu-
bicka, Hang Yuan, Hetvi J, Huan Zhang, Jaidev
Shriram, Kruno Lehman, Luca Soldaini, Maarten
Sap, Marc Peter Deisenroth, Maria Leonor Pacheco,
Maria Ryskina, Martin Mundt, Milind Agarwal, Nyx
Mclean, Pan Xu, A Pranav, Raj Korpan, Ruchira
Ray, Sarah Mathew, Sarthak Arora, St John, Tanvi
Anand, Vishakha Agrawal, William Agnew, Yanan
Long, Zijie J. Wang, Zeerak Talat, Avijit Ghosh,
Nathaniel Dennler, Michael Noseworthy, Sharvani
Jha, Emi Baylor, Aditya Joshi, Natalia Y. Bilenko,
Andrew Mcnamara, Raphael Gontijo-Lopes, Alex
Markham, Evyn Dong, Jackie Kay, Manu Saraswat,
Nikhil Vytla, and Luke Stark. 2023. Queer In AI: A
Case Study in Community-Led Participatory AI. In
Proceedings of the 2023 ACM Conference on Fair-
ness, Accountability, and Transparency, FAccT ’23,
page 1882–1895, New York, NY, USA. Association
for Computing Machinery.

Napol Rachatasumrit, Jonathan Bragg, Amy X. Zhang,
and Daniel S Weld. 2022. Citeread: Integrating lo-
calized citation contexts into scientific paper reading.
In 27th International Conference on Intelligent User
Interfaces, IUI ’22, page 707–719, New York, NY,
USA. Association for Computing Machinery.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster r-cnn: Towards real-time object de-
tection with region proposal networks. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
39:1137–1149.

Nipun Sadvilkar and Mark Neumann. 2020. PySBD:
Pragmatic sentence boundary disambiguation. In
Proceedings of Second Workshop for NLP Open
Source Software (NLP-OSS), pages 110–114, Online.
Association for Computational Linguistics.

Zejiang Shen, Kyle Lo, Lucy Lu Wang, Bailey Kuehl,
Daniel S. Weld, and Doug Downey. 2022. VILA: Im-
proving structured content extraction from scientific
PDFs using visual layout groups. Transactions of the
Association for Computational Linguistics, 10:376–
392.

Zejiang Shen, Ruochen Zhang, Melissa Dell, B. Lee,
Jacob Carlson, and Weining Li. 2021. Layoutparser:
A unified toolkit for deep learning based document
image analysis. In IEEE International Conference
on Document Analysis and Recognition.

Sanjay Subramanian, Lucy Lu Wang, Ben Bogin,
Sachin Mehta, Madeleine van Zuylen, Sravanthi
Parasa, Sameer Singh, Matt Gardner, and Hannaneh
Hajishirzi. 2020. MedICaT: A dataset of medical

images, captions, and textual references. In Find-
ings of the Association for Computational Linguistics:
EMNLP 2020, pages 2112–2120, Online. Association
for Computational Linguistics.

M. Tan, R. Pang, and Q. V. Le. 2020. Efficientdet:
Scalable and efficient object detection. In 2020
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10778–10787, Los
Alamitos, CA, USA. IEEE Computer Society.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony S. Hartshorn, Elvis Saravia, An-
drew Poulton, Viktor Kerkez, and Robert Stojnic.
2022. Galactica: A large language model for science.
ArXiv, abs/2211.09085.

pdf2image. 2023. pdf2image. https://github.
com/Belval/pdf2image.

pdfplumber. 2023. pdfplumber. https://github.
com/jsvine/pdfplumber.

Dominika Tkaczyk, Paweł Szostek, Mateusz Fedo-
ryszak, Piotr Jan Dendek, and Lukasz Bolikowski.
2015. Cermine: Automatic extraction of structured
metadata from scientific literature. Int. J. Doc. Anal.
Recognit., 18(4):317–335.

Amalie Trewartha, Nicholas Walker, Haoyan Huo,
Sanghoon Lee, Kevin Cruse, John Dagdelen, Alex
Dunn, Kristin Aslaug Persson, Gerbrand Ceder, and
Anubhav Jain. 2022. Quantifying the advantage of
domain-specific pre-training on named entity recog-
nition tasks in materials science. Patterns, 3.

Lucy Lu Wang, Isabel Cachola, Jonathan Bragg, Evie
(Yu-Yen) Cheng, Chelsea Hess Haupt, Matt Latzke,
Bailey Kuehl, Madeleine van Zuylen, Linda M. Wag-
ner, and Daniel S. Weld. 2021. Improving the acces-
sibility of scientific documents: Current state, user
needs, and a system solution to enhance scientific pdf
accessibility for blind and low vision users. ArXiv,
abs/2105.00076.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin
Eide, Kathryn Funk, Yannis Katsis, Rodney Michael
Kinney, Yunyao Li, Ziyang Liu, William Merrill,
Paul Mooney, Dewey A. Murdick, Devvret Rishi,
Jerry Sheehan, Zhihong Shen, Brandon Stilson,
Alex D. Wade, Kuansan Wang, Nancy Xin Ru Wang,
Christopher Wilhelm, Boya Xie, Douglas M. Ray-
mond, Daniel S. Weld, Oren Etzioni, and Sebastian
Kohlmeier. 2020. CORD-19: The COVID-19 open
research dataset. In Proceedings of the 1st Work-
shop on NLP for COVID-19 at ACL 2020, Online.
Association for Computational Linguistics.

Rosalee Wolfe, John McDonald, Ronan Johnson, Ben
Sturr, Syd Klinghoffer, Anthony Bonzani, Andrew
Alexander, and Nicole Barnekow. 2022. Supporting
mouthing in signed languages: New innovations and
a proposal for future corpus building. In Proceedings
of the 7th International Workshop on Sign Language

504

https://doi.org/10.1145/3593013.3594134
https://doi.org/10.1145/3593013.3594134
https://doi.org/10.1145/3490099.3511162
https://doi.org/10.1145/3490099.3511162
https://api.semanticscholar.org/CorpusID:10328909
https://api.semanticscholar.org/CorpusID:10328909
https://doi.org/10.18653/v1/2020.nlposs-1.15
https://doi.org/10.18653/v1/2020.nlposs-1.15
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.1162/tacl_a_00466
https://doi.org/10.1162/tacl_a_00466
https://api.semanticscholar.org/CorpusID:232404723
https://api.semanticscholar.org/CorpusID:232404723
https://api.semanticscholar.org/CorpusID:232404723
https://doi.org/10.18653/v1/2020.findings-emnlp.191
https://doi.org/10.18653/v1/2020.findings-emnlp.191
https://doi.org/10.1109/CVPR42600.2020.01079
https://doi.org/10.1109/CVPR42600.2020.01079
https://api.semanticscholar.org/CorpusID:253553203
https://github.com/Belval/pdf2image
https://github.com/Belval/pdf2image
https://github.com/Belval/pdf2image
https://github.com/jsvine/pdfplumber
https://github.com/jsvine/pdfplumber
https://github.com/jsvine/pdfplumber
https://doi.org/10.1007/s10032-015-0249-8
https://doi.org/10.1007/s10032-015-0249-8
https://api.semanticscholar.org/CorpusID:248065796
https://api.semanticscholar.org/CorpusID:248065796
https://api.semanticscholar.org/CorpusID:248065796
https://aclanthology.org/2020.nlpcovid19-acl.1
https://aclanthology.org/2020.nlpcovid19-acl.1
https://aclanthology.org/2022.sltat-1.19
https://aclanthology.org/2022.sltat-1.19
https://aclanthology.org/2022.sltat-1.19

Translation and Avatar Technology: The Junction of
the Visual and the Textual: Challenges and Perspec-
tives, pages 125–130, Marseille, France. European
Language Resources Association.

Yang Xu, Yiheng Xu, Tengchao Lv, Lei Cui, Furu
Wei, Guoxin Wang, Yijuan Lu, Dinei Florencio, Cha
Zhang, Wanxiang Che, Min Zhang, and Lidong Zhou.
2021. LayoutLMv2: Multi-modal pre-training for
visually-rich document understanding. In Proceed-
ings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 2579–2591, Online.
Association for Computational Linguistics.

Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu
Wei, and Ming Zhou. 2019. Layoutlm: Pre-training
of text and layout for document image understanding.
Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining.

Xu Zhong, Jianbin Tang, and Antonio Jimeno Yepes.
2019. Publaynet: largest dataset ever for document
layout analysis. In 2019 International Conference on
Document Analysis and Recognition (ICDAR), pages
1015–1022. IEEE.

505

https://doi.org/10.18653/v1/2021.acl-long.201
https://doi.org/10.18653/v1/2021.acl-long.201
https://api.semanticscholar.org/CorpusID:209515395
https://api.semanticscholar.org/CorpusID:209515395
https://doi.org/10.1109/ICDAR.2019.00166
https://doi.org/10.1109/ICDAR.2019.00166

A Appendix

A.1 Comparison and Compatibility with
XML

One can view Layers as capturing content hier-
archy (e.g., tokens vs sentences) similar to that of
other structured document representations, like TEI
XML trees. We note that Layers are stored as un-
ordered attributes and don’t require nesting. This
allows for specific cross-layer referencing opera-
tions that don’t adhere to strict nesting relationships.
For example:

1 for sentence in doc.sentences:
2 for line in sentence.lines:
3 ...

Recall that a sentence can begin or end midway
through a line and cross multiple lines (§3.1). Sim-
ilarly, not all lines are exactly contained within
the boundaries of a sentence. As such, sentences
and lines are not strictly nested within each other.
This relationship would be difficult to encode in an
XML format adhering to document tree structure.

Regardless, the way we represent structure
in documents is highly versatile. We demon-
strate this by also implementing GrobidParser
as an alternative to the PDF2TextParser in §3.1.
GrobidParser invokes Grobid to process PDFs,
and reads the resulting TEI XML file generated by
Grobid by converting each XML tag of a common
level into an Entity of its own Layer. We use this
to perform the evaluation in Table 2.

A.2 Additional magelib Protocols and
Utilities

Serialization. Any Document and all of its
Layers can be exported to a JSON format, and
perfectly reconstructed:

1 import json
2 with open(".... json", "w") as f_out:
3 json.dump(doc.to_json(), f_out)
4

5 with open("... json", "r") as f_in:
6 doc = json.load(f_in)

A.3 Evaluating papermage’s CoreRecipe
against Grobid

Here, we detail how we performed the evaluation
reported in §3.3 (Table 2). We also provide a full
breakdown by category in Table 3.

As described earlier in the paper, Grobid is quite
difficult to evaluate as it is developed with tight
coupling between the PDF parser (pdfalto) and

the models it employs to perform logical struc-
ture recovery over the resulting token stream. As
such, there is no straightforward way to run just
the model components of Grobid on an alternative
token stream like that provided in the S2-VL (Shen
et al., 2022) dataset.

To perform this baseline evaluation, we ran
the original PDFs that were annotated for S2-VL
through our GrobidParser using v0.7.3. Grobid
also returns bounding boxes of some predicted cat-
egories (e.g., authors, abstract, paragraphs). We
use these bounding boxes to create Entities that
we annotate on a Document constructed manually
from from S2-VL data. Using magelib cross-layer
referencing, we were able to match Grobid predic-
tions to S2-VL data to perform this evaluation.

Though we found there are certain categories
for which bounding box information was either not
available (e.g., Titles) or Grobid simply did not re-
turn that output (e.g., Figure text extraction). These
are represented by zeros in Table 3, which con-
tributes to the lower scores in Table 2 after macro
averaging. For a more apples-to-apples compari-
son, we also included a “Grobid Subset” evaluation
which restricted to just categories in S2-VL for
which Grobid produced bounding box information.

In addition to Grobid, we evaluate two of our pro-
vided Transformer-based models. The RoBERTa-
large (Liu et al., 2019) model is a Transformers
token classification model that we finetuned on the
S2-VL training set. The I-VILA model is a layout-
infused Transformer model pretrained by Shen et al.
(2022) on the S2-VL training set. Like we did with
Grobid, we ran our CoreRecipe using these two
models on the original PDFs in S2-VL, and per-
formed a similar token mapping operation since our
PDF2TextParser also produces a different token
stream than that provided in S2-VL.

At the end of the day, the Transformer-based
models performed better at this task than Grobid.
This is unsurprising given expected improvements
using a Transformer model over a CRF or BiL-
STM. The Transformer models were also trained
on S2-VL data, which gave them an advantage over
Grobid. Overall, this evaluation intended to show
how papermage enables cross-system comparisons,
even eschewing token stream incompatibility, and
to illustrate an upper bound of the performance left
on the table by existing software systems that don’t
use of state-of-the-art models.

506

Structure
Category

GROBIDCRF GROBIDNN RoBERTa I-VILA
P R F1 P R F1 P R F1 P R F1

Abstract 81.9 89.1 85.3 85.3 89.8 87.5 89.2 93.7 91.4 97.4 98.3 97.8
Author 55.2 42.6 48.1 75.1 14.0 23.6 87.5 73.5 79.9 65.5 96.9 78.2
Bibliography 96.5 98.6 97.5 95.5 97.6 96.5 93.6 93.3 93.5 99.7 98.2 99.0
Caption 70.3 70.0 70.2 70.2 69.7 70.0 80.0 77.3 78.6 93.1 89.6 91.3
Equation 71.1 85.3 77.6 71.1 85.3 77.6 55.0 85.7 67.0 90.7 94.2 92.4
Figure 0.0 0.0 0.0 0.0 0.0 0.0 88.9 82.3 85.4 99.8 96.8 98.3
Footer 0.0 0.0 0.0 0.0 0.0 0.0 56.1 59.9 57.9 96.8 78.1 86.5
Footnote 0.0 0.0 0.0 0.0 0.0 0.0 59.8 44.3 50.9 80.2 93.5 86.3
Header 0.0 0.0 0.0 0.0 0.0 0.0 40.5 84.3 54.7 92.9 99.1 95.9
Keywords 0.0 0.0 0.0 0.0 0.0 0.0 93.8 97.1 95.4 96.9 99.4 98.1
List 0.0 0.0 0.0 0.0 0.0 0.0 61.9 63.8 62.9 76.7 82.4 79.4
Paragraph 94.5 89.8 92.1 94.4 89.9 92.1 93.5 93.0 93.3 98.7 97.9 98.3
Section 83.0 79.4 81.1 83.0 79.4 81.1 67.7 82.7 74.4 96.2 91.6 93.9
Table 97.3 58.6 73.2 97.9 58.6 73.3 94.7 71.8 81.7 96.1 94.9 95.5
Title 0.0 0.0 0.0 0.0 0.0 0.0 76.3 96.7 85.3 98.7 99.9 99.3

Macro Avg
(Full S2-VL) 40.6 38.3 39.1 42.0 36.5 37.6 75.9 80.0 76.8 92.0 94.1 92.7

Macro Avg
(Grobid Subset) 81.2 76.7 78.9 84.1 73.0 78.2 82.6 83.9 83.2 92.2 95.2 93.7

Table 3: Evaluating CoreRecipe for logical structure recovery on S2-VL (Shen et al., 2022). These are per-category
metrics for Table 2. Metrics are computed for token-level classification, macro-averaged over categories. The
“Grobid Subset” limits evaluation to only categories for which Grobid returns bounding box information, which was
necessary for evaluation on S2-VL.

507

